/*************************************************************************/ /* test_quaternion.h */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #ifndef TEST_QUATERNION_H #define TEST_QUATERNION_H #include "core/math/math_defs.h" #include "core/math/math_funcs.h" #include "core/math/quaternion.h" #include "core/math/vector3.h" #include "tests/test_macros.h" namespace TestQuaternion { Quaternion quat_euler_yxz_deg(Vector3 angle) { double yaw = Math::deg_to_rad(angle[1]); double pitch = Math::deg_to_rad(angle[0]); double roll = Math::deg_to_rad(angle[2]); // Generate YXZ (Z-then-X-then-Y) Quaternion using single-axis Euler // constructor and quaternion product, both tested separately. Quaternion q_y(Vector3(0.0, yaw, 0.0)); Quaternion q_p(Vector3(pitch, 0.0, 0.0)); Quaternion q_r(Vector3(0.0, 0.0, roll)); // Roll-Z is followed by Pitch-X, then Yaw-Y. Quaternion q_yxz = q_y * q_p * q_r; return q_yxz; } TEST_CASE("[Quaternion] Default Construct") { Quaternion q; CHECK(q[0] == 0.0); CHECK(q[1] == 0.0); CHECK(q[2] == 0.0); CHECK(q[3] == 1.0); } TEST_CASE("[Quaternion] Construct x,y,z,w") { // Values are taken from actual use in another project & are valid (except roundoff error). Quaternion q(0.2391, 0.099, 0.3696, 0.8924); CHECK(q[0] == doctest::Approx(0.2391)); CHECK(q[1] == doctest::Approx(0.099)); CHECK(q[2] == doctest::Approx(0.3696)); CHECK(q[3] == doctest::Approx(0.8924)); } TEST_CASE("[Quaternion] Construct AxisAngle 1") { // Easy to visualize: 120 deg about X-axis. Quaternion q(Vector3(1.0, 0.0, 0.0), Math::deg_to_rad(120.0)); // 0.866 isn't close enough; doctest::Approx doesn't cut much slack! CHECK(q[0] == doctest::Approx(0.866025)); // Sine of half the angle. CHECK(q[1] == doctest::Approx(0.0)); CHECK(q[2] == doctest::Approx(0.0)); CHECK(q[3] == doctest::Approx(0.5)); // Cosine of half the angle. } TEST_CASE("[Quaternion] Construct AxisAngle 2") { // Easy to visualize: 30 deg about Y-axis. Quaternion q(Vector3(0.0, 1.0, 0.0), Math::deg_to_rad(30.0)); CHECK(q[0] == doctest::Approx(0.0)); CHECK(q[1] == doctest::Approx(0.258819)); // Sine of half the angle. CHECK(q[2] == doctest::Approx(0.0)); CHECK(q[3] == doctest::Approx(0.965926)); // Cosine of half the angle. } TEST_CASE("[Quaternion] Construct AxisAngle 3") { // Easy to visualize: 60 deg about Z-axis. Quaternion q(Vector3(0.0, 0.0, 1.0), Math::deg_to_rad(60.0)); CHECK(q[0] == doctest::Approx(0.0)); CHECK(q[1] == doctest::Approx(0.0)); CHECK(q[2] == doctest::Approx(0.5)); // Sine of half the angle. CHECK(q[3] == doctest::Approx(0.866025)); // Cosine of half the angle. } TEST_CASE("[Quaternion] Construct AxisAngle 4") { // More complex & hard to visualize, so test w/ data from online calculator. Vector3 axis(1.0, 2.0, 0.5); Quaternion q(axis.normalized(), Math::deg_to_rad(35.0)); CHECK(q[0] == doctest::Approx(0.131239)); CHECK(q[1] == doctest::Approx(0.262478)); CHECK(q[2] == doctest::Approx(0.0656194)); CHECK(q[3] == doctest::Approx(0.953717)); } TEST_CASE("[Quaternion] Construct from Quaternion") { Vector3 axis(1.0, 2.0, 0.5); Quaternion q_src(axis.normalized(), Math::deg_to_rad(35.0)); Quaternion q(q_src); CHECK(q[0] == doctest::Approx(0.131239)); CHECK(q[1] == doctest::Approx(0.262478)); CHECK(q[2] == doctest::Approx(0.0656194)); CHECK(q[3] == doctest::Approx(0.953717)); } TEST_CASE("[Quaternion] Construct Euler SingleAxis") { double yaw = Math::deg_to_rad(45.0); double pitch = Math::deg_to_rad(30.0); double roll = Math::deg_to_rad(10.0); Vector3 euler_y(0.0, yaw, 0.0); Quaternion q_y(euler_y); CHECK(q_y[0] == doctest::Approx(0.0)); CHECK(q_y[1] == doctest::Approx(0.382684)); CHECK(q_y[2] == doctest::Approx(0.0)); CHECK(q_y[3] == doctest::Approx(0.923879)); Vector3 euler_p(pitch, 0.0, 0.0); Quaternion q_p(euler_p); CHECK(q_p[0] == doctest::Approx(0.258819)); CHECK(q_p[1] == doctest::Approx(0.0)); CHECK(q_p[2] == doctest::Approx(0.0)); CHECK(q_p[3] == doctest::Approx(0.965926)); Vector3 euler_r(0.0, 0.0, roll); Quaternion q_r(euler_r); CHECK(q_r[0] == doctest::Approx(0.0)); CHECK(q_r[1] == doctest::Approx(0.0)); CHECK(q_r[2] == doctest::Approx(0.0871558)); CHECK(q_r[3] == doctest::Approx(0.996195)); } TEST_CASE("[Quaternion] Construct Euler YXZ dynamic axes") { double yaw = Math::deg_to_rad(45.0); double pitch = Math::deg_to_rad(30.0); double roll = Math::deg_to_rad(10.0); // Generate YXZ comparison data (Z-then-X-then-Y) using single-axis Euler // constructor and quaternion product, both tested separately. Vector3 euler_y(0.0, yaw, 0.0); Quaternion q_y(euler_y); Vector3 euler_p(pitch, 0.0, 0.0); Quaternion q_p(euler_p); Vector3 euler_r(0.0, 0.0, roll); Quaternion q_r(euler_r); // Roll-Z is followed by Pitch-X. Quaternion check_xz = q_p * q_r; // Then Yaw-Y follows both. Quaternion check_yxz = q_y * check_xz; // Test construction from YXZ Euler angles. Vector3 euler_yxz(pitch, yaw, roll); Quaternion q(euler_yxz); CHECK(q[0] == doctest::Approx(check_yxz[0])); CHECK(q[1] == doctest::Approx(check_yxz[1])); CHECK(q[2] == doctest::Approx(check_yxz[2])); CHECK(q[3] == doctest::Approx(check_yxz[3])); // Sneak in a test of is_equal_approx. CHECK(q.is_equal_approx(check_yxz)); } TEST_CASE("[Quaternion] Construct Basis Euler") { double yaw = Math::deg_to_rad(45.0); double pitch = Math::deg_to_rad(30.0); double roll = Math::deg_to_rad(10.0); Vector3 euler_yxz(pitch, yaw, roll); Quaternion q_yxz(euler_yxz); Basis basis_axes(euler_yxz); Quaternion q(basis_axes); CHECK(q.is_equal_approx(q_yxz)); } TEST_CASE("[Quaternion] Construct Basis Axes") { // Arbitrary Euler angles. Vector3 euler_yxz(Math::deg_to_rad(31.41), Math::deg_to_rad(-49.16), Math::deg_to_rad(12.34)); // Basis vectors from online calculation of rotation matrix. Vector3 i_unit(0.5545787, 0.1823950, 0.8118957); Vector3 j_unit(-0.5249245, 0.8337420, 0.1712555); Vector3 k_unit(-0.6456754, -0.5211586, 0.5581192); // Quaternion from online calculation. Quaternion q_calc(0.2016913, -0.4245716, 0.206033, 0.8582598); // Quaternion from local calculation. Quaternion q_local = quat_euler_yxz_deg(Vector3(31.41, -49.16, 12.34)); // Quaternion from Euler angles constructor. Quaternion q_euler(euler_yxz); CHECK(q_calc.is_equal_approx(q_local)); CHECK(q_local.is_equal_approx(q_euler)); // Calculate Basis and construct Quaternion. // When this is written, C++ Basis class does not construct from basis vectors. // This is by design, but may be subject to change. // Workaround by constructing Basis from Euler angles. // basis_axes = Basis(i_unit, j_unit, k_unit); Basis basis_axes(euler_yxz); Quaternion q(basis_axes); CHECK(basis_axes.get_column(0).is_equal_approx(i_unit)); CHECK(basis_axes.get_column(1).is_equal_approx(j_unit)); CHECK(basis_axes.get_column(2).is_equal_approx(k_unit)); CHECK(q.is_equal_approx(q_calc)); CHECK_FALSE(q.inverse().is_equal_approx(q_calc)); CHECK(q.is_equal_approx(q_local)); CHECK(q.is_equal_approx(q_euler)); CHECK(q[0] == doctest::Approx(0.2016913)); CHECK(q[1] == doctest::Approx(-0.4245716)); CHECK(q[2] == doctest::Approx(0.206033)); CHECK(q[3] == doctest::Approx(0.8582598)); } TEST_CASE("[Quaternion] Product (book)") { // Example from "Quaternions and Rotation Sequences" by Jack Kuipers, p. 108. Quaternion p(1.0, -2.0, 1.0, 3.0); Quaternion q(-1.0, 2.0, 3.0, 2.0); Quaternion pq = p * q; CHECK(pq[0] == doctest::Approx(-9.0)); CHECK(pq[1] == doctest::Approx(-2.0)); CHECK(pq[2] == doctest::Approx(11.0)); CHECK(pq[3] == doctest::Approx(8.0)); } TEST_CASE("[Quaternion] Product") { double yaw = Math::deg_to_rad(45.0); double pitch = Math::deg_to_rad(30.0); double roll = Math::deg_to_rad(10.0); Vector3 euler_y(0.0, yaw, 0.0); Quaternion q_y(euler_y); CHECK(q_y[0] == doctest::Approx(0.0)); CHECK(q_y[1] == doctest::Approx(0.382684)); CHECK(q_y[2] == doctest::Approx(0.0)); CHECK(q_y[3] == doctest::Approx(0.923879)); Vector3 euler_p(pitch, 0.0, 0.0); Quaternion q_p(euler_p); CHECK(q_p[0] == doctest::Approx(0.258819)); CHECK(q_p[1] == doctest::Approx(0.0)); CHECK(q_p[2] == doctest::Approx(0.0)); CHECK(q_p[3] == doctest::Approx(0.965926)); Vector3 euler_r(0.0, 0.0, roll); Quaternion q_r(euler_r); CHECK(q_r[0] == doctest::Approx(0.0)); CHECK(q_r[1] == doctest::Approx(0.0)); CHECK(q_r[2] == doctest::Approx(0.0871558)); CHECK(q_r[3] == doctest::Approx(0.996195)); // Test ZYX dynamic-axes since test data is available online. // Rotate first about X axis, then new Y axis, then new Z axis. // (Godot uses YXZ Yaw-Pitch-Roll order). Quaternion q_yp = q_y * q_p; CHECK(q_yp[0] == doctest::Approx(0.239118)); CHECK(q_yp[1] == doctest::Approx(0.369644)); CHECK(q_yp[2] == doctest::Approx(-0.099046)); CHECK(q_yp[3] == doctest::Approx(0.892399)); Quaternion q_ryp = q_r * q_yp; CHECK(q_ryp[0] == doctest::Approx(0.205991)); CHECK(q_ryp[1] == doctest::Approx(0.389078)); CHECK(q_ryp[2] == doctest::Approx(-0.0208912)); CHECK(q_ryp[3] == doctest::Approx(0.897636)); } TEST_CASE("[Quaternion] xform unit vectors") { // Easy to visualize: 120 deg about X-axis. // Transform the i, j, & k unit vectors. Quaternion q(Vector3(1.0, 0.0, 0.0), Math::deg_to_rad(120.0)); Vector3 i_t = q.xform(Vector3(1.0, 0.0, 0.0)); Vector3 j_t = q.xform(Vector3(0.0, 1.0, 0.0)); Vector3 k_t = q.xform(Vector3(0.0, 0.0, 1.0)); // CHECK(i_t.is_equal_approx(Vector3(1.0, 0.0, 0.0))); CHECK(j_t.is_equal_approx(Vector3(0.0, -0.5, 0.866025))); CHECK(k_t.is_equal_approx(Vector3(0.0, -0.866025, -0.5))); CHECK(i_t.length_squared() == doctest::Approx(1.0)); CHECK(j_t.length_squared() == doctest::Approx(1.0)); CHECK(k_t.length_squared() == doctest::Approx(1.0)); // Easy to visualize: 30 deg about Y-axis. q = Quaternion(Vector3(0.0, 1.0, 0.0), Math::deg_to_rad(30.0)); i_t = q.xform(Vector3(1.0, 0.0, 0.0)); j_t = q.xform(Vector3(0.0, 1.0, 0.0)); k_t = q.xform(Vector3(0.0, 0.0, 1.0)); // CHECK(i_t.is_equal_approx(Vector3(0.866025, 0.0, -0.5))); CHECK(j_t.is_equal_approx(Vector3(0.0, 1.0, 0.0))); CHECK(k_t.is_equal_approx(Vector3(0.5, 0.0, 0.866025))); CHECK(i_t.length_squared() == doctest::Approx(1.0)); CHECK(j_t.length_squared() == doctest::Approx(1.0)); CHECK(k_t.length_squared() == doctest::Approx(1.0)); // Easy to visualize: 60 deg about Z-axis. q = Quaternion(Vector3(0.0, 0.0, 1.0), Math::deg_to_rad(60.0)); i_t = q.xform(Vector3(1.0, 0.0, 0.0)); j_t = q.xform(Vector3(0.0, 1.0, 0.0)); k_t = q.xform(Vector3(0.0, 0.0, 1.0)); // CHECK(i_t.is_equal_approx(Vector3(0.5, 0.866025, 0.0))); CHECK(j_t.is_equal_approx(Vector3(-0.866025, 0.5, 0.0))); CHECK(k_t.is_equal_approx(Vector3(0.0, 0.0, 1.0))); CHECK(i_t.length_squared() == doctest::Approx(1.0)); CHECK(j_t.length_squared() == doctest::Approx(1.0)); CHECK(k_t.length_squared() == doctest::Approx(1.0)); } TEST_CASE("[Quaternion] xform vector") { // Arbitrary quaternion rotates an arbitrary vector. Vector3 euler_yzx(Math::deg_to_rad(31.41), Math::deg_to_rad(-49.16), Math::deg_to_rad(12.34)); Basis basis_axes(euler_yzx); Quaternion q(basis_axes); Vector3 v_arb(3.0, 4.0, 5.0); Vector3 v_rot = q.xform(v_arb); Vector3 v_compare = basis_axes.xform(v_arb); CHECK(v_rot.length_squared() == doctest::Approx(v_arb.length_squared())); CHECK(v_rot.is_equal_approx(v_compare)); } // Test vector xform for a single combination of Quaternion and Vector. void test_quat_vec_rotate(Vector3 euler_yzx, Vector3 v_in) { Basis basis_axes(euler_yzx); Quaternion q(basis_axes); Vector3 v_rot = q.xform(v_in); Vector3 v_compare = basis_axes.xform(v_in); CHECK(v_rot.length_squared() == doctest::Approx(v_in.length_squared())); CHECK(v_rot.is_equal_approx(v_compare)); } TEST_CASE("[Stress][Quaternion] Many vector xforms") { // Many arbitrary quaternions rotate many arbitrary vectors. // For each trial, check that rotation by Quaternion yields same result as // rotation by Basis. const int STEPS = 100; // Number of test steps in each dimension const double delta = 2.0 * Math_PI / STEPS; // Angle increment per step const double delta_vec = 20.0 / STEPS; // Vector increment per step Vector3 vec_arb(1.0, 1.0, 1.0); double x_angle = -Math_PI; double y_angle = -Math_PI; double z_angle = -Math_PI; for (double i = 0; i < STEPS; ++i) { vec_arb[0] = -10.0 + i * delta_vec; x_angle = i * delta - Math_PI; for (double j = 0; j < STEPS; ++j) { vec_arb[1] = -10.0 + j * delta_vec; y_angle = j * delta - Math_PI; for (double k = 0; k < STEPS; ++k) { vec_arb[2] = -10.0 + k * delta_vec; z_angle = k * delta - Math_PI; Vector3 euler_yzx(x_angle, y_angle, z_angle); test_quat_vec_rotate(euler_yzx, vec_arb); } } } } TEST_CASE("[Quaternion] Finite number checks") { const real_t x = NAN; CHECK_MESSAGE( Quaternion(0, 1, 2, 3).is_finite(), "Quaternion with all components finite should be finite"); CHECK_FALSE_MESSAGE( Quaternion(x, 1, 2, 3).is_finite(), "Quaternion with one component infinite should not be finite."); CHECK_FALSE_MESSAGE( Quaternion(0, x, 2, 3).is_finite(), "Quaternion with one component infinite should not be finite."); CHECK_FALSE_MESSAGE( Quaternion(0, 1, x, 3).is_finite(), "Quaternion with one component infinite should not be finite."); CHECK_FALSE_MESSAGE( Quaternion(0, 1, 2, x).is_finite(), "Quaternion with one component infinite should not be finite."); CHECK_FALSE_MESSAGE( Quaternion(x, x, 2, 3).is_finite(), "Quaternion with two components infinite should not be finite."); CHECK_FALSE_MESSAGE( Quaternion(x, 1, x, 3).is_finite(), "Quaternion with two components infinite should not be finite."); CHECK_FALSE_MESSAGE( Quaternion(x, 1, 2, x).is_finite(), "Quaternion with two components infinite should not be finite."); CHECK_FALSE_MESSAGE( Quaternion(0, x, x, 3).is_finite(), "Quaternion with two components infinite should not be finite."); CHECK_FALSE_MESSAGE( Quaternion(0, x, 2, x).is_finite(), "Quaternion with two components infinite should not be finite."); CHECK_FALSE_MESSAGE( Quaternion(0, 1, x, x).is_finite(), "Quaternion with two components infinite should not be finite."); CHECK_FALSE_MESSAGE( Quaternion(0, x, x, x).is_finite(), "Quaternion with three components infinite should not be finite."); CHECK_FALSE_MESSAGE( Quaternion(x, 1, x, x).is_finite(), "Quaternion with three components infinite should not be finite."); CHECK_FALSE_MESSAGE( Quaternion(x, x, 2, x).is_finite(), "Quaternion with three components infinite should not be finite."); CHECK_FALSE_MESSAGE( Quaternion(x, x, x, 3).is_finite(), "Quaternion with three components infinite should not be finite."); CHECK_FALSE_MESSAGE( Quaternion(x, x, x, x).is_finite(), "Quaternion with four components infinite should not be finite."); } } // namespace TestQuaternion #endif // TEST_QUATERNION_H