/*************************************************************************/ /* visual_server.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* http://www.godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "visual_server.h" #include "global_config.h" #include "method_bind_ext.inc" VisualServer *VisualServer::singleton=NULL; VisualServer* (*VisualServer::create_func)()=NULL; VisualServer *VisualServer::get_singleton() { return singleton; } PoolVector VisualServer::_shader_get_param_list(RID p_shader) const { //remove at some point PoolVector pl; #if 0 List params; shader_get_param_list(p_shader,¶ms); for(List::Element *E=params.front();E;E=E->next()) { pl.push_back(E->get()); } #endif return pl; } VisualServer *VisualServer::create() { ERR_FAIL_COND_V(singleton,NULL); if (create_func) return create_func(); return NULL; } RID VisualServer::texture_create_from_image(const Image& p_image,uint32_t p_flags) { RID texture = texture_create(); texture_allocate(texture,p_image.get_width(), p_image.get_height(), p_image.get_format(), p_flags); //if it has mipmaps, use, else generate ERR_FAIL_COND_V(!texture.is_valid(),texture); texture_set_data(texture, p_image ); return texture; } RID VisualServer::get_test_texture() { if (test_texture.is_valid()) { return test_texture; }; #define TEST_TEXTURE_SIZE 256 PoolVector test_data; test_data.resize(TEST_TEXTURE_SIZE*TEST_TEXTURE_SIZE*3); { PoolVector::Write w=test_data.write(); for (int x=0;x vertices; PoolVector normals; PoolVector tangents; PoolVector uvs; int vtx_idx=0; #define ADD_VTX(m_idx) \ vertices.push_back( face_points[m_idx] );\ normals.push_back( normal_points[m_idx] );\ tangents.push_back( normal_points[m_idx][1] );\ tangents.push_back( normal_points[m_idx][2] );\ tangents.push_back( normal_points[m_idx][0] );\ tangents.push_back( 1.0 );\ uvs.push_back( Vector3(uv_points[m_idx*2+0],uv_points[m_idx*2+1],0) );\ vtx_idx++;\ for (int i=0;i<6;i++) { Vector3 face_points[4]; Vector3 normal_points[4]; float uv_points[8]={0,0,0,1,1,1,1,0}; for (int j=0;j<4;j++) { float v[3]; v[0]=1.0; v[1]=1-2*((j>>1)&1); v[2]=v[1]*(1-2*(j&1)); for (int k=0;k<3;k++) { if (i<3) face_points[j][(i+k)%3]=v[k]*(i>=3?-1:1); else face_points[3-j][(i+k)%3]=v[k]*(i>=3?-1:1); } normal_points[j]=Vector3(); normal_points[j][i%3]=(i>=3?-1:1); } //tri 1 ADD_VTX(0); ADD_VTX(1); ADD_VTX(2); //tri 2 ADD_VTX(2); ADD_VTX(3); ADD_VTX(0); } RID test_cube = mesh_create(); Array d; d.resize(VS::ARRAY_MAX); d[VisualServer::ARRAY_NORMAL]= normals ; d[VisualServer::ARRAY_TANGENT]= tangents ; d[VisualServer::ARRAY_TEX_UV]= uvs ; d[VisualServer::ARRAY_VERTEX]= vertices ; PoolVector indices; indices.resize(vertices.size()); for(int i=0;i vertices; PoolVector normals; for(int i = 1; i <= p_lats; i++) { double lat0 = Math_PI * (-0.5 + (double) (i - 1) / p_lats); double z0 = Math::sin(lat0); double zr0 = Math::cos(lat0); double lat1 = Math_PI * (-0.5 + (double) i / p_lats); double z1 = Math::sin(lat1); double zr1 = Math::cos(lat1); for(int j = p_lons; j >= 1; j--) { double lng0 = 2 * Math_PI * (double) (j - 1) / p_lons; double x0 = Math::cos(lng0); double y0 = Math::sin(lng0); double lng1 = 2 * Math_PI * (double) (j) / p_lons; double x1 = Math::cos(lng1); double y1 = Math::sin(lng1); Vector3 v[4]={ Vector3(x1 * zr0, z0, y1 *zr0), Vector3(x1 * zr1, z1, y1 *zr1), Vector3(x0 * zr1, z1, y0 *zr1), Vector3(x0 * zr0, z0, y0 *zr0) }; #define ADD_POINT(m_idx)\ normals.push_back(v[m_idx]); \ vertices.push_back(v[m_idx]*p_radius);\ ADD_POINT(0); ADD_POINT(1); ADD_POINT(2); ADD_POINT(2); ADD_POINT(3); ADD_POINT(0); } } RID mesh = mesh_create(); Array d; d.resize(VS::ARRAY_MAX); d[ARRAY_VERTEX]=vertices; d[ARRAY_NORMAL]=normals; mesh_add_surface_from_arrays(mesh,PRIMITIVE_TRIANGLES,d); return mesh; } RID VisualServer::material_2d_get(bool p_shaded, bool p_transparent, bool p_cut_alpha, bool p_opaque_prepass) { int version=0; if (p_shaded) version=1; if (p_transparent) version|=2; if (p_cut_alpha) version|=4; if (p_opaque_prepass) version|=8; if (material_2d[version].is_valid()) return material_2d[version]; //not valid, make /* material_2d[version]=fixed_material_create(); fixed_material_set_flag(material_2d[version],FIXED_MATERIAL_FLAG_USE_ALPHA,p_transparent); fixed_material_set_flag(material_2d[version],FIXED_MATERIAL_FLAG_USE_COLOR_ARRAY,true); fixed_material_set_flag(material_2d[version],FIXED_MATERIAL_FLAG_DISCARD_ALPHA,p_cut_alpha); material_set_flag(material_2d[version],MATERIAL_FLAG_UNSHADED,!p_shaded); material_set_flag(material_2d[version],MATERIAL_FLAG_DOUBLE_SIDED,true); material_set_depth_draw_mode(material_2d[version],p_opaque_prepass?MATERIAL_DEPTH_DRAW_OPAQUE_PRE_PASS_ALPHA:MATERIAL_DEPTH_DRAW_OPAQUE_ONLY); fixed_material_set_texture(material_2d[version],FIXED_MATERIAL_PARAM_DIFFUSE,get_white_texture()); //material cut alpha?*/ return material_2d[version]; } RID VisualServer::get_white_texture() { if (white_texture.is_valid()) return white_texture; PoolVector wt; wt.resize(16*3); { PoolVector::Write w =wt.write(); for(int i=0;i<16*3;i++) w[i]=255; } Image white(4,4,0,Image::FORMAT_RGB8,wt); white_texture=texture_create(); texture_allocate(white_texture,4,4,Image::FORMAT_RGB8); texture_set_data(white_texture,white); return white_texture; } Error VisualServer::_surface_set_data(Array p_arrays,uint32_t p_format,uint32_t *p_offsets,uint32_t p_stride,PoolVector &r_vertex_array,int p_vertex_array_len,PoolVector &r_index_array,int p_index_array_len,Rect3 &r_aabb,Vector r_bone_aabb) { PoolVector::Write vw = r_vertex_array.write(); PoolVector::Write iw; if (r_index_array.size()) { print_line("elements: "+itos(r_index_array.size())); iw=r_index_array.write(); } int max_bone=0; for(int ai=0;ai array = p_arrays[ai]; ERR_FAIL_COND_V( array.size() != p_vertex_array_len, ERR_INVALID_PARAMETER ); PoolVector::Read read = array.read(); const Vector2* src=read.ptr(); // setting vertices means regenerating the AABB Rect2 aabb; if (p_format&ARRAY_COMPRESS_VERTEX) { for (int i=0;i array = p_arrays[ai]; ERR_FAIL_COND_V( array.size() != p_vertex_array_len, ERR_INVALID_PARAMETER ); PoolVector::Read read = array.read(); const Vector3* src=read.ptr(); // setting vertices means regenerating the AABB Rect3 aabb; if (p_format&ARRAY_COMPRESS_VERTEX) { for (int i=0;i array = p_arrays[ai]; ERR_FAIL_COND_V( array.size() != p_vertex_array_len, ERR_INVALID_PARAMETER ); PoolVector::Read read = array.read(); const Vector3* src=read.ptr(); // setting vertices means regenerating the AABB if (p_format&ARRAY_COMPRESS_NORMAL) { for (int i=0;i array = p_arrays[ai]; ERR_FAIL_COND_V( array.size() != p_vertex_array_len*4, ERR_INVALID_PARAMETER ); PoolVector::Read read = array.read(); const real_t* src = read.ptr(); if (p_format&ARRAY_COMPRESS_TANGENT) { for (int i=0;i array = p_arrays[ai]; ERR_FAIL_COND_V( array.size() != p_vertex_array_len, ERR_INVALID_PARAMETER ); PoolVector::Read read = array.read(); const Color* src = read.ptr(); if (p_format&ARRAY_COMPRESS_COLOR) { for (int i=0;i array = p_arrays[ai]; ERR_FAIL_COND_V( array.size() != p_vertex_array_len , ERR_INVALID_PARAMETER); PoolVector::Read read = array.read(); const Vector2 * src=read.ptr(); if (p_format&ARRAY_COMPRESS_TEX_UV) { for (int i=0;i array = p_arrays[ai]; ERR_FAIL_COND_V( array.size() != p_vertex_array_len , ERR_INVALID_PARAMETER); PoolVector::Read read = array.read(); const Vector2 * src=read.ptr(); if (p_format&ARRAY_COMPRESS_TEX_UV2) { for (int i=0;i array = p_arrays[ai]; ERR_FAIL_COND_V( array.size() != p_vertex_array_len*VS::ARRAY_WEIGHTS_SIZE, ERR_INVALID_PARAMETER ); PoolVector::Read read = array.read(); const real_t * src = read.ptr(); if (p_format&ARRAY_COMPRESS_WEIGHTS) { for (int i=0;i array = p_arrays[ai]; ERR_FAIL_COND_V( array.size() != p_vertex_array_len*VS::ARRAY_WEIGHTS_SIZE, ERR_INVALID_PARAMETER ); PoolVector::Read read = array.read(); const int * src = read.ptr(); if (!(p_format&ARRAY_FLAG_USE_16_BIT_BONES)) { for (int i=0;i indices = p_arrays[ai]; ERR_FAIL_COND_V( indices.size() == 0, ERR_INVALID_PARAMETER ); ERR_FAIL_COND_V( indices.size() != p_index_array_len, ERR_INVALID_PARAMETER ); /* determine wether using 16 or 32 bits indices */ PoolVector::Read read = indices.read(); const int *src=read.ptr(); for (int i=0;i vertices = p_arrays[VS::ARRAY_VERTEX]; PoolVector bones = p_arrays[VS::ARRAY_BONES]; PoolVector weights = p_arrays[VS::ARRAY_WEIGHTS]; bool any_valid=false; if (vertices.size() && bones.size()==vertices.size()*4 && weights.size()==bones.size()) { int vs = vertices.size(); PoolVector::Read rv =vertices.read(); PoolVector::Read rb=bones.read(); PoolVector::Read rw=weights.read(); Rect3 *bptr = r_bone_aabb.ptr(); for(int i=0;isize.x<0) { //first bptr[idx]=Rect3(); bptr[idx].pos=v; any_valid=true; } else { bptr[idx].expand_to(v); } } } } if (!any_valid && first) { r_bone_aabb.clear(); } } return OK; } void VisualServer::mesh_add_surface_from_arrays(RID p_mesh,PrimitiveType p_primitive,const Array& p_arrays,const Array& p_blend_shapes,uint32_t p_compress_format) { ERR_FAIL_INDEX( p_primitive, VS::PRIMITIVE_MAX ); ERR_FAIL_COND(p_arrays.size()!=VS::ARRAY_MAX); uint32_t format=0; // validation int index_array_len=0; int array_len=0; for(int i=0;i v2 = var; array_len=v2.size(); } break; case Variant::POOL_VECTOR3_ARRAY: { PoolVector v3 = var; array_len=v3.size(); } break; default: { Array v = var; array_len=v.size(); } break; } array_len=PoolVector3Array(p_arrays[i]).size(); ERR_FAIL_COND(array_len==0); } else if (i==VS::ARRAY_INDEX) { index_array_len=PoolIntArray(p_arrays[i]).size(); } } ERR_FAIL_COND((format&VS::ARRAY_FORMAT_VERTEX)==0); // mandatory if (p_blend_shapes.size()) { //validate format for morphs for(int i=0;i bones = p_arrays[VS::ARRAY_BONES]; int max_bone=0; { int bc = bones.size(); PoolVector::Read r=bones.read(); for(int j=0;j 255) { p_compress_format|=ARRAY_FLAG_USE_16_BIT_BONES; elem_size=sizeof(uint16_t)*4; } else { p_compress_format&=~ARRAY_FLAG_USE_16_BIT_BONES; elem_size=sizeof(uint32_t); } } break; case VS::ARRAY_INDEX: { if (index_array_len<=0) { ERR_PRINT("index_array_len==NO_INDEX_ARRAY"); break; } /* determine wether using 16 or 32 bits indices */ if (array_len>=(1<<16)) { elem_size=4; } else { elem_size=2; } offsets[i]=elem_size; continue; } break; default: { ERR_FAIL( ); } } offsets[i]=total_elem_size; total_elem_size+=elem_size; } uint32_t mask = (1< vertex_array; vertex_array.resize(array_size); int index_array_size = offsets[VS::ARRAY_INDEX]*index_array_len; PoolVector index_array; index_array.resize(index_array_size); Rect3 aabb; Vector bone_aabb; Error err = _surface_set_data(p_arrays,format,offsets,total_elem_size,vertex_array,array_len,index_array,index_array_len,aabb,bone_aabb); if (err) { ERR_EXPLAIN("Invalid array format for surface"); ERR_FAIL_COND(err!=OK); } Vector > blend_shape_data; for(int i=0;i vertex_array_shape; vertex_array_shape.resize(array_size); PoolVector noindex; Rect3 laabb; Error err = _surface_set_data(p_blend_shapes[i],format&~ARRAY_FORMAT_INDEX,offsets,total_elem_size,vertex_array_shape,array_len,noindex,0,laabb,bone_aabb); aabb.merge_with(laabb); if (err) { ERR_EXPLAIN("Invalid blend shape array format for surface"); ERR_FAIL_COND(err!=OK); } blend_shape_data.push_back(vertex_array_shape); } mesh_add_surface(p_mesh,format,p_primitive,vertex_array,array_len,index_array,index_array_len,aabb,blend_shape_data,bone_aabb); } Array VisualServer::_get_array_from_surface(uint32_t p_format,PoolVector p_vertex_data,int p_vertex_len,PoolVector p_index_data,int p_index_len) const { uint32_t offsets[ARRAY_MAX]; int total_elem_size=0; for (int i=0;i=(1<<16)) { elem_size=4; } else { elem_size=2; } offsets[i]=elem_size; continue; } break; default: { ERR_FAIL_V( Array() ); } } offsets[i]=total_elem_size; total_elem_size+=elem_size; } Array ret; ret.resize(VS::ARRAY_MAX); PoolVector::Read r = p_vertex_data.read(); for(int i=0;i arr_2d; arr_2d.resize(p_vertex_len); if (p_format&ARRAY_COMPRESS_VERTEX) { PoolVector::Write w = arr_2d.write(); for(int j=0;j::Write w = arr_2d.write(); for(int j=0;j arr_3d; arr_3d.resize(p_vertex_len); if (p_format&ARRAY_COMPRESS_VERTEX) { PoolVector::Write w = arr_3d.write(); for(int j=0;j::Write w = arr_3d.write(); for(int j=0;j arr; arr.resize(p_vertex_len); if (p_format&ARRAY_COMPRESS_NORMAL) { PoolVector::Write w = arr.write(); for(int j=0;j::Write w = arr.write(); for(int j=0;j arr; arr.resize(p_vertex_len*4); if (p_format&ARRAY_COMPRESS_TANGENT) { PoolVector::Write w = arr.write(); for(int j=0;j::Write w = arr.write(); for(int j=0;j arr; arr.resize(p_vertex_len); if (p_format&ARRAY_COMPRESS_COLOR) { PoolVector::Write w = arr.write(); for(int j=0;j::Write w = arr.write(); for(int j=0;j arr; arr.resize(p_vertex_len); if (p_format&ARRAY_COMPRESS_TEX_UV) { PoolVector::Write w = arr.write(); for(int j=0;j::Write w = arr.write(); for(int j=0;j arr; arr.resize(p_vertex_len); if (p_format&ARRAY_COMPRESS_TEX_UV2) { PoolVector::Write w = arr.write(); for(int j=0;j::Write w = arr.write(); for(int j=0;j arr; arr.resize(p_vertex_len*4); if (p_format&ARRAY_COMPRESS_WEIGHTS) { PoolVector::Write w = arr.write(); for(int j=0;j::Write w = arr.write(); for(int j=0;j arr; arr.resize(p_vertex_len*4); if (p_format&ARRAY_FLAG_USE_16_BIT_BONES) { PoolVector::Write w = arr.write(); for(int j=0;j::Write w = arr.write(); for(int j=0;j::Read ir = p_index_data.read(); PoolVector arr; arr.resize(p_index_len); if (p_vertex_len<(1<<16)) { PoolVector::Write w = arr.write(); for(int j=0;j::Write w = arr.write(); for(int j=0;j vertex_data = mesh_surface_get_array(p_mesh,p_surface); ERR_FAIL_COND_V(vertex_data.size()==0,Array()); int vertex_len = mesh_surface_get_array_len(p_mesh,p_surface); PoolVector index_data = mesh_surface_get_index_array(p_mesh,p_surface); int index_len = mesh_surface_get_array_index_len(p_mesh,p_surface); uint32_t format = mesh_surface_get_format(p_mesh,p_surface); return _get_array_from_surface(format,vertex_data,vertex_len,index_data,index_len); } void VisualServer::_bind_methods() { ClassDB::bind_method(D_METHOD("texture_create"),&VisualServer::texture_create); ClassDB::bind_method(D_METHOD("texture_create_from_image"),&VisualServer::texture_create_from_image,DEFVAL( TEXTURE_FLAGS_DEFAULT ) ); //ClassDB::bind_method(D_METHOD("texture_allocate"),&VisualServer::texture_allocate,DEFVAL( TEXTURE_FLAGS_DEFAULT ) ); //ClassDB::bind_method(D_METHOD("texture_set_data"),&VisualServer::texture_blit_rect,DEFVAL( CUBEMAP_LEFT ) ); //ClassDB::bind_method(D_METHOD("texture_get_rect"),&VisualServer::texture_get_rect ); ClassDB::bind_method(D_METHOD("texture_set_flags"),&VisualServer::texture_set_flags ); ClassDB::bind_method(D_METHOD("texture_get_flags"),&VisualServer::texture_get_flags ); ClassDB::bind_method(D_METHOD("texture_get_width"),&VisualServer::texture_get_width ); ClassDB::bind_method(D_METHOD("texture_get_height"),&VisualServer::texture_get_height ); ClassDB::bind_method(D_METHOD("texture_set_shrink_all_x2_on_set_data","shrink"),&VisualServer::texture_set_shrink_all_x2_on_set_data ); } void VisualServer::_canvas_item_add_style_box(RID p_item, const Rect2& p_rect, const Rect2& p_source, RID p_texture,const Vector& p_margins, const Color& p_modulate) { ERR_FAIL_COND(p_margins.size()!=4); //canvas_item_add_style_box(p_item,p_rect,p_source,p_texture,Vector2(p_margins[0],p_margins[1]),Vector2(p_margins[2],p_margins[3]),true,p_modulate); } void VisualServer::_camera_set_orthogonal(RID p_camera,float p_size,float p_z_near,float p_z_far) { camera_set_orthogonal(p_camera,p_size,p_z_near,p_z_far); } void VisualServer::mesh_add_surface_from_mesh_data( RID p_mesh, const Geometry::MeshData& p_mesh_data) { #if 1 PoolVector vertices; PoolVector normals; for (int i=0;i vertices; for (int i=0;i& p_planes) { Geometry::MeshData mdata = Geometry::build_convex_mesh(p_planes); mesh_add_surface_from_mesh_data(p_mesh,mdata); } void VisualServer::immediate_vertex_2d(RID p_immediate,const Vector2& p_vertex) { immediate_vertex(p_immediate,Vector3(p_vertex.x,p_vertex.y,0)); } RID VisualServer::instance_create2(RID p_base, RID p_scenario) { RID instance = instance_create(); instance_set_base(instance,p_base); instance_set_scenario(instance,p_scenario); return instance; } VisualServer::VisualServer() { //ERR_FAIL_COND(singleton); singleton=this; } VisualServer::~VisualServer() { singleton=NULL; }