#include "visual_server_scene.h" #include "visual_server_global.h" #include "os/os.h" /* CAMERA API */ RID VisualServerScene::camera_create() { Camera * camera = memnew( Camera ); return camera_owner.make_rid( camera ); } void VisualServerScene::camera_set_perspective(RID p_camera,float p_fovy_degrees, float p_z_near, float p_z_far) { Camera *camera = camera_owner.get( p_camera ); ERR_FAIL_COND(!camera); camera->type=Camera::PERSPECTIVE; camera->fov=p_fovy_degrees; camera->znear=p_z_near; camera->zfar=p_z_far; } void VisualServerScene::camera_set_orthogonal(RID p_camera,float p_size, float p_z_near, float p_z_far) { Camera *camera = camera_owner.get( p_camera ); ERR_FAIL_COND(!camera); camera->type=Camera::ORTHOGONAL; camera->size=p_size; camera->znear=p_z_near; camera->zfar=p_z_far; } void VisualServerScene::camera_set_transform(RID p_camera,const Transform& p_transform) { Camera *camera = camera_owner.get( p_camera ); ERR_FAIL_COND(!camera); camera->transform=p_transform.orthonormalized(); } void VisualServerScene::camera_set_cull_mask(RID p_camera,uint32_t p_layers) { Camera *camera = camera_owner.get( p_camera ); ERR_FAIL_COND(!camera); camera->visible_layers=p_layers; } void VisualServerScene::camera_set_environment(RID p_camera,RID p_env) { Camera *camera = camera_owner.get( p_camera ); ERR_FAIL_COND(!camera); camera->env=p_env; } void VisualServerScene::camera_set_use_vertical_aspect(RID p_camera,bool p_enable) { Camera *camera = camera_owner.get( p_camera ); ERR_FAIL_COND(!camera); camera->vaspect=p_enable; } /* SCENARIO API */ void* VisualServerScene::_instance_pair(void *p_self, OctreeElementID, Instance *p_A,int, OctreeElementID, Instance *p_B,int) { //VisualServerScene *self = (VisualServerScene*)p_self; Instance *A = p_A; Instance *B = p_B; //instance indices are designed so greater always contains lesser if (A->base_type > B->base_type) { SWAP(A,B); //lesser always first } if (B->base_type==VS::INSTANCE_LIGHT && (1<base_type)&VS::INSTANCE_GEOMETRY_MASK) { InstanceLightData * light = static_cast(B->base_data); InstanceGeometryData * geom = static_cast(A->base_data); InstanceLightData::PairInfo pinfo; pinfo.geometry=A; pinfo.L = geom->lighting.push_back(B); List::Element *E = light->geometries.push_back(pinfo); if (geom->can_cast_shadows) { light->shadow_dirty=true; } geom->lighting_dirty=true; return E; //this element should make freeing faster } else if (B->base_type==VS::INSTANCE_REFLECTION_PROBE && (1<base_type)&VS::INSTANCE_GEOMETRY_MASK) { InstanceReflectionProbeData * reflection_probe = static_cast(B->base_data); InstanceGeometryData * geom = static_cast(A->base_data); InstanceReflectionProbeData::PairInfo pinfo; pinfo.geometry=A; pinfo.L = geom->reflection_probes.push_back(B); List::Element *E = reflection_probe->geometries.push_back(pinfo); geom->reflection_dirty=true; return E; //this element should make freeing faster } else if (B->base_type==VS::INSTANCE_GI_PROBE && (1<base_type)&VS::INSTANCE_GEOMETRY_MASK) { InstanceGIProbeData * gi_probe = static_cast(B->base_data); InstanceGeometryData * geom = static_cast(A->base_data); InstanceGIProbeData::PairInfo pinfo; pinfo.geometry=A; pinfo.L = geom->gi_probes.push_back(B); List::Element *E = gi_probe->geometries.push_back(pinfo); geom->gi_probes_dirty=true; return E; //this element should make freeing faster } else if (B->base_type==VS::INSTANCE_GI_PROBE && A->base_type==VS::INSTANCE_LIGHT) { InstanceGIProbeData * gi_probe = static_cast(B->base_data); InstanceLightData * light = static_cast(A->base_data); return gi_probe->lights.insert(A); } #if 0 if (A->base_type==INSTANCE_PORTAL) { ERR_FAIL_COND_V( B->base_type!=INSTANCE_PORTAL,NULL ); A->portal_info->candidate_set.insert(B); B->portal_info->candidate_set.insert(A); self->_portal_attempt_connect(A); //attempt to conncet portal A (will go through B anyway) //this is a little hackish, but works fine in practice } else if (A->base_type==INSTANCE_GI_PROBE || B->base_type==INSTANCE_GI_PROBE) { if (B->base_type==INSTANCE_GI_PROBE) { SWAP(A,B); } ERR_FAIL_COND_V(B->base_type!=INSTANCE_GI_PROBE_SAMPLER,NULL); B->gi_probe_sampler_info->gi_probes.insert(A); } else if (A->base_type==INSTANCE_ROOM || B->base_type==INSTANCE_ROOM) { if (B->base_type==INSTANCE_ROOM) SWAP(A,B); ERR_FAIL_COND_V(! ((1<base_type)&INSTANCE_GEOMETRY_MASK ),NULL); B->auto_rooms.insert(A); A->room_info->owned_autoroom_geometry.insert(B); self->_instance_validate_autorooms(B); } else { if (B->base_type==INSTANCE_LIGHT) { SWAP(A,B); } else if (A->base_type!=INSTANCE_LIGHT) { return NULL; } A->light_info->affected.insert(B); B->lights.insert(A); B->light_cache_dirty=true; } #endif return NULL; } void VisualServerScene::_instance_unpair(void *p_self, OctreeElementID, Instance *p_A,int, OctreeElementID, Instance *p_B,int,void* udata) { //VisualServerScene *self = (VisualServerScene*)p_self; Instance *A = p_A; Instance *B = p_B; //instance indices are designed so greater always contains lesser if (A->base_type > B->base_type) { SWAP(A,B); //lesser always first } if (B->base_type==VS::INSTANCE_LIGHT && (1<base_type)&VS::INSTANCE_GEOMETRY_MASK) { InstanceLightData * light = static_cast(B->base_data); InstanceGeometryData * geom = static_cast(A->base_data); List::Element *E = reinterpret_cast::Element*>(udata); geom->lighting.erase(E->get().L); light->geometries.erase(E); if (geom->can_cast_shadows) { light->shadow_dirty=true; } geom->lighting_dirty=true; } else if (B->base_type==VS::INSTANCE_REFLECTION_PROBE && (1<base_type)&VS::INSTANCE_GEOMETRY_MASK) { InstanceReflectionProbeData * reflection_probe = static_cast(B->base_data); InstanceGeometryData * geom = static_cast(A->base_data); List::Element *E = reinterpret_cast::Element*>(udata); geom->reflection_probes.erase(E->get().L); reflection_probe->geometries.erase(E); geom->reflection_dirty=true; } else if (B->base_type==VS::INSTANCE_GI_PROBE && (1<base_type)&VS::INSTANCE_GEOMETRY_MASK) { InstanceGIProbeData * gi_probe = static_cast(B->base_data); InstanceGeometryData * geom = static_cast(A->base_data); List::Element *E = reinterpret_cast::Element*>(udata); geom->gi_probes.erase(E->get().L); gi_probe->geometries.erase(E); geom->gi_probes_dirty=true; } else if (B->base_type==VS::INSTANCE_GI_PROBE && A->base_type==VS::INSTANCE_LIGHT) { InstanceGIProbeData * gi_probe = static_cast(B->base_data); InstanceLightData * light = static_cast(A->base_data); Set::Element *E = reinterpret_cast::Element*>(udata); gi_probe->lights.erase(E); } #if 0 if (A->base_type==INSTANCE_PORTAL) { ERR_FAIL_COND( B->base_type!=INSTANCE_PORTAL ); A->portal_info->candidate_set.erase(B); B->portal_info->candidate_set.erase(A); //after disconnecting them, see if they can connect again self->_portal_attempt_connect(A); self->_portal_attempt_connect(B); } else if (A->base_type==INSTANCE_GI_PROBE || B->base_type==INSTANCE_GI_PROBE) { if (B->base_type==INSTANCE_GI_PROBE) { SWAP(A,B); } ERR_FAIL_COND(B->base_type!=INSTANCE_GI_PROBE_SAMPLER); B->gi_probe_sampler_info->gi_probes.erase(A); } else if (A->base_type==INSTANCE_ROOM || B->base_type==INSTANCE_ROOM) { if (B->base_type==INSTANCE_ROOM) SWAP(A,B); ERR_FAIL_COND(! ((1<base_type)&INSTANCE_GEOMETRY_MASK )); B->auto_rooms.erase(A); B->valid_auto_rooms.erase(A); A->room_info->owned_autoroom_geometry.erase(B); }else { if (B->base_type==INSTANCE_LIGHT) { SWAP(A,B); } else if (A->base_type!=INSTANCE_LIGHT) { return; } A->light_info->affected.erase(B); B->lights.erase(A); B->light_cache_dirty=true; } #endif } RID VisualServerScene::scenario_create() { Scenario *scenario = memnew( Scenario ); ERR_FAIL_COND_V(!scenario,RID()); RID scenario_rid = scenario_owner.make_rid( scenario ); scenario->self=scenario_rid; scenario->octree.set_pair_callback(_instance_pair,this); scenario->octree.set_unpair_callback(_instance_unpair,this); scenario->reflection_probe_shadow_atlas=VSG::scene_render->shadow_atlas_create(); VSG::scene_render->shadow_atlas_set_size(scenario->reflection_probe_shadow_atlas,1024); //make enough shadows for close distance, don't bother with rest VSG::scene_render->shadow_atlas_set_quadrant_subdivision(scenario->reflection_probe_shadow_atlas,0,4); VSG::scene_render->shadow_atlas_set_quadrant_subdivision(scenario->reflection_probe_shadow_atlas,1,4); VSG::scene_render->shadow_atlas_set_quadrant_subdivision(scenario->reflection_probe_shadow_atlas,2,4); VSG::scene_render->shadow_atlas_set_quadrant_subdivision(scenario->reflection_probe_shadow_atlas,3,8); scenario->reflection_atlas=VSG::scene_render->reflection_atlas_create(); return scenario_rid; } void VisualServerScene::scenario_set_debug(RID p_scenario,VS::ScenarioDebugMode p_debug_mode) { Scenario *scenario = scenario_owner.get(p_scenario); ERR_FAIL_COND(!scenario); scenario->debug=p_debug_mode; } void VisualServerScene::scenario_set_environment(RID p_scenario, RID p_environment) { Scenario *scenario = scenario_owner.get(p_scenario); ERR_FAIL_COND(!scenario); scenario->environment=p_environment; } void VisualServerScene::scenario_set_fallback_environment(RID p_scenario, RID p_environment) { Scenario *scenario = scenario_owner.get(p_scenario); ERR_FAIL_COND(!scenario); scenario->fallback_environment=p_environment; } void VisualServerScene::scenario_set_reflection_atlas_size(RID p_scenario, int p_size,int p_subdiv) { Scenario *scenario = scenario_owner.get(p_scenario); ERR_FAIL_COND(!scenario); VSG::scene_render->reflection_atlas_set_size(scenario->reflection_atlas,p_size); VSG::scene_render->reflection_atlas_set_subdivision(scenario->reflection_atlas,p_subdiv); } /* INSTANCING API */ void VisualServerScene::_instance_queue_update(Instance *p_instance,bool p_update_aabb,bool p_update_materials) { if (p_update_aabb) p_instance->update_aabb=true; if (p_update_materials) p_instance->update_materials=true; if (p_instance->update_item.in_list()) return; _instance_update_list.add(&p_instance->update_item); } // from can be mesh, light, area and portal so far. RID VisualServerScene::instance_create(){ Instance *instance = memnew( Instance ); ERR_FAIL_COND_V(!instance,RID()); RID instance_rid = instance_owner.make_rid(instance); instance->self=instance_rid; return instance_rid; } void VisualServerScene::instance_set_base(RID p_instance, RID p_base){ Instance *instance = instance_owner.get( p_instance ); ERR_FAIL_COND( !instance ); Scenario *scenario = instance->scenario; if (instance->base_type!=VS::INSTANCE_NONE) { //free anything related to that base VSG::storage->instance_remove_dependency(instance->base,instance); if (scenario && instance->octree_id) { scenario->octree.erase(instance->octree_id); //make dependencies generated by the octree go away instance->octree_id=0; } switch(instance->base_type) { case VS::INSTANCE_LIGHT: { InstanceLightData *light = static_cast(instance->base_data); if (instance->scenario && light->D) { instance->scenario->directional_lights.erase( light->D ); light->D=NULL; } VSG::scene_render->free(light->instance); } break; case VS::INSTANCE_REFLECTION_PROBE: { InstanceReflectionProbeData *reflection_probe = static_cast(instance->base_data); VSG::scene_render->free(reflection_probe->instance); if (reflection_probe->update_list.in_list()) { reflection_probe_render_list.remove(&reflection_probe->update_list); } } break; case VS::INSTANCE_GI_PROBE: { InstanceGIProbeData *gi_probe = static_cast(instance->base_data); while(gi_probe->dynamic.updating_stage==GI_UPDATE_STAGE_LIGHTING) { //wait until bake is done if it's baking OS::get_singleton()->delay_usec(1); } if (gi_probe->update_element.in_list()) { gi_probe_update_list.remove(&gi_probe->update_element); } if (gi_probe->dynamic.probe_data.is_valid()) { VSG::storage->free(gi_probe->dynamic.probe_data); } VSG::scene_render->free(gi_probe->probe_instance); } break; } if (instance->base_data) { memdelete( instance->base_data ); instance->base_data=NULL; } instance->blend_values.clear(); for(int i=0;imaterials.size();i++) { if (instance->materials[i].is_valid()) { VSG::storage->material_remove_instance_owner(instance->materials[i],instance); } } instance->materials.clear(); #if 0 if (instance->light_info) { if (instance->scenario && instance->light_info->D) instance->scenario->directional_lights.erase( instance->light_info->D ); rasterizer->free(instance->light_info->instance); memdelete(instance->light_info); instance->light_info=NULL; } if ( instance->room ) { instance_set_room(p_instance,RID()); /* if((1<base_type)&INSTANCE_GEOMETRY_MASK) instance->room->room_info->owned_geometry_instances.erase(instance->RE); else if (instance->base_type==INSTANCE_PORTAL) { print_line("freeing portal, is it there? "+itos(instance->room->room_info->owned_portal_instances.(instance->RE))); instance->room->room_info->owned_portal_instances.erase(instance->RE); } else if (instance->base_type==INSTANCE_ROOM) instance->room->room_info->owned_room_instances.erase(instance->RE); else if (instance->base_type==INSTANCE_LIGHT) instance->room->room_info->owned_light_instances.erase(instance->RE); instance->RE=NULL;*/ } if (instance->portal_info) { _portal_disconnect(instance,true); memdelete(instance->portal_info); instance->portal_info=NULL; } if (instance->gi_probe_info) { while(instance->gi_probe_info->owned_instances.size()) { Instance *owned=instance->gi_probe_info->owned_instances.front()->get(); owned->gi_probe=NULL; owned->data.gi_probe=NULL; owned->data.gi_probe_octree_xform=NULL; owned->BLE=NULL; instance->gi_probe_info->owned_instances.pop_front(); } memdelete(instance->gi_probe_info); instance->gi_probe_info=NULL; } if (instance->scenario && instance->octree_id) { instance->scenario->octree.erase( instance->octree_id ); instance->octree_id=0; } if (instance->room_info) { for(List::Element *E=instance->room_info->owned_geometry_instances.front();E;E=E->next()) { Instance *owned = E->get(); owned->room=NULL; owned->RE=NULL; } for(List::Element *E=instance->room_info->owned_portal_instances.front();E;E=E->next()) { _portal_disconnect(E->get(),true); Instance *owned = E->get(); owned->room=NULL; owned->RE=NULL; } for(List::Element *E=instance->room_info->owned_room_instances.front();E;E=E->next()) { Instance *owned = E->get(); owned->room=NULL; owned->RE=NULL; } if (instance->room_info->disconnected_child_portals.size()) { ERR_PRINT("BUG: Disconnected portals remain!"); } memdelete(instance->room_info); instance->room_info=NULL; } if (instance->particles_info) { rasterizer->free( instance->particles_info->instance ); memdelete(instance->particles_info); instance->particles_info=NULL; } if (instance->gi_probe_sampler_info) { while (instance->gi_probe_sampler_info->owned_instances.size()) { instance_geometry_set_gi_probe_sampler(instance->gi_probe_sampler_info->owned_instances.front()->get()->self,RID()); } if (instance->gi_probe_sampler_info->sampled_light.is_valid()) { rasterizer->free(instance->gi_probe_sampler_info->sampled_light); } memdelete( instance->gi_probe_sampler_info ); instance->gi_probe_sampler_info=NULL; } #endif } instance->base_type=VS::INSTANCE_NONE; instance->base=RID(); if (p_base.is_valid()) { instance->base_type=VSG::storage->get_base_type(p_base); ERR_FAIL_COND(instance->base_type==VS::INSTANCE_NONE); switch(instance->base_type) { case VS::INSTANCE_LIGHT: { InstanceLightData *light = memnew( InstanceLightData ); if (scenario && VSG::storage->light_get_type(p_base)==VS::LIGHT_DIRECTIONAL) { light->D = scenario->directional_lights.push_back(instance); } light->instance = VSG::scene_render->light_instance_create(p_base); instance->base_data=light; } break; case VS::INSTANCE_MESH: case VS::INSTANCE_MULTIMESH: case VS::INSTANCE_IMMEDIATE: { InstanceGeometryData *geom = memnew( InstanceGeometryData ); instance->base_data=geom; } break; case VS::INSTANCE_REFLECTION_PROBE: { InstanceReflectionProbeData *reflection_probe = memnew( InstanceReflectionProbeData ); reflection_probe->owner=instance; instance->base_data=reflection_probe; reflection_probe->instance=VSG::scene_render->reflection_probe_instance_create(p_base); } break; case VS::INSTANCE_GI_PROBE: { InstanceGIProbeData *gi_probe = memnew( InstanceGIProbeData ); instance->base_data=gi_probe; gi_probe->owner=instance; if (scenario && !gi_probe->update_element.in_list()) { gi_probe_update_list.add(&gi_probe->update_element); } gi_probe->probe_instance=VSG::scene_render->gi_probe_instance_create(); } break; } VSG::storage->instance_add_dependency(p_base,instance); instance->base=p_base; if (scenario) _instance_queue_update(instance,true,true); #if 0 if (rasterizer->is_mesh(p_base)) { instance->base_type=INSTANCE_MESH; instance->data.morph_values.resize( rasterizer->mesh_get_morph_target_count(p_base)); instance->data.materials.resize( rasterizer->mesh_get_surface_count(p_base)); } else if (rasterizer->is_multimesh(p_base)) { instance->base_type=INSTANCE_MULTIMESH; } else if (rasterizer->is_immediate(p_base)) { instance->base_type=INSTANCE_IMMEDIATE; } else if (rasterizer->is_particles(p_base)) { instance->base_type=INSTANCE_PARTICLES; instance->particles_info=memnew( Instance::ParticlesInfo ); instance->particles_info->instance = rasterizer->particles_instance_create( p_base ); } else if (rasterizer->is_light(p_base)) { instance->base_type=INSTANCE_LIGHT; instance->light_info = memnew( Instance::LightInfo ); instance->light_info->instance = rasterizer->light_instance_create(p_base); if (instance->scenario && rasterizer->light_get_type(p_base)==LIGHT_DIRECTIONAL) { instance->light_info->D = instance->scenario->directional_lights.push_back(instance->self); } } else if (room_owner.owns(p_base)) { instance->base_type=INSTANCE_ROOM; instance->room_info = memnew( Instance::RoomInfo ); instance->room_info->room=room_owner.get(p_base); } else if (portal_owner.owns(p_base)) { instance->base_type=INSTANCE_PORTAL; instance->portal_info = memnew(Instance::PortalInfo); instance->portal_info->portal=portal_owner.get(p_base); } else if (gi_probe_owner.owns(p_base)) { instance->base_type=INSTANCE_GI_PROBE; instance->gi_probe_info=memnew(Instance::BakedLightInfo); instance->gi_probe_info->gi_probe=gi_probe_owner.get(p_base); //instance->portal_info = memnew(Instance::PortalInfo); //instance->portal_info->portal=portal_owner.get(p_base); } else if (gi_probe_sampler_owner.owns(p_base)) { instance->base_type=INSTANCE_GI_PROBE_SAMPLER; instance->gi_probe_sampler_info=memnew( Instance::BakedLightSamplerInfo); instance->gi_probe_sampler_info->sampler=gi_probe_sampler_owner.get(p_base); //instance->portal_info = memnew(Instance::PortalInfo); //instance->portal_info->portal=portal_owner.get(p_base); } else { ERR_EXPLAIN("Invalid base RID for instance!") ERR_FAIL(); } instance_dependency_map[ p_base ].insert( instance->self ); #endif } } void VisualServerScene::instance_set_scenario(RID p_instance, RID p_scenario){ Instance *instance = instance_owner.get( p_instance ); ERR_FAIL_COND( !instance ); if (instance->scenario) { instance->scenario->instances.remove( &instance->scenario_item ); if (instance->octree_id) { instance->scenario->octree.erase(instance->octree_id); //make dependencies generated by the octree go away instance->octree_id=0; } switch(instance->base_type) { case VS::INSTANCE_LIGHT: { InstanceLightData *light = static_cast(instance->base_data); if (light->D) { instance->scenario->directional_lights.erase( light->D ); light->D=NULL; } } break; case VS::INSTANCE_REFLECTION_PROBE: { InstanceReflectionProbeData *reflection_probe = static_cast(instance->base_data); VSG::scene_render->reflection_probe_release_atlas_index(reflection_probe->instance); } break; case VS::INSTANCE_GI_PROBE: { InstanceGIProbeData *gi_probe = static_cast(instance->base_data); if (gi_probe->update_element.in_list()) { gi_probe_update_list.remove(&gi_probe->update_element); } } break; } instance->scenario=NULL; } if (p_scenario.is_valid()) { Scenario *scenario = scenario_owner.get( p_scenario ); ERR_FAIL_COND(!scenario); instance->scenario=scenario; scenario->instances.add( &instance->scenario_item ); switch(instance->base_type) { case VS::INSTANCE_LIGHT: { InstanceLightData *light = static_cast(instance->base_data); if (VSG::storage->light_get_type(instance->base)==VS::LIGHT_DIRECTIONAL) { light->D = scenario->directional_lights.push_back(instance); } } break; case VS::INSTANCE_GI_PROBE: { InstanceGIProbeData *gi_probe = static_cast(instance->base_data); if (!gi_probe->update_element.in_list()) { gi_probe_update_list.add(&gi_probe->update_element); } } break; } _instance_queue_update(instance,true,true); } } void VisualServerScene::instance_set_layer_mask(RID p_instance, uint32_t p_mask){ Instance *instance = instance_owner.get( p_instance ); ERR_FAIL_COND( !instance ); instance->layer_mask=p_mask; } void VisualServerScene::instance_set_transform(RID p_instance, const Transform& p_transform){ Instance *instance = instance_owner.get( p_instance ); ERR_FAIL_COND( !instance ); if (instance->transform==p_transform) return; //must be checked to avoid worst evil instance->transform=p_transform; _instance_queue_update(instance,true); } void VisualServerScene::instance_attach_object_instance_ID(RID p_instance,ObjectID p_ID){ Instance *instance = instance_owner.get( p_instance ); ERR_FAIL_COND( !instance ); instance->object_ID=p_ID; } void VisualServerScene::instance_set_blend_shape_weight(RID p_instance,int p_shape, float p_weight){ Instance *instance = instance_owner.get( p_instance ); ERR_FAIL_COND( !instance ); if (instance->update_item.in_list()) { _update_dirty_instance(instance); } ERR_FAIL_INDEX(p_shape,instance->blend_values.size()); instance->blend_values[p_shape]=p_weight; } void VisualServerScene::instance_set_surface_material(RID p_instance,int p_surface, RID p_material){ Instance *instance = instance_owner.get( p_instance ); ERR_FAIL_COND( !instance ); if (instance->update_item.in_list()) { _update_dirty_instance(instance); } ERR_FAIL_INDEX(p_surface,instance->materials.size()); if (instance->materials[p_surface].is_valid()) { VSG::storage->material_remove_instance_owner(instance->materials[p_surface],instance); } instance->materials[p_surface]=p_material; instance->base_material_changed(); if (instance->materials[p_surface].is_valid()) { VSG::storage->material_add_instance_owner(instance->materials[p_surface],instance); } } void VisualServerScene::instance_set_visible(RID p_instance,bool p_visible) { Instance *instance = instance_owner.get( p_instance ); ERR_FAIL_COND( !instance ); if (instance->visible==p_visible) return; instance->visible=p_visible; switch(instance->base_type) { case VS::INSTANCE_LIGHT: { if (VSG::storage->light_get_type(instance->base)!=VS::LIGHT_DIRECTIONAL && instance->octree_id && instance->scenario) { instance->scenario->octree.set_pairable(instance->octree_id,p_visible,1<octree_id && instance->scenario) { instance->scenario->octree.set_pairable(instance->octree_id,p_visible,1<octree_id && instance->scenario) { instance->scenario->octree.set_pairable(instance->octree_id,p_visible,1<skeleton==p_skeleton) return; if (instance->skeleton.is_valid()) { VSG::storage->instance_remove_skeleton(p_skeleton,instance); } instance->skeleton=p_skeleton; if (instance->skeleton.is_valid()) { VSG::storage->instance_add_skeleton(p_skeleton,instance); } _instance_queue_update(instance,true); } void VisualServerScene::instance_set_exterior( RID p_instance, bool p_enabled ){ } void VisualServerScene::instance_set_room( RID p_instance, RID p_room ){ } void VisualServerScene::instance_set_extra_visibility_margin( RID p_instance, real_t p_margin ){ } Vector VisualServerScene::instances_cull_aabb(const Rect3& p_aabb, RID p_scenario) const { Vector instances; Scenario *scenario=scenario_owner.get(p_scenario); ERR_FAIL_COND_V(!scenario,instances); const_cast(this)->update_dirty_instances(); // check dirty instances before culling int culled=0; Instance *cull[1024]; culled=scenario->octree.cull_AABB(p_aabb,cull,1024); for (int i=0;iobject_ID==0) continue; instances.push_back(instance->object_ID); } return instances; } Vector VisualServerScene::instances_cull_ray(const Vector3& p_from, const Vector3& p_to, RID p_scenario) const{ Vector instances; Scenario *scenario=scenario_owner.get(p_scenario); ERR_FAIL_COND_V(!scenario,instances); const_cast(this)->update_dirty_instances(); // check dirty instances before culling int culled=0; Instance *cull[1024]; culled=scenario->octree.cull_segment(p_from,p_to*10000,cull,1024); for (int i=0;iobject_ID==0) continue; instances.push_back(instance->object_ID); } return instances; } Vector VisualServerScene::instances_cull_convex(const Vector& p_convex, RID p_scenario) const{ Vector instances; Scenario *scenario=scenario_owner.get(p_scenario); ERR_FAIL_COND_V(!scenario,instances); const_cast(this)->update_dirty_instances(); // check dirty instances before culling int culled=0; Instance *cull[1024]; culled=scenario->octree.cull_convex(p_convex,cull,1024); for (int i=0;iobject_ID==0) continue; instances.push_back(instance->object_ID); } return instances; } void VisualServerScene::instance_geometry_set_flag(RID p_instance,VS::InstanceFlags p_flags,bool p_enabled){ Instance *instance = instance_owner.get( p_instance ); ERR_FAIL_COND( !instance ); switch(p_flags) { case VS::INSTANCE_FLAG_BILLBOARD: { instance->billboard=p_enabled; } break; case VS::INSTANCE_FLAG_BILLBOARD_FIX_Y: { instance->billboard_y=p_enabled; } break; case VS::INSTANCE_FLAG_CAST_SHADOW: { if (p_enabled == true) { instance->cast_shadows = VS::SHADOW_CASTING_SETTING_ON; } else { instance->cast_shadows = VS::SHADOW_CASTING_SETTING_OFF; } instance->base_material_changed(); // to actually compute if shadows are visible or not } break; case VS::INSTANCE_FLAG_DEPH_SCALE: { instance->depth_scale=p_enabled; } break; case VS::INSTANCE_FLAG_VISIBLE_IN_ALL_ROOMS: { instance->visible_in_all_rooms=p_enabled; } break; } } void VisualServerScene::instance_geometry_set_cast_shadows_setting(RID p_instance, VS::ShadowCastingSetting p_shadow_casting_setting) { } void VisualServerScene::instance_geometry_set_material_override(RID p_instance, RID p_material){ Instance *instance = instance_owner.get( p_instance ); ERR_FAIL_COND( !instance ); if (instance->material_override.is_valid()) { VSG::storage->material_remove_instance_owner(instance->material_override,instance); } instance->material_override=p_material; instance->base_material_changed(); if (instance->material_override.is_valid()) { VSG::storage->material_add_instance_owner(instance->material_override,instance); } } void VisualServerScene::instance_geometry_set_draw_range(RID p_instance,float p_min,float p_max,float p_min_margin,float p_max_margin){ } void VisualServerScene::instance_geometry_set_as_instance_lod(RID p_instance,RID p_as_lod_of_instance){ } void VisualServerScene::_update_instance(Instance *p_instance) { p_instance->version++; if (p_instance->base_type == VS::INSTANCE_LIGHT) { InstanceLightData *light = static_cast(p_instance->base_data); VSG::scene_render->light_instance_set_transform( light->instance, p_instance->transform ); light->shadow_dirty=true; } if (p_instance->base_type == VS::INSTANCE_REFLECTION_PROBE) { InstanceReflectionProbeData *reflection_probe = static_cast(p_instance->base_data); VSG::scene_render->reflection_probe_instance_set_transform( reflection_probe->instance, p_instance->transform ); reflection_probe->reflection_dirty=true; } if (p_instance->aabb.has_no_surface()) return; #if 0 if (p_instance->base_type == VS::INSTANCE_PARTICLES) { rasterizer->particles_instance_set_transform( p_instance->particles_info->instance, p_instance->data.transform ); } #endif if ((1<base_type)&VS::INSTANCE_GEOMETRY_MASK) { InstanceGeometryData *geom = static_cast(p_instance->base_data); //make sure lights are updated if it casts shadow if (geom->can_cast_shadows) { for (List::Element *E=geom->lighting.front();E;E=E->next()) { InstanceLightData *light = static_cast(E->get()->base_data); light->shadow_dirty=true; } } } #if 0 else if (p_instance->base_type == INSTANCE_ROOM) { p_instance->room_info->affine_inverse=p_instance->data.transform.affine_inverse(); } else if (p_instance->base_type == INSTANCE_GI_PROBE) { Transform scale; scale.basis.scale(p_instance->gi_probe_info->gi_probe->octree_aabb.size); scale.origin=p_instance->gi_probe_info->gi_probe->octree_aabb.pos; //print_line("scale: "+scale); p_instance->gi_probe_info->affine_inverse=(p_instance->data.transform*scale).affine_inverse(); } #endif p_instance->mirror = p_instance->transform.basis.determinant() < 0.0; Rect3 new_aabb; #if 0 if (p_instance->base_type==INSTANCE_PORTAL) { //portals need to be transformed in a special way, so they don't become too wide if they have scale.. Transform portal_xform = p_instance->data.transform; portal_xform.basis.set_axis(2,portal_xform.basis.get_axis(2).normalized()); p_instance->portal_info->plane_cache=Plane( p_instance->data.transform.origin, portal_xform.basis.get_axis(2)); int point_count=p_instance->portal_info->portal->shape.size(); p_instance->portal_info->transformed_point_cache.resize(point_count); AABB portal_aabb; for(int i=0;iportal_info->portal->shape[i]; Vector3 point = portal_xform.xform(Vector3(src.x,src.y,0)); p_instance->portal_info->transformed_point_cache[i]=point; if (i==0) portal_aabb.pos=point; else portal_aabb.expand_to(point); } portal_aabb.grow_by(p_instance->portal_info->portal->connect_range); new_aabb = portal_aabb; } else { #endif new_aabb = p_instance->transform.xform(p_instance->aabb); #if 0 } #endif p_instance->transformed_aabb=new_aabb; if (!p_instance->scenario) { return; } if (p_instance->octree_id==0) { uint32_t base_type = 1<base_type; uint32_t pairable_mask=0; bool pairable=false; if (p_instance->base_type == VS::INSTANCE_LIGHT || p_instance->base_type==VS::INSTANCE_REFLECTION_PROBE) { pairable_mask=p_instance->visible?VS::INSTANCE_GEOMETRY_MASK:0; pairable=true; } if (p_instance->base_type == VS::INSTANCE_GI_PROBE) { //lights and geometries pairable_mask=p_instance->visible?VS::INSTANCE_GEOMETRY_MASK|(1<base_type == VS::INSTANCE_PORTAL) { pairable_mask=(1<base_type == VS::INSTANCE_GI_PROBE_SAMPLER) { pairable_mask=(1<room && (1<base_type)&VS::INSTANCE_GEOMETRY_MASK) { base_type|=VS::INSTANCE_ROOMLESS_MASK; } if (p_instance->base_type == VS::INSTANCE_ROOM) { pairable_mask=INSTANCE_ROOMLESS_MASK; pairable=true; } #endif // not inside octree p_instance->octree_id = p_instance->scenario->octree.create(p_instance,new_aabb,0,pairable,base_type,pairable_mask); } else { /* if (new_aabb==p_instance->data.transformed_aabb) return; */ p_instance->scenario->octree.move(p_instance->octree_id,new_aabb); } #if 0 if (p_instance->base_type==INSTANCE_PORTAL) { _portal_attempt_connect(p_instance); } if (!p_instance->room && (1<base_type)&INSTANCE_GEOMETRY_MASK) { _instance_validate_autorooms(p_instance); } if (p_instance->base_type == INSTANCE_ROOM) { for(Set::Element *E=p_instance->room_info->owned_autoroom_geometry.front();E;E=E->next()) _instance_validate_autorooms(E->get()); } #endif } void VisualServerScene::_update_instance_aabb(Instance *p_instance) { Rect3 new_aabb; ERR_FAIL_COND(p_instance->base_type!=VS::INSTANCE_NONE && !p_instance->base.is_valid()); switch(p_instance->base_type) { case VisualServer::INSTANCE_NONE: { // do nothing } break; case VisualServer::INSTANCE_MESH: { new_aabb = VSG::storage->mesh_get_aabb(p_instance->base,p_instance->skeleton); } break; case VisualServer::INSTANCE_MULTIMESH: { new_aabb = VSG::storage->multimesh_get_aabb(p_instance->base); } break; case VisualServer::INSTANCE_IMMEDIATE: { new_aabb = VSG::storage->immediate_get_aabb(p_instance->base); } break; #if 0 case VisualServer::INSTANCE_PARTICLES: { new_aabb = rasterizer->particles_get_aabb(p_instance->base); } break; #endif case VisualServer::INSTANCE_LIGHT: { new_aabb = VSG::storage->light_get_aabb(p_instance->base); } break; case VisualServer::INSTANCE_REFLECTION_PROBE: { new_aabb = VSG::storage->reflection_probe_get_aabb(p_instance->base); } break; case VisualServer::INSTANCE_GI_PROBE: { new_aabb = VSG::storage->gi_probe_get_bounds(p_instance->base); } break; #if 0 case VisualServer::INSTANCE_ROOM: { Room *room = room_owner.get( p_instance->base ); ERR_FAIL_COND(!room); new_aabb=room->bounds.get_aabb(); } break; case VisualServer::INSTANCE_PORTAL: { Portal *portal = portal_owner.get( p_instance->base ); ERR_FAIL_COND(!portal); for (int i=0;ishape.size();i++) { Vector3 point( portal->shape[i].x, portal->shape[i].y, 0 ); if (i==0) { new_aabb.pos=point; new_aabb.size.z=0.01; // make it not flat for octree } else { new_aabb.expand_to(point); } } } break; case VisualServer::INSTANCE_GI_PROBE: { BakedLight *gi_probe = gi_probe_owner.get( p_instance->base ); ERR_FAIL_COND(!gi_probe); new_aabb=gi_probe->octree_aabb; } break; case VisualServer::INSTANCE_GI_PROBE_SAMPLER: { BakedLightSampler *gi_probe_sampler = gi_probe_sampler_owner.get( p_instance->base ); ERR_FAIL_COND(!gi_probe_sampler); float radius = gi_probe_sampler->params[VS::BAKED_LIGHT_SAMPLER_RADIUS]; new_aabb=AABB(Vector3(-radius,-radius,-radius),Vector3(radius*2,radius*2,radius*2)); } break; #endif default: {} } if (p_instance->extra_margin) new_aabb.grow_by(p_instance->extra_margin); p_instance->aabb=new_aabb; } void VisualServerScene::_light_instance_update_shadow(Instance *p_instance,const Transform p_cam_transform,const CameraMatrix& p_cam_projection,bool p_cam_orthogonal,RID p_shadow_atlas,Scenario* p_scenario) { InstanceLightData * light = static_cast(p_instance->base_data); switch(VSG::storage->light_get_type(p_instance->base)) { case VS::LIGHT_DIRECTIONAL: { float max_distance =p_cam_projection.get_z_far(); float shadow_max = VSG::storage->light_get_param(p_instance->base,VS::LIGHT_PARAM_SHADOW_MAX_DISTANCE); if (shadow_max>0) { max_distance=MIN(shadow_max,max_distance); } max_distance=MAX(max_distance,p_cam_projection.get_z_near()+0.001); float range = max_distance-p_cam_projection.get_z_near(); int splits=0; switch(VSG::storage->light_directional_get_shadow_mode(p_instance->base)) { case VS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL: splits=1; break; case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS: splits=2; break; case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS: splits=4; break; } float distances[5]; distances[0]=p_cam_projection.get_z_near(); for(int i=0;ilight_get_param(p_instance->base,VS::LightParam(VS::LIGHT_PARAM_SHADOW_SPLIT_1_OFFSET+i))*range; }; distances[splits]=max_distance; float texture_size=VSG::scene_render->get_directional_light_shadow_size(light->instance); bool overlap = VSG::storage->light_directional_get_blend_splits(p_instance->base); for (int i=0;itransform.basis.get_axis( Vector3::AXIS_X ).normalized(); Vector3 y_vec=p_instance->transform.basis.get_axis( Vector3::AXIS_Y ).normalized(); Vector3 z_vec=p_instance->transform.basis.get_axis( Vector3::AXIS_Z ).normalized(); //z_vec points agsint the camera, like in default opengl float x_min,x_max; float y_min,y_max; float z_min,z_max; float x_min_cam,x_max_cam; float y_min_cam,y_max_cam; float z_min_cam,z_max_cam; //used for culling for(int j=0;j<8;j++) { float d_x=x_vec.dot(endpoints[j]); float d_y=y_vec.dot(endpoints[j]); float d_z=z_vec.dot(endpoints[j]); if (j==0 || d_xx_max) x_max=d_x; if (j==0 || d_yy_max) y_max=d_y; if (j==0 || d_zz_max) z_max=d_z; } { //camera viewport stuff //this trick here is what stabilizes the shadow (make potential jaggies to not move) //at the cost of some wasted resolution. Still the quality increase is very well worth it Vector3 center; for(int j=0;j<8;j++) { center+=endpoints[j]; } center/=8.0; //center=x_vec*(x_max-x_min)*0.5 + y_vec*(y_max-y_min)*0.5 + z_vec*(z_max-z_min)*0.5; float radius=0; for(int j=0;j<8;j++) { float d = center.distance_to(endpoints[j]); if (d>radius) radius=d; } radius *= texture_size/(texture_size-2.0); //add a texel by each side, so stepified texture will always fit x_max_cam=x_vec.dot(center)+radius; x_min_cam=x_vec.dot(center)-radius; y_max_cam=y_vec.dot(center)+radius; y_min_cam=y_vec.dot(center)-radius; z_max_cam=z_vec.dot(center)+radius; z_min_cam=z_vec.dot(center)-radius; float unit = radius*2.0/texture_size; x_max_cam=Math::stepify(x_max_cam,unit); x_min_cam=Math::stepify(x_min_cam,unit); y_max_cam=Math::stepify(y_max_cam,unit); y_min_cam=Math::stepify(y_min_cam,unit); } //now that we now all ranges, we can proceed to make the light frustum planes, for culling octree Vector light_frustum_planes; light_frustum_planes.resize(6); //right/left light_frustum_planes[0]=Plane( x_vec, x_max ); light_frustum_planes[1]=Plane( -x_vec, -x_min ); //top/bottom light_frustum_planes[2]=Plane( y_vec, y_max ); light_frustum_planes[3]=Plane( -y_vec, -y_min ); //near/far light_frustum_planes[4]=Plane( z_vec, z_max+1e6 ); light_frustum_planes[5]=Plane( -z_vec, -z_min ); // z_min is ok, since casters further than far-light plane are not needed int cull_count = p_scenario->octree.cull_convex(light_frustum_planes,instance_shadow_cull_result,MAX_INSTANCE_CULL,VS::INSTANCE_GEOMETRY_MASK); // a pre pass will need to be needed to determine the actual z-near to be used for (int j=0;jvisible || !((1<base_type)&VS::INSTANCE_GEOMETRY_MASK) || !static_cast(instance->base_data)->can_cast_shadows) { cull_count--; SWAP(instance_shadow_cull_result[j],instance_shadow_cull_result[cull_count]); j--; continue; } instance->transformed_aabb.project_range_in_plane(Plane(z_vec,0),min,max); if (max>z_max) z_max=max; } { CameraMatrix ortho_camera; real_t half_x = (x_max_cam-x_min_cam) * 0.5; real_t half_y = (y_max_cam-y_min_cam) * 0.5; ortho_camera.set_orthogonal( -half_x, half_x,-half_y,half_y, 0, (z_max-z_min_cam) ); Transform ortho_transform; ortho_transform.basis=p_instance->transform.basis; ortho_transform.origin=x_vec*(x_min_cam+half_x)+y_vec*(y_min_cam+half_y)+z_vec*z_max; VSG::scene_render->light_instance_set_shadow_transform(light->instance,ortho_camera,ortho_transform,0,distances[i+1],i); } VSG::scene_render->render_shadow(light->instance,p_shadow_atlas,i,(RasterizerScene::InstanceBase**)instance_shadow_cull_result,cull_count); } } break; case VS::LIGHT_OMNI: { VS::LightOmniShadowMode shadow_mode = VSG::storage->light_omni_get_shadow_mode(p_instance->base); switch(shadow_mode) { case VS::LIGHT_OMNI_SHADOW_DUAL_PARABOLOID: { for(int i=0;i<2;i++) { //using this one ensures that raster deferred will have it float radius = VSG::storage->light_get_param( p_instance->base, VS::LIGHT_PARAM_RANGE); float z =i==0?-1:1; Vector planes; planes.resize(5); planes[0]=p_instance->transform.xform(Plane(Vector3(0,0,z),radius)); planes[1]=p_instance->transform.xform(Plane(Vector3(1,0,z).normalized(),radius)); planes[2]=p_instance->transform.xform(Plane(Vector3(-1,0,z).normalized(),radius)); planes[3]=p_instance->transform.xform(Plane(Vector3(0,1,z).normalized(),radius)); planes[4]=p_instance->transform.xform(Plane(Vector3(0,-1,z).normalized(),radius)); int cull_count = p_scenario->octree.cull_convex(planes,instance_shadow_cull_result,MAX_INSTANCE_CULL,VS::INSTANCE_GEOMETRY_MASK); for (int j=0;jvisible || !((1<base_type)&VS::INSTANCE_GEOMETRY_MASK) || !static_cast(instance->base_data)->can_cast_shadows) { cull_count--; SWAP(instance_shadow_cull_result[j],instance_shadow_cull_result[cull_count]); j--; } } VSG::scene_render->light_instance_set_shadow_transform(light->instance,CameraMatrix(),p_instance->transform,radius,0,i); VSG::scene_render->render_shadow(light->instance,p_shadow_atlas,i,(RasterizerScene::InstanceBase**)instance_shadow_cull_result,cull_count); } } break; case VS::LIGHT_OMNI_SHADOW_CUBE: { float radius = VSG::storage->light_get_param( p_instance->base, VS::LIGHT_PARAM_RANGE); CameraMatrix cm; cm.set_perspective(90,1,0.01,radius); for(int i=0;i<6;i++) { //using this one ensures that raster deferred will have it static const Vector3 view_normals[6]={ Vector3(-1, 0, 0), Vector3(+1, 0, 0), Vector3( 0,-1, 0), Vector3( 0,+1, 0), Vector3( 0, 0,-1), Vector3( 0, 0,+1) }; static const Vector3 view_up[6]={ Vector3( 0,-1, 0), Vector3( 0,-1, 0), Vector3( 0, 0,-1), Vector3( 0, 0,+1), Vector3( 0,-1, 0), Vector3( 0,-1, 0) }; Transform xform = p_instance->transform * Transform().looking_at(view_normals[i],view_up[i]); Vector planes = cm.get_projection_planes(xform); int cull_count = p_scenario->octree.cull_convex(planes,instance_shadow_cull_result,MAX_INSTANCE_CULL,VS::INSTANCE_GEOMETRY_MASK); for (int j=0;jvisible || !((1<base_type)&VS::INSTANCE_GEOMETRY_MASK) || !static_cast(instance->base_data)->can_cast_shadows) { cull_count--; SWAP(instance_shadow_cull_result[j],instance_shadow_cull_result[cull_count]); j--; } } VSG::scene_render->light_instance_set_shadow_transform(light->instance,cm,xform,radius,0,i); VSG::scene_render->render_shadow(light->instance,p_shadow_atlas,i,(RasterizerScene::InstanceBase**)instance_shadow_cull_result,cull_count); } //restore the regular DP matrix VSG::scene_render->light_instance_set_shadow_transform(light->instance,CameraMatrix(),p_instance->transform,radius,0,0); } break; } } break; case VS::LIGHT_SPOT: { float radius = VSG::storage->light_get_param( p_instance->base, VS::LIGHT_PARAM_RANGE); float angle = VSG::storage->light_get_param( p_instance->base, VS::LIGHT_PARAM_SPOT_ANGLE); CameraMatrix cm; cm.set_perspective( angle*2.0, 1.0, 0.01, radius ); Vector planes = cm.get_projection_planes(p_instance->transform); int cull_count = p_scenario->octree.cull_convex(planes,instance_shadow_cull_result,MAX_INSTANCE_CULL,VS::INSTANCE_GEOMETRY_MASK); for (int j=0;jvisible || !((1<base_type)&VS::INSTANCE_GEOMETRY_MASK) || !static_cast(instance->base_data)->can_cast_shadows) { cull_count--; SWAP(instance_shadow_cull_result[j],instance_shadow_cull_result[cull_count]); j--; } } VSG::scene_render->light_instance_set_shadow_transform(light->instance,cm,p_instance->transform,radius,0,0); VSG::scene_render->render_shadow(light->instance,p_shadow_atlas,0,(RasterizerScene::InstanceBase**)instance_shadow_cull_result,cull_count); } break; } } void VisualServerScene::render_camera(RID p_camera, RID p_scenario,Size2 p_viewport_size,RID p_shadow_atlas) { Camera *camera = camera_owner.getornull(p_camera); ERR_FAIL_COND(!camera); /* STEP 1 - SETUP CAMERA */ CameraMatrix camera_matrix; bool ortho=false; switch(camera->type) { case Camera::ORTHOGONAL: { camera_matrix.set_orthogonal( camera->size, p_viewport_size.width / (float)p_viewport_size.height, camera->znear, camera->zfar, camera->vaspect ); ortho=true; } break; case Camera::PERSPECTIVE: { camera_matrix.set_perspective( camera->fov, p_viewport_size.width / (float)p_viewport_size.height, camera->znear, camera->zfar, camera->vaspect ); ortho=false; } break; } _render_scene(camera->transform,camera_matrix,ortho,camera->env,camera->visible_layers,p_scenario,p_shadow_atlas,RID(),-1); } void VisualServerScene::_render_scene(const Transform p_cam_transform,const CameraMatrix& p_cam_projection,bool p_cam_orthogonal,RID p_force_environment,uint32_t p_visible_layers, RID p_scenario,RID p_shadow_atlas,RID p_reflection_probe,int p_reflection_probe_pass) { Scenario *scenario = scenario_owner.getornull(p_scenario); render_pass++; uint32_t camera_layer_mask=p_visible_layers; VSG::scene_render->set_scene_pass(render_pass); //rasterizer->set_camera(camera->transform, camera_matrix,ortho); Vector planes = p_cam_projection.get_projection_planes(p_cam_transform); Plane near_plane(p_cam_transform.origin,-p_cam_transform.basis.get_axis(2).normalized()); float z_far = p_cam_projection.get_z_far(); /* STEP 2 - CULL */ int cull_count = scenario->octree.cull_convex(planes,instance_cull_result,MAX_INSTANCE_CULL); light_cull_count=0; reflection_probe_cull_count=0; //light_samplers_culled=0; /* print_line("OT: "+rtos( (OS::get_singleton()->get_ticks_usec()-t)/1000.0)); print_line("OTO: "+itos(p_scenario->octree.get_octant_count())); //print_line("OTE: "+itos(p_scenario->octree.get_elem_count())); print_line("OTP: "+itos(p_scenario->octree.get_pair_count())); */ /* STEP 3 - PROCESS PORTALS, VALIDATE ROOMS */ // compute portals #if 0 exterior_visited=false; exterior_portal_cull_count=0; if (room_cull_enabled) { for(int i=0;ilast_render_pass=render_pass; if (ins->base_type!=INSTANCE_PORTAL) continue; if (ins->room) continue; ERR_CONTINUE(exterior_portal_cull_count>=MAX_EXTERIOR_PORTALS); exterior_portal_cull_result[exterior_portal_cull_count++]=ins; } room_cull_count = p_scenario->octree.cull_point(camera->transform.origin,room_cull_result,MAX_ROOM_CULL,NULL,(1< current_rooms; Set portal_rooms; //add to set for(int i=0;ibase_type==INSTANCE_ROOM) { current_rooms.insert(room_cull_result[i]); } if (room_cull_result[i]->base_type==INSTANCE_PORTAL) { //assume inside that room if also inside the portal.. if (room_cull_result[i]->room) { portal_rooms.insert(room_cull_result[i]->room); } SWAP(room_cull_result[i],room_cull_result[room_cull_count-1]); room_cull_count--; i--; } } //remove from set if it has a parent room or BSP doesn't contain for(int i=0;iroom_info->affine_inverse.xform( camera->transform.origin ); if (!portal_rooms.has(r) && !r->room_info->room->bounds.point_is_inside(room_local_point)) { current_rooms.erase(r); continue; } //check parent while (r->room) {// has parent room current_rooms.erase(r); r=r->room; } } if (current_rooms.size()) { //camera is inside a room // go through rooms for(Set::Element *E=current_rooms.front();E;E=E->next()) { _cull_room(camera,E->get()); } } else { //start from exterior _cull_room(camera,NULL); } } #endif /* STEP 4 - REMOVE FURTHER CULLED OBJECTS, ADD LIGHTS */ for(int i=0;ilayer_mask)==0) { //failure } else if (ins->base_type==VS::INSTANCE_LIGHT && ins->visible) { if (ins->visible && light_cull_count(ins->base_data); if (!light->geometries.empty()) { //do not add this light if no geometry is affected by it.. light_cull_result[light_cull_count]=ins; light_instance_cull_result[light_cull_count]=light->instance; if (p_shadow_atlas.is_valid() && VSG::storage->light_has_shadow(ins->base)) { VSG::scene_render->light_instance_mark_visible(light->instance); //mark it visible for shadow allocation later } light_cull_count++; } } } else if (ins->base_type==VS::INSTANCE_REFLECTION_PROBE && ins->visible) { if (ins->visible && reflection_probe_cull_count(ins->base_data); if (p_reflection_probe!=reflection_probe->instance) { //avoid entering The Matrix if (!reflection_probe->geometries.empty()) { //do not add this light if no geometry is affected by it.. if (reflection_probe->reflection_dirty || VSG::scene_render->reflection_probe_instance_needs_redraw(reflection_probe->instance)) { if (!reflection_probe->update_list.in_list()) { reflection_probe->render_step=0; reflection_probe_render_list.add(&reflection_probe->update_list); } reflection_probe->reflection_dirty=false; } if (VSG::scene_render->reflection_probe_instance_has_reflection(reflection_probe->instance)) { reflection_probe_instance_cull_result[reflection_probe_cull_count]=reflection_probe->instance; reflection_probe_cull_count++; } } } } } else if (ins->base_type==VS::INSTANCE_GI_PROBE && ins->visible) { InstanceGIProbeData * gi_probe = static_cast(ins->base_data); if (!gi_probe->update_element.in_list()) { gi_probe_update_list.add(&gi_probe->update_element); } } else if ((1<base_type)&VS::INSTANCE_GEOMETRY_MASK && ins->visible && ins->cast_shadows!=VS::SHADOW_CASTING_SETTING_SHADOWS_ONLY) { keep=true; #if 0 bool discarded=false; if (ins->draw_range_end>0) { float d = cull_range.nearp.distance_to(ins->data.transform.origin); if (d<0) d=0; discarded=(ddraw_range_begin || d>=ins->draw_range_end); } if (!discarded) { // test if this geometry should be visible if (room_cull_enabled) { if (ins->visible_in_all_rooms) { keep=true; } else if (ins->room) { if (ins->room->room_info->last_visited_pass==render_pass) keep=true; } else if (ins->auto_rooms.size()) { for(Set::Element *E=ins->auto_rooms.front();E;E=E->next()) { if (E->get()->room_info->last_visited_pass==render_pass) { keep=true; break; } } } else if(exterior_visited) keep=true; } else { keep=true; } } if (keep) { // update cull range float min,max; ins->transformed_aabb.project_range_in_plane(cull_range.nearp,min,max); if (mincull_range.max) cull_range.max=max; if (ins->sampled_light && ins->sampled_light->gi_probe_sampler_info->last_pass!=render_pass) { if (light_samplers_culledsampled_light; ins->sampled_light->gi_probe_sampler_info->last_pass=render_pass; } } } #endif InstanceGeometryData * geom = static_cast(ins->base_data); if (geom->lighting_dirty) { int l=0; //only called when lights AABB enter/exit this geometry ins->light_instances.resize(geom->lighting.size()); for (List::Element *E=geom->lighting.front();E;E=E->next()) { InstanceLightData * light = static_cast(E->get()->base_data); ins->light_instances[l++]=light->instance; } geom->lighting_dirty=false; } if (geom->reflection_dirty) { int l=0; //only called when reflection probe AABB enter/exit this geometry ins->reflection_probe_instances.resize(geom->reflection_probes.size()); for (List::Element *E=geom->reflection_probes.front();E;E=E->next()) { InstanceReflectionProbeData * reflection_probe = static_cast(E->get()->base_data); ins->reflection_probe_instances[l++]=reflection_probe->instance; } geom->reflection_dirty=false; } if (geom->gi_probes_dirty) { int l=0; //only called when reflection probe AABB enter/exit this geometry ins->gi_probe_instances.resize(geom->gi_probes.size()); for (List::Element *E=geom->gi_probes.front();E;E=E->next()) { InstanceGIProbeData * gi_probe = static_cast(E->get()->base_data); ins->gi_probe_instances[l++]=gi_probe->probe_instance; } geom->gi_probes_dirty=false; } ins->depth = near_plane.distance_to(ins->transform.origin); ins->depth_layer=CLAMP(int(ins->depth*8/z_far),0,7); } if (!keep) { // remove, no reason to keep cull_count--; SWAP( instance_cull_result[i], instance_cull_result[ cull_count ] ); i--; ins->last_render_pass=0; // make invalid } else { ins->last_render_pass=render_pass; } } /* STEP 5 - PROCESS LIGHTS */ RID *directional_light_ptr=&light_instance_cull_result[light_cull_count]; int directional_light_count=0; // directional lights { Instance** lights_with_shadow = (Instance**)alloca(sizeof(Instance*)*scenario->directional_lights.size()); int directional_shadow_count=0; for (List::Element *E=scenario->directional_lights.front();E;E=E->next()) { if (light_cull_count+directional_light_count>=MAX_LIGHTS_CULLED) { break; } if (!E->get()->visible) continue; InstanceLightData * light = static_cast(E->get()->base_data); //check shadow.. if (light && p_shadow_atlas.is_valid() && VSG::storage->light_has_shadow(E->get()->base)) { lights_with_shadow[directional_shadow_count++]=E->get(); } //add to list directional_light_ptr[directional_light_count++]=light->instance; } VSG::scene_render->set_directional_shadow_count(directional_shadow_count); for(int i=0;i sorter; //sorter.sort(light_cull_result,light_cull_count); for (int i=0;ilight_has_shadow(ins->base)) continue; InstanceLightData * light = static_cast(ins->base_data); float coverage; { //compute coverage Transform cam_xf = p_cam_transform; float zn = p_cam_projection.get_z_near(); Plane p (cam_xf.origin + cam_xf.basis.get_axis(2) * -zn, -cam_xf.basis.get_axis(2) ); //camera near plane float vp_w,vp_h; //near plane size in screen coordinates p_cam_projection.get_viewport_size(vp_w,vp_h); switch(VSG::storage->light_get_type(ins->base)) { case VS::LIGHT_OMNI: { float radius = VSG::storage->light_get_param(ins->base,VS::LIGHT_PARAM_RANGE); //get two points parallel to near plane Vector3 points[2]={ ins->transform.origin, ins->transform.origin+cam_xf.basis.get_axis(0)*radius }; if (!p_cam_orthogonal) { //if using perspetive, map them to near plane for(int j=0;j<2;j++) { if (p.distance_to(points[j]) < 0 ) { points[j].z=-zn; //small hack to keep size constant when hitting the screen } p.intersects_segment(cam_xf.origin,points[j],&points[j]); //map to plane } } float screen_diameter = points[0].distance_to(points[1])*2; coverage = screen_diameter / (vp_w+vp_h); } break; case VS::LIGHT_SPOT: { float radius = VSG::storage->light_get_param(ins->base,VS::LIGHT_PARAM_RANGE); float angle = VSG::storage->light_get_param(ins->base,VS::LIGHT_PARAM_SPOT_ANGLE); float w = radius*Math::sin(Math::deg2rad(angle)); float d = radius*Math::cos(Math::deg2rad(angle)); Vector3 base = ins->transform.origin-ins->transform.basis.get_axis(2).normalized()*d; Vector3 points[2]={ base, base+cam_xf.basis.get_axis(0)*w }; if (!p_cam_orthogonal) { //if using perspetive, map them to near plane for(int j=0;j<2;j++) { if (p.distance_to(points[j]) < 0 ) { points[j].z=-zn; //small hack to keep size constant when hitting the screen } p.intersects_segment(cam_xf.origin,points[j],&points[j]); //map to plane } } float screen_diameter = points[0].distance_to(points[1])*2; coverage = screen_diameter / (vp_w+vp_h); } break; default: { ERR_PRINT("Invalid Light Type"); } } } if (light->shadow_dirty) { light->last_version++; light->shadow_dirty=false; } bool redraw = VSG::scene_render->shadow_atlas_update_light(p_shadow_atlas,light->instance,coverage,light->last_version); if (redraw) { //must redraw! _light_instance_update_shadow(ins,p_cam_transform,p_cam_projection,p_cam_orthogonal,p_shadow_atlas,scenario); } } } /* ENVIRONMENT */ RID environment; if (p_force_environment.is_valid()) //camera has more environment priority environment=p_force_environment; else if (scenario->environment.is_valid()) environment=scenario->environment; else environment=scenario->fallback_environment; #if 0 /* STEP 6 - SAMPLE BAKED LIGHT */ bool islinear =false; if (environment.is_valid()) { islinear = rasterizer->environment_is_fx_enabled(environment,VS::ENV_FX_SRGB); } for(int i=0;itransform,light_sampler_cull_result[i],islinear); } #endif /* STEP 7 - PROCESS GEOMETRY AND DRAW SCENE*/ VSG::scene_render->render_scene(p_cam_transform, p_cam_projection,p_cam_orthogonal,(RasterizerScene::InstanceBase**)instance_cull_result,cull_count,light_instance_cull_result,light_cull_count+directional_light_count,reflection_probe_instance_cull_result,reflection_probe_cull_count,environment,p_shadow_atlas,scenario->reflection_atlas,p_reflection_probe,p_reflection_probe_pass); } bool VisualServerScene::_render_reflection_probe_step(Instance* p_instance,int p_step) { InstanceReflectionProbeData *reflection_probe = static_cast(p_instance->base_data); Scenario *scenario = p_instance->scenario; ERR_FAIL_COND_V(!scenario,true); if (p_step==0) { if (!VSG::scene_render->reflection_probe_instance_begin_render(reflection_probe->instance,scenario->reflection_atlas)) { return true; //sorry, all full :( } } if (p_step>=0 && p_step<6) { static const Vector3 view_normals[6]={ Vector3(-1, 0, 0), Vector3(+1, 0, 0), Vector3( 0,-1, 0), Vector3( 0,+1, 0), Vector3( 0, 0,-1), Vector3( 0, 0,+1) }; Vector3 extents = VSG::storage->reflection_probe_get_extents(p_instance->base); Vector3 origin_offset = VSG::storage->reflection_probe_get_origin_offset(p_instance->base); float max_distance = VSG::storage->reflection_probe_get_origin_max_distance(p_instance->base); Vector3 edge = view_normals[p_step]*extents; float distance = ABS(view_normals[p_step].dot(edge)-view_normals[p_step].dot(origin_offset)); //distance from origin offset to actual view distance limit max_distance = MAX(max_distance,distance); //render cubemap side CameraMatrix cm; cm.set_perspective(90,1,0.01,max_distance); static const Vector3 view_up[6]={ Vector3( 0,-1, 0), Vector3( 0,-1, 0), Vector3( 0, 0,-1), Vector3( 0, 0,+1), Vector3( 0,-1, 0), Vector3( 0,-1, 0) }; Transform local_view; local_view.set_look_at(origin_offset,origin_offset+view_normals[p_step],view_up[p_step]); Transform xform = p_instance->transform * local_view; RID shadow_atlas; if (VSG::storage->reflection_probe_renders_shadows(p_instance->base)) { shadow_atlas=scenario->reflection_probe_shadow_atlas; } _render_scene(xform,cm,false,RID(),VSG::storage->reflection_probe_get_cull_mask(p_instance->base),p_instance->scenario->self,shadow_atlas,reflection_probe->instance,p_step); } else { //do roughness postprocess step until it belives it's done return VSG::scene_render->reflection_probe_instance_postprocess_step(reflection_probe->instance); } return false; } void VisualServerScene::_gi_probe_fill_local_data(int p_idx, int p_level, int p_x, int p_y, int p_z, const GIProbeDataCell* p_cell, const GIProbeDataHeader *p_header, InstanceGIProbeData::LocalData *p_local_data, Vector *prev_cell) { if (p_level==p_header->cell_subdiv-1) { Vector3 emission; emission.x=(p_cell[p_idx].emission>>24)/255.0; emission.y=((p_cell[p_idx].emission>>16)&0xFF)/255.0; emission.z=((p_cell[p_idx].emission>>8)&0xFF)/255.0; float l = (p_cell[p_idx].emission&0xFF)/255.0; l*=8.0; emission*=l; p_local_data[p_idx].energy[0]=uint16_t(emission.x*1024); //go from 0 to 1024 for light p_local_data[p_idx].energy[1]=uint16_t(emission.y*1024); //go from 0 to 1024 for light p_local_data[p_idx].energy[2]=uint16_t(emission.z*1024); //go from 0 to 1024 for light } else { p_local_data[p_idx].energy[0]=0; p_local_data[p_idx].energy[1]=0; p_local_data[p_idx].energy[2]=0; int half=(1<<(p_header->cell_subdiv-1))>>(p_level+1); for(int i=0;i<8;i++) { uint32_t child = p_cell[p_idx].children[i]; if (child==0xFFFFFFFF) continue; int x = p_x; int y = p_y; int z = p_z; if (i&1) x+=half; if (i&2) y+=half; if (i&4) z+=half; _gi_probe_fill_local_data(child,p_level+1,x,y,z,p_cell,p_header,p_local_data,prev_cell); } } //position for each part of the mipmaped texture p_local_data[p_idx].pos[0]=p_x>>(p_header->cell_subdiv-p_level-1); p_local_data[p_idx].pos[1]=p_y>>(p_header->cell_subdiv-p_level-1); p_local_data[p_idx].pos[2]=p_z>>(p_header->cell_subdiv-p_level-1); prev_cell[p_level].push_back(p_idx); } void VisualServerScene::_gi_probe_bake_threads(void* self) { VisualServerScene* vss = (VisualServerScene*)self; vss->_gi_probe_bake_thread(); } void VisualServerScene::_setup_gi_probe(Instance *p_instance) { InstanceGIProbeData *probe = static_cast(p_instance->base_data); if (probe->dynamic.probe_data.is_valid()) { VSG::storage->free(probe->dynamic.probe_data); probe->dynamic.probe_data=RID(); } probe->dynamic.light_data=VSG::storage->gi_probe_get_dynamic_data(p_instance->base); if (probe->dynamic.light_data.size()==0) return; //using dynamic data PoolVector::Read r=probe->dynamic.light_data.read(); const GIProbeDataHeader *header = (GIProbeDataHeader *)r.ptr(); probe->dynamic.local_data.resize(header->cell_count); int cell_count = probe->dynamic.local_data.size(); PoolVector::Write ldw = probe->dynamic.local_data.write(); const GIProbeDataCell *cells = (GIProbeDataCell*)&r[16]; probe->dynamic.level_cell_lists.resize(header->cell_subdiv); _gi_probe_fill_local_data(0,0,0,0,0,cells,header,ldw.ptr(),probe->dynamic.level_cell_lists.ptr()); bool compress = VSG::storage->gi_probe_is_compressed(p_instance->base); probe->dynamic.compression = compress ? VSG::storage->gi_probe_get_dynamic_data_get_preferred_compression() : RasterizerStorage::GI_PROBE_UNCOMPRESSED; probe->dynamic.probe_data=VSG::storage->gi_probe_dynamic_data_create(header->width,header->height,header->depth,probe->dynamic.compression); probe->dynamic.bake_dynamic_range=VSG::storage->gi_probe_get_dynamic_range(p_instance->base); probe->dynamic.mipmaps_3d.clear(); probe->dynamic.propagate=VSG::storage->gi_probe_get_propagation(p_instance->base); probe->dynamic.grid_size[0]=header->width; probe->dynamic.grid_size[1]=header->height; probe->dynamic.grid_size[2]=header->depth; int size_limit = 1; int size_divisor = 1; if (probe->dynamic.compression==RasterizerStorage::GI_PROBE_S3TC) { print_line("S3TC"); size_limit=4; size_divisor=4; } for(int i=0;i<(int)header->cell_subdiv;i++) { uint32_t x = header->width >> i; uint32_t y = header->height >> i; uint32_t z = header->depth >> i; //create and clear mipmap PoolVector mipmap; int size = x*y*z*4; size/=size_divisor; mipmap.resize(size); PoolVector::Write w = mipmap.write(); zeromem(w.ptr(),size); w = PoolVector::Write(); probe->dynamic.mipmaps_3d.push_back(mipmap); if (x<=size_limit || y<=size_limit || z<=size_limit) break; } probe->dynamic.updating_stage=GI_UPDATE_STAGE_CHECK; probe->invalid=false; probe->dynamic.enabled=true; Transform cell_to_xform = VSG::storage->gi_probe_get_to_cell_xform(p_instance->base); Rect3 bounds = VSG::storage->gi_probe_get_bounds(p_instance->base); float cell_size = VSG::storage->gi_probe_get_cell_size(p_instance->base); probe->dynamic.light_to_cell_xform=cell_to_xform * p_instance->transform.affine_inverse(); VSG::scene_render->gi_probe_instance_set_light_data(probe->probe_instance,p_instance->base,probe->dynamic.probe_data); VSG::scene_render->gi_probe_instance_set_transform_to_data(probe->probe_instance,probe->dynamic.light_to_cell_xform); VSG::scene_render->gi_probe_instance_set_bounds(probe->probe_instance,bounds.size/cell_size); probe->base_version=VSG::storage->gi_probe_get_version(p_instance->base); //if compression is S3TC, fill it up if (probe->dynamic.compression==RasterizerStorage::GI_PROBE_S3TC) { //create all blocks Vector > comp_blocks; int mipmap_count = probe->dynamic.mipmaps_3d.size(); comp_blocks.resize(mipmap_count); for(int i=0;i>16; int mipmap = header->cell_subdiv - level -1; if (mipmap >= mipmap_count) continue;//uninteresting int blockx = (ld.pos[0]>>2); int blocky = (ld.pos[1]>>2); int blockz = (ld.pos[2]); //compression is x/y only int blockw = (header->width >> mipmap) >> 2; int blockh = (header->height >> mipmap) >> 2; //print_line("cell "+itos(i)+" level "+itos(level)+"mipmap: "+itos(mipmap)+" pos: "+Vector3(blockx,blocky,blockz)+" size "+Vector2(blockw,blockh)); uint32_t key = blockz * blockw*blockh + blocky * blockw + blockx; Map & cmap = comp_blocks[mipmap]; if (!cmap.has(key)) { InstanceGIProbeData::CompBlockS3TC k; k.offset=key; //use offset as counter first k.source_count=0; cmap[key]=k; } InstanceGIProbeData::CompBlockS3TC &k=cmap[key]; ERR_CONTINUE(k.source_count==16); k.sources[k.source_count++]=i; } //fix the blocks, precomputing what is needed probe->dynamic.mipmaps_s3tc.resize(mipmap_count); for(int i=0;idynamic.mipmaps_s3tc[i].resize(comp_blocks[i].size()); PoolVector::Write w = probe->dynamic.mipmaps_s3tc[i].write(); int block_idx=0; for (Map::Element *E=comp_blocks[i].front();E;E=E->next()) { InstanceGIProbeData::CompBlockS3TC k = E->get(); //PRECOMPUTE ALPHA int max_alpha=-100000; int min_alpha=k.source_count==16 ?100000 :0; //if the block is not completely full, minimum is always 0, (and those blocks will map to 1, which will be zero) uint8_t alpha_block[4][4]={ {0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0} }; for(int j=0;j>8)&0xFF; if (alphamax_alpha) max_alpha=alpha; //fill up alpha block alpha_block[ldw[k.sources[j]].pos[0]%4][ldw[k.sources[j]].pos[1]%4]=alpha; } //use the first mode (8 adjustable levels) k.alpha[0]=max_alpha; k.alpha[1]=min_alpha; uint64_t alpha_bits=0; if (max_alpha!=min_alpha) { int idx=0; for(int y=0;y<4;y++) { for(int x=0;x<4;x++) { //substract minimum uint32_t a = uint32_t(alpha_block[x][y])-min_alpha; //convert range to 3 bits a =int((a * 7.0 / (max_alpha-min_alpha))+0.5); a = CLAMP(a,0,7); //just to be sure a = 7-a; //because range is inverted in this mode if (a==0) { //do none, remain } else if (a==7) { a=1; } else { a=a+1; } alpha_bits|=uint64_t(a)<<(idx*3); idx++; } } } k.alpha[2]=(alpha_bits >> 0)&0xFF; k.alpha[3]=(alpha_bits >> 8)&0xFF; k.alpha[4]=(alpha_bits >> 16)&0xFF; k.alpha[5]=(alpha_bits >> 24)&0xFF; k.alpha[6]=(alpha_bits >> 32)&0xFF; k.alpha[7]=(alpha_bits >> 40)&0xFF; w[block_idx++]=k; } } } } void VisualServerScene::_gi_probe_bake_thread() { while(true) { probe_bake_sem->wait(); if (probe_bake_thread_exit) { break; } Instance* to_bake=NULL; probe_bake_mutex->lock(); if (!probe_bake_list.empty()) { to_bake=probe_bake_list.front()->get(); probe_bake_list.pop_front(); } probe_bake_mutex->unlock(); if (!to_bake) continue; _bake_gi_probe(to_bake); } } uint32_t VisualServerScene::_gi_bake_find_cell(const GIProbeDataCell *cells,int x,int y, int z,int p_cell_subdiv) { uint32_t cell=0; int ofs_x=0; int ofs_y=0; int ofs_z=0; int size = 1<<(p_cell_subdiv-1); int half=size/2; if (x<0 || x>=size) return -1; if (y<0 || y>=size) return -1; if (z<0 || z>=size) return -1; for(int i=0;i= ofs_x + half) { child|=1; ofs_x+=half; } if (y >= ofs_y + half) { child|=2; ofs_y+=half; } if (z >= ofs_z + half) { child|=4; ofs_z+=half; } cell = bc->children[child]; if (cell==0xFFFFFFFF) return 0xFFFFFFFF; half>>=1; } return cell; } static float _get_normal_advance(const Vector3& p_normal ) { Vector3 normal = p_normal; Vector3 unorm = normal.abs(); if ( (unorm.x >= unorm.y) && (unorm.x >= unorm.z) ) { // x code unorm = normal.x > 0.0 ? Vector3( 1.0, 0.0, 0.0 ) : Vector3( -1.0, 0.0, 0.0 ) ; } else if ( (unorm.y > unorm.x) && (unorm.y >= unorm.z) ) { // y code unorm = normal.y > 0.0 ? Vector3( 0.0, 1.0, 0.0 ) : Vector3( 0.0, -1.0, 0.0 ) ; } else if ( (unorm.z > unorm.x) && (unorm.z > unorm.y) ) { // z code unorm = normal.z > 0.0 ? Vector3( 0.0, 0.0, 1.0 ) : Vector3( 0.0, 0.0, -1.0 ) ; } else { // oh-no we messed up code // has to be unorm = Vector3( 1.0, 0.0, 0.0 ); } return 1.0/normal.dot(unorm); } void VisualServerScene::_bake_gi_probe_light(const GIProbeDataHeader *header,const GIProbeDataCell *cells,InstanceGIProbeData::LocalData *local_data,const uint32_t *leaves,int leaf_count, const InstanceGIProbeData::LightCache& light_cache,int sign) { int light_r = int(light_cache.color.r * light_cache.energy * 1024.0)*sign; int light_g = int(light_cache.color.g * light_cache.energy * 1024.0)*sign; int light_b = int(light_cache.color.b * light_cache.energy * 1024.0)*sign; float limits[3]={float(header->width),float(header->height),float(header->depth)}; Plane clip[3]; int clip_planes=0; switch(light_cache.type) { case VS::LIGHT_DIRECTIONAL: { float max_len = Vector3(limits[0],limits[1],limits[2]).length()*1.1; Vector3 light_axis = -light_cache.transform.basis.get_axis(2).normalized(); for(int i=0;i<3;i++) { if (ABS(light_axis[i])get_ticks_usec(); for(int i=0;ipos[0]+0.5,light->pos[1]+0.5,light->pos[2]+0.5); Vector3 norm ( (((cells[idx].normal>>16)&0xFF)/255.0)*2.0-1.0, (((cells[idx].normal>>8)&0xFF)/255.0)*2.0-1.0, (((cells[idx].normal>>0)&0xFF)/255.0)*2.0-1.0 ); float att = norm.dot(-light_axis); if (att<0.001) { //not lighting towards this continue; } Vector3 from = to - max_len * light_axis; for(int j=0;j-distance_adv) { //use this to avoid precision errors result = _gi_bake_find_cell(cells,int(floor(from.x)),int(floor(from.y)),int(floor(from.z)),header->cell_subdiv); if (result!=0xFFFFFFFF) { break; } from+=light_axis*distance_adv; distance-=distance_adv; } if (result==idx) { //cell hit itself! hooray! light->energy[0]+=int32_t(light_r*att*((cell->albedo>>16)&0xFF)/255.0); light->energy[1]+=int32_t(light_g*att*((cell->albedo>>8)&0xFF)/255.0); light->energy[2]+=int32_t(light_b*att*((cell->albedo)&0xFF)/255.0); success_count++; } } print_line("BAKE TIME: "+rtos((OS::get_singleton()->get_ticks_usec()-us)/1000000.0)); print_line("valid cells: "+itos(success_count)); } break; case VS::LIGHT_OMNI: case VS::LIGHT_SPOT: { uint64_t us = OS::get_singleton()->get_ticks_usec(); Vector3 light_pos = light_cache.transform.origin; Vector3 spot_axis = -light_cache.transform.basis.get_axis(2).normalized(); float local_radius = light_cache.radius * light_cache.transform.basis.get_axis(2).length(); for(int i=0;ipos[0]+0.5,light->pos[1]+0.5,light->pos[2]+0.5); Vector3 norm ( (((cells[idx].normal>>16)&0xFF)/255.0)*2.0-1.0, (((cells[idx].normal>>8)&0xFF)/255.0)*2.0-1.0, (((cells[idx].normal>>0)&0xFF)/255.0)*2.0-1.0 ); Vector3 light_axis = (to - light_pos).normalized(); float distance_adv = _get_normal_advance(light_axis); float att = norm.dot(-light_axis); if (att<0.001) { //not lighting towards this continue; } { float d = light_pos.distance_to(to); if (d+distance_adv > local_radius) continue; // too far away float dt = CLAMP((d+distance_adv)/local_radius,0,1); att*= powf(1.0-dt,light_cache.attenuation); } if (light_cache.type==VS::LIGHT_SPOT) { float angle = Math::rad2deg(acos(light_axis.dot(spot_axis))); if (angle > light_cache.spot_angle) continue; float d = CLAMP(angle/light_cache.spot_angle,1,0); att*= powf(1.0-d,light_cache.spot_attenuation); } clip_planes=0; for(int c=0;c<3;c++) { if (ABS(light_axis[c])-distance_adv) { //use this to avoid precision errors result = _gi_bake_find_cell(cells,int(floor(from.x)),int(floor(from.y)),int(floor(from.z)),header->cell_subdiv); if (result!=0xFFFFFFFF) { break; } from+=light_axis*distance_adv; distance-=distance_adv; } if (result==idx) { //cell hit itself! hooray! light->energy[0]+=int32_t(light_r*att*((cell->albedo>>16)&0xFF)/255.0); light->energy[1]+=int32_t(light_g*att*((cell->albedo>>8)&0xFF)/255.0); light->energy[2]+=int32_t(light_b*att*((cell->albedo)&0xFF)/255.0); } } print_line("BAKE TIME: "+rtos((OS::get_singleton()->get_ticks_usec()-us)/1000000.0)); } break; } } void VisualServerScene::_bake_gi_downscale_light(int p_idx, int p_level, const GIProbeDataCell* p_cells, const GIProbeDataHeader *p_header, InstanceGIProbeData::LocalData *p_local_data,float p_propagate) { //average light to upper level float divisor=0; float sum[3]={0.0,0.0,0.0}; for(int i=0;i<8;i++) { uint32_t child = p_cells[p_idx].children[i]; if (child==0xFFFFFFFF) continue; if (p_level+1 < (int)p_header->cell_subdiv-1) { _bake_gi_downscale_light(child,p_level+1,p_cells,p_header,p_local_data,p_propagate); } sum[0]+=p_local_data[child].energy[0]; sum[1]+=p_local_data[child].energy[1]; sum[2]+=p_local_data[child].energy[2]; divisor+=1.0; } divisor=Math::lerp((float)8.0,divisor,p_propagate); sum[0]/=divisor; sum[1]/=divisor; sum[2]/=divisor; //divide by eight for average p_local_data[p_idx].energy[0]=Math::fast_ftoi(sum[0]); p_local_data[p_idx].energy[1]=Math::fast_ftoi(sum[1]); p_local_data[p_idx].energy[2]=Math::fast_ftoi(sum[2]); } void VisualServerScene::_bake_gi_probe(Instance *p_gi_probe) { InstanceGIProbeData * probe_data = static_cast(p_gi_probe->base_data); PoolVector::Read r=probe_data->dynamic.light_data.read(); const GIProbeDataHeader *header = (const GIProbeDataHeader *)r.ptr(); const GIProbeDataCell *cells = (const GIProbeDataCell*)&r[16]; int leaf_count = probe_data->dynamic.level_cell_lists[ header->cell_subdiv -1 ].size(); const uint32_t *leaves = probe_data->dynamic.level_cell_lists[ header->cell_subdiv -1 ].ptr(); PoolVector::Write ldw = probe_data->dynamic.local_data.write(); InstanceGIProbeData::LocalData *local_data = ldw.ptr(); //remove what must be removed for (Map::Element *E=probe_data->dynamic.light_cache.front();E;E=E->next()) { RID rid = E->key(); const InstanceGIProbeData::LightCache& lc = E->get(); if (!probe_data->dynamic.light_cache_changes.has(rid) || !(probe_data->dynamic.light_cache_changes[rid]==lc)) { //erase light data _bake_gi_probe_light(header,cells,local_data,leaves,leaf_count,lc,-1); } } //add what must be added for (Map::Element *E=probe_data->dynamic.light_cache_changes.front();E;E=E->next()) { RID rid = E->key(); const InstanceGIProbeData::LightCache& lc = E->get(); if (!probe_data->dynamic.light_cache.has(rid) || !(probe_data->dynamic.light_cache[rid]==lc)) { //add light data _bake_gi_probe_light(header,cells,local_data,leaves,leaf_count,lc,1); } } SWAP(probe_data->dynamic.light_cache_changes,probe_data->dynamic.light_cache); //downscale to lower res levels _bake_gi_downscale_light(0,0,cells,header,local_data,probe_data->dynamic.propagate); //plot result to 3D texture! if (probe_data->dynamic.compression==RasterizerStorage::GI_PROBE_UNCOMPRESSED) { for(int i=0;i<(int)header->cell_subdiv;i++) { int stage = header->cell_subdiv - i -1; if (stage >= probe_data->dynamic.mipmaps_3d.size()) continue; //no mipmap for this one print_line("generating mipmap stage: "+itos(stage)); int level_cell_count = probe_data->dynamic.level_cell_lists[ i ].size(); const uint32_t *level_cells = probe_data->dynamic.level_cell_lists[ i ].ptr(); PoolVector::Write lw = probe_data->dynamic.mipmaps_3d[stage].write(); uint8_t *mipmapw = lw.ptr(); uint32_t sizes[3]={header->width>>stage,header->height>>stage,header->depth>>stage}; for(int j=0;jdynamic.bake_dynamic_range)>>2; uint32_t g = (uint32_t(local_data[idx].energy[1])/probe_data->dynamic.bake_dynamic_range)>>2; uint32_t b = (uint32_t(local_data[idx].energy[2])/probe_data->dynamic.bake_dynamic_range)>>2; uint32_t a = (cells[idx].level_alpha>>8)&0xFF; uint32_t mm_ofs = sizes[0]*sizes[1]*(local_data[idx].pos[2]) + sizes[0]*(local_data[idx].pos[1]) + (local_data[idx].pos[0]); mm_ofs*=4; //for RGBA (4 bytes) mipmapw[mm_ofs+0]=uint8_t(CLAMP(r,0,255)); mipmapw[mm_ofs+1]=uint8_t(CLAMP(g,0,255)); mipmapw[mm_ofs+2]=uint8_t(CLAMP(b,0,255)); mipmapw[mm_ofs+3]=uint8_t(CLAMP(a,0,255)); } } } else if (probe_data->dynamic.compression==RasterizerStorage::GI_PROBE_S3TC) { int mipmap_count = probe_data->dynamic.mipmaps_3d.size(); for(int mmi=0;mmi::Write mmw = probe_data->dynamic.mipmaps_3d[mmi].write(); int block_count = probe_data->dynamic.mipmaps_s3tc[mmi].size(); PoolVector::Read mmr = probe_data->dynamic.mipmaps_s3tc[mmi].read(); for(int i=0;idynamic.bake_dynamic_range))/1024.0; colors[j].y=(local_data[b.sources[j]].energy[1]/float(probe_data->dynamic.bake_dynamic_range))/1024.0; colors[j].z=(local_data[b.sources[j]].energy[2]/float(probe_data->dynamic.bake_dynamic_range))/1024.0; } //super quick and dirty compression //find 2 most futher apart float distance=0; Vector3 from,to; if (b.source_count==16) { //all cells are used so, find minmax between them int further_apart[2]={0,0}; for(int j=0;jdistance) { distance=d; further_apart[0]=j; further_apart[1]=k; } } } from = colors[further_apart[0]]; to = colors[further_apart[1]]; } else { //if a block is missing, the priority is that this block remains black, //otherwise the geometry will appear deformed //correct shape wins over correct color in this case //average all colors first Vector3 average; for(int j=0;j color_0) { SWAP(color_1,color_0); SWAP(from,to); } if (distance>0) { Vector3 dir = (to-from).normalized(); for(int j=0;j>8)&0xFF; blockptr[10]=color_1&0xFF; blockptr[11]=(color_1>>8)&0xFF; blockptr[12]=encode&0xFF; blockptr[13]=(encode>>8)&0xFF; blockptr[14]=(encode>>16)&0xFF; blockptr[15]=(encode>>24)&0xFF; } } } //send back to main thread to update un little chunks probe_data->dynamic.updating_stage=GI_UPDATE_STAGE_UPLOADING; } bool VisualServerScene::_check_gi_probe(Instance *p_gi_probe) { InstanceGIProbeData * probe_data = static_cast(p_gi_probe->base_data); probe_data->dynamic.light_cache_changes.clear(); bool all_equal=true; for (List::Element *E=p_gi_probe->scenario->directional_lights.front();E;E=E->next()) { InstanceGIProbeData::LightCache lc; lc.type=VSG::storage->light_get_type(E->get()->base); lc.color=VSG::storage->light_get_color(E->get()->base); lc.energy=VSG::storage->light_get_param(E->get()->base,VS::LIGHT_PARAM_ENERGY); lc.radius=VSG::storage->light_get_param(E->get()->base,VS::LIGHT_PARAM_RANGE); lc.attenuation=VSG::storage->light_get_param(E->get()->base,VS::LIGHT_PARAM_ATTENUATION); lc.spot_angle=VSG::storage->light_get_param(E->get()->base,VS::LIGHT_PARAM_SPOT_ANGLE); lc.spot_attenuation=VSG::storage->light_get_param(E->get()->base,VS::LIGHT_PARAM_SPOT_ATTENUATION); lc.transform = probe_data->dynamic.light_to_cell_xform * E->get()->transform; if (!probe_data->dynamic.light_cache.has(E->get()->self) || !(probe_data->dynamic.light_cache[E->get()->self]==lc)) { all_equal=false; } probe_data->dynamic.light_cache_changes[E->get()->self]=lc; } for (Set::Element *E=probe_data->lights.front();E;E=E->next()) { InstanceGIProbeData::LightCache lc; lc.type=VSG::storage->light_get_type(E->get()->base); lc.color=VSG::storage->light_get_color(E->get()->base); lc.energy=VSG::storage->light_get_param(E->get()->base,VS::LIGHT_PARAM_ENERGY); lc.radius=VSG::storage->light_get_param(E->get()->base,VS::LIGHT_PARAM_RANGE); lc.attenuation=VSG::storage->light_get_param(E->get()->base,VS::LIGHT_PARAM_ATTENUATION); lc.spot_angle=VSG::storage->light_get_param(E->get()->base,VS::LIGHT_PARAM_SPOT_ANGLE); lc.spot_attenuation=VSG::storage->light_get_param(E->get()->base,VS::LIGHT_PARAM_SPOT_ATTENUATION); lc.transform = probe_data->dynamic.light_to_cell_xform * E->get()->transform; if (!probe_data->dynamic.light_cache.has(E->get()->self) || !(probe_data->dynamic.light_cache[E->get()->self]==lc)) { all_equal=false; } probe_data->dynamic.light_cache_changes[E->get()->self]=lc; } //lighting changed from after to before, must do some updating return !all_equal || probe_data->dynamic.light_cache_changes.size()!=probe_data->dynamic.light_cache.size(); } void VisualServerScene::render_probes() { /* REFLECTION PROBES */ SelfList *ref_probe = reflection_probe_render_list.first(); bool busy=false; while(ref_probe) { SelfList *next=ref_probe->next(); RID base = ref_probe->self()->owner->base; switch(VSG::storage->reflection_probe_get_update_mode(base)) { case VS::REFLECTION_PROBE_UPDATE_ONCE: { if (busy) //already rendering something break; bool done = _render_reflection_probe_step(ref_probe->self()->owner,ref_probe->self()->render_step); if (done) { reflection_probe_render_list.remove(ref_probe); } else { ref_probe->self()->render_step++; } busy=true; //do not render another one of this kind } break; case VS::REFLECTION_PROBE_UPDATE_ALWAYS: { int step=0; bool done=false; while(!done) { done = _render_reflection_probe_step(ref_probe->self()->owner,step); step++; } reflection_probe_render_list.remove(ref_probe); } break; } ref_probe=next; } /* GI PROBES */ SelfList *gi_probe = gi_probe_update_list.first(); while(gi_probe) { SelfList *next=gi_probe->next(); InstanceGIProbeData *probe = gi_probe->self(); Instance *instance_probe = probe->owner; //check if probe must be setup, but don't do if on the lighting thread bool force_lighting=false; if (probe->invalid || (probe->dynamic.updating_stage==GI_UPDATE_STAGE_CHECK && probe->base_version!=VSG::storage->gi_probe_get_version(instance_probe->base))) { _setup_gi_probe(instance_probe); force_lighting=true; } float propagate = VSG::storage->gi_probe_get_propagation(instance_probe->base); if (probe->dynamic.propagate!=propagate) { probe->dynamic.propagate=propagate; force_lighting=true; } if (probe->invalid==false && probe->dynamic.enabled) { switch(probe->dynamic.updating_stage) { case GI_UPDATE_STAGE_CHECK: { if (_check_gi_probe(instance_probe) || force_lighting) { //send to lighting thread probe->dynamic.updating_stage=GI_UPDATE_STAGE_LIGHTING; #ifndef NO_THREADS probe_bake_mutex->lock(); probe_bake_list.push_back(instance_probe); probe_bake_mutex->unlock(); probe_bake_sem->post(); #else _bake_gi_probe(instance_probe); #endif } } break; case GI_UPDATE_STAGE_LIGHTING: { //do none, wait til done! } break; case GI_UPDATE_STAGE_UPLOADING: { uint64_t us = OS::get_singleton()->get_ticks_usec(); for(int i=0;i<(int)probe->dynamic.mipmaps_3d.size();i++) { int mmsize = probe->dynamic.mipmaps_3d[i].size(); PoolVector::Read r = probe->dynamic.mipmaps_3d[i].read(); VSG::storage->gi_probe_dynamic_data_update(probe->dynamic.probe_data,0,probe->dynamic.grid_size[2]>>i,i,r.ptr()); } probe->dynamic.updating_stage=GI_UPDATE_STAGE_CHECK; //print_line("UPLOAD TIME: "+rtos((OS::get_singleton()->get_ticks_usec()-us)/1000000.0)); } break; } } //_update_gi_probe(gi_probe->self()->owner); gi_probe=next; } } void VisualServerScene::_update_dirty_instance(Instance *p_instance) { if (p_instance->update_aabb) _update_instance_aabb(p_instance); if (p_instance->update_materials) { if (p_instance->base_type==VS::INSTANCE_MESH) { //remove materials no longer used and un-own them int new_mat_count = VSG::storage->mesh_get_surface_count(p_instance->base); for(int i=p_instance->materials.size()-1;i>=new_mat_count;i--) { if (p_instance->materials[i].is_valid()) { VSG::storage->material_remove_instance_owner(p_instance->materials[i],p_instance); } } p_instance->materials.resize(new_mat_count); int new_blend_shape_count = VSG::storage->mesh_get_blend_shape_count(p_instance->base); if (new_blend_shape_count!=p_instance->blend_values.size()) { p_instance->blend_values.resize(new_blend_shape_count); for(int i=0;iblend_values[i]=0; } } } if ((1<base_type)&VS::INSTANCE_GEOMETRY_MASK) { InstanceGeometryData *geom = static_cast(p_instance->base_data); bool can_cast_shadows=true; if (p_instance->cast_shadows==VS::SHADOW_CASTING_SETTING_OFF) { can_cast_shadows=false; } else if (p_instance->material_override.is_valid()) { can_cast_shadows=VSG::storage->material_casts_shadows(p_instance->material_override); } else { if (p_instance->base_type==VS::INSTANCE_MESH) { RID mesh=p_instance->base; if (mesh.is_valid()) { bool cast_shadows=false; for(int i=0;imaterials.size();i++) { RID mat = p_instance->materials[i].is_valid()?p_instance->materials[i]:VSG::storage->mesh_surface_get_material(mesh,i); if (!mat.is_valid()) { cast_shadows=true; break; } if (VSG::storage->material_casts_shadows(mat)) { cast_shadows=true; break; } } if (!cast_shadows) { can_cast_shadows=false; } } } else if (p_instance->base_type==VS::INSTANCE_MULTIMESH) { RID mesh = VSG::storage->multimesh_get_mesh(p_instance->base); if (mesh.is_valid()) { bool cast_shadows=false; int sc = VSG::storage->mesh_get_surface_count(mesh); for(int i=0;imesh_surface_get_material(mesh,i); if (!mat.is_valid()) { cast_shadows=true; break; } if (VSG::storage->material_casts_shadows(mat)) { cast_shadows=true; break; } } if (!cast_shadows) { can_cast_shadows=false; } } } else if (p_instance->base_type==VS::INSTANCE_IMMEDIATE) { RID mat = VSG::storage->immediate_get_material(p_instance->base); if (!mat.is_valid() || VSG::storage->material_casts_shadows(mat)) { can_cast_shadows=true; } else { can_cast_shadows=false; } } } if (can_cast_shadows!=geom->can_cast_shadows) { //ability to cast shadows change, let lights now for (List::Element *E=geom->lighting.front();E;E=E->next()) { InstanceLightData *light = static_cast(E->get()->base_data); light->shadow_dirty=true; } geom->can_cast_shadows=can_cast_shadows; } } } _update_instance(p_instance); p_instance->update_aabb=false; p_instance->update_materials=false; _instance_update_list.remove( &p_instance->update_item ); } void VisualServerScene::update_dirty_instances() { VSG::storage->update_dirty_resources(); while(_instance_update_list.first()) { _update_dirty_instance( _instance_update_list.first()->self() ); } } bool VisualServerScene::free(RID p_rid) { if (camera_owner.owns(p_rid)) { Camera *camera = camera_owner.get( p_rid ); camera_owner.free(p_rid); memdelete(camera); } else if (scenario_owner.owns(p_rid)) { Scenario *scenario = scenario_owner.get( p_rid ); while(scenario->instances.first()) { instance_set_scenario(scenario->instances.first()->self()->self,RID()); } VSG::scene_render->free(scenario->reflection_probe_shadow_atlas); VSG::scene_render->free(scenario->reflection_atlas); scenario_owner.free(p_rid); memdelete(scenario); } else if (instance_owner.owns(p_rid)) { // delete the instance update_dirty_instances(); Instance *instance = instance_owner.get(p_rid); instance_set_room(p_rid,RID()); instance_set_scenario(p_rid,RID()); instance_set_base(p_rid,RID()); instance_geometry_set_material_override(p_rid,RID()); instance_attach_skeleton(p_rid,RID()); update_dirty_instances(); //in case something changed this instance_owner.free(p_rid); memdelete(instance); } else { return false; } return true; } VisualServerScene *VisualServerScene::singleton=NULL; VisualServerScene::VisualServerScene() { #ifndef NO_THREADS probe_bake_sem = Semaphore::create(); probe_bake_mutex = Mutex::create(); probe_bake_thread = Thread::create(_gi_probe_bake_threads,this); probe_bake_thread_exit=false; #endif render_pass=1; singleton=this; } VisualServerScene::~VisualServerScene() { #ifndef NO_THREADS probe_bake_thread_exit=true; Thread::wait_to_finish(probe_bake_thread); memdelete(probe_bake_thread); memdelete(probe_bake_sem); memdelete(probe_bake_mutex); #endif }