/*************************************************************************/ /* rasterizer_scene_rd.h */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2019 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2019 Godot Engine contributors (cf. AUTHORS.md) */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #ifndef RASTERIZER_SCENE_RD_H #define RASTERIZER_SCENE_RD_H #include "core/rid_owner.h" #include "servers/visual/rasterizer.h" #include "servers/visual/rasterizer_rd/rasterizer_storage_rd.h" #include "servers/visual/rasterizer_rd/shaders/giprobe.glsl.gen.h" #include "servers/visual/rasterizer_rd/shaders/giprobe_debug.glsl.gen.h" #include "servers/visual/rendering_device.h" class RasterizerSceneRD : public RasterizerScene { public: enum GIProbeQuality { GIPROBE_QUALITY_ULTRA_LOW, GIPROBE_QUALITY_MEDIUM, GIPROBE_QUALITY_HIGH, }; protected: struct RenderBufferData { virtual void configure(RID p_color_buffer, RID p_depth_buffer, int p_width, int p_height, VS::ViewportMSAA p_msaa) = 0; virtual ~RenderBufferData() {} }; virtual RenderBufferData *_create_render_buffer_data() = 0; virtual void _render_scene(RID p_render_buffer, const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID *p_light_cull_result, int p_light_cull_count, RID *p_reflection_probe_cull_result, int p_reflection_probe_cull_count, RID *p_gi_probe_cull_result, int p_gi_probe_cull_count, RID p_environment, RID p_camera_effects, RID p_shadow_atlas, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass, const Color &p_default_color) = 0; virtual void _render_shadow(RID p_framebuffer, InstanceBase **p_cull_result, int p_cull_count, const CameraMatrix &p_projection, const Transform &p_transform, float p_zfar, float p_bias, float p_normal_bias, bool p_use_dp, bool use_dp_flip) = 0; virtual void _render_material(const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID p_framebuffer, const Rect2i &p_region) = 0; virtual void _debug_giprobe(RID p_gi_probe, RenderingDevice::DrawListID p_draw_list, RID p_framebuffer, const CameraMatrix &p_camera_with_transform, bool p_lighting, bool p_emission, float p_alpha); RenderBufferData *render_buffers_get_data(RID p_render_buffers); private: VS::ViewportDebugDraw debug_draw = VS::VIEWPORT_DEBUG_DRAW_DISABLED; double time_step = 0; int roughness_layers; RasterizerStorageRD *storage; struct ReflectionData { struct Layer { struct Mipmap { RID framebuffers[6]; RID views[6]; Size2i size; }; Vector mipmaps; }; RID radiance_base_cubemap; //cubemap for first layer, first cubemap Vector layers; }; void _clear_reflection_data(ReflectionData &rd); void _update_reflection_data(ReflectionData &rd, int p_size, int p_mipmaps, bool p_use_array, RID p_base_cube, int p_base_layer); void _create_reflection_from_panorama(ReflectionData &rd, RID p_panorama, bool p_quality); void _create_reflection_from_base_mipmap(ReflectionData &rd, bool p_use_arrays, bool p_quality, int p_cube_side); void _update_reflection_mipmaps(ReflectionData &rd, bool p_quality); /* SKY */ struct Sky { RID radiance; int radiance_size = 256; VS::SkyMode mode = VS::SKY_MODE_QUALITY; RID panorama; ReflectionData reflection; bool dirty = false; Sky *dirty_list = nullptr; }; Sky *dirty_sky_list = nullptr; void _sky_invalidate(Sky *p_sky); void _update_dirty_skys(); uint32_t sky_ggx_samples_quality; uint32_t sky_ggx_samples_realtime; bool sky_use_cubemap_array; mutable RID_Owner sky_owner; /* REFLECTION ATLAS */ struct ReflectionAtlas { int count = 0; int size = 0; RID reflection; RID depth_buffer; RID depth_fb; struct Reflection { RID owner; ReflectionData data; RID fbs[6]; }; Vector reflections; }; RID_Owner reflection_atlas_owner; /* REFLECTION PROBE INSTANCE */ struct ReflectionProbeInstance { RID probe; int atlas_index = -1; RID atlas; bool dirty = true; bool rendering = false; int processing_side = 0; uint32_t render_step = 0; uint64_t last_pass = 0; uint32_t render_index = 0; Transform transform; }; mutable RID_Owner reflection_probe_instance_owner; /* GIPROBE INSTANCE */ struct GIProbeLight { uint32_t type; float energy; float radius; float attenuation; float color[3]; float spot_angle_radians; float position[3]; float spot_attenuation; float direction[3]; uint32_t has_shadow; }; struct GIProbePushConstant { int32_t limits[3]; uint32_t stack_size; float emission_scale; float propagation; float dynamic_range; uint32_t light_count; uint32_t cell_offset; uint32_t cell_count; float aniso_strength; uint32_t pad; }; struct GIProbeDynamicPushConstant { int32_t limits[3]; uint32_t light_count; int32_t x_dir[3]; float z_base; int32_t y_dir[3]; float z_sign; int32_t z_dir[3]; float pos_multiplier; uint32_t rect_pos[2]; uint32_t rect_size[2]; uint32_t prev_rect_ofs[2]; uint32_t prev_rect_size[2]; uint32_t flip_x; uint32_t flip_y; float dynamic_range; uint32_t on_mipmap; float propagation; float pad[3]; }; struct GIProbeInstance { RID probe; RID texture; RID anisotropy[2]; //only if anisotropy is used RID anisotropy_r16[2]; //only if anisotropy is used RID write_buffer; struct Mipmap { RID texture; RID anisotropy[2]; //only if anisotropy is used RID uniform_set; RID second_bounce_uniform_set; RID write_uniform_set; uint32_t level; uint32_t cell_offset; uint32_t cell_count; }; Vector mipmaps; struct DynamicMap { RID texture; //color normally, or emission on first pass RID fb_depth; //actual depth buffer for the first pass, float depth for later passes RID depth; //actual depth buffer for the first pass, float depth for later passes RID normal; //normal buffer for the first pass RID albedo; //emission buffer for the first pass RID orm; //orm buffer for the first pass RID fb; //used for rendering, only valid on first map RID uniform_set; uint32_t size; int mipmap; // mipmap to write to, -1 if no mipmap assigned }; Vector dynamic_maps; int slot = -1; uint32_t last_probe_version = 0; uint32_t last_probe_data_version = 0; uint64_t last_pass = 0; uint32_t render_index = 0; bool has_dynamic_object_data = false; Transform transform; }; GIProbeLight *gi_probe_lights; uint32_t gi_probe_max_lights; RID gi_probe_lights_uniform; bool gi_probe_use_anisotropy = false; GIProbeQuality gi_probe_quality = GIPROBE_QUALITY_MEDIUM; bool gi_probe_slots_dirty = true; Vector gi_probe_slots; enum { GI_PROBE_SHADER_VERSION_COMPUTE_LIGHT, GI_PROBE_SHADER_VERSION_COMPUTE_SECOND_BOUNCE, GI_PROBE_SHADER_VERSION_COMPUTE_MIPMAP, GI_PROBE_SHADER_VERSION_WRITE_TEXTURE, GI_PROBE_SHADER_VERSION_DYNAMIC_OBJECT_LIGHTING, GI_PROBE_SHADER_VERSION_DYNAMIC_SHRINK_WRITE, GI_PROBE_SHADER_VERSION_DYNAMIC_SHRINK_PLOT, GI_PROBE_SHADER_VERSION_DYNAMIC_SHRINK_WRITE_PLOT, GI_PROBE_SHADER_VERSION_MAX }; GiprobeShaderRD giprobe_shader; RID giprobe_lighting_shader_version; RID giprobe_lighting_shader_version_shaders[GI_PROBE_SHADER_VERSION_MAX]; RID giprobe_lighting_shader_version_pipelines[GI_PROBE_SHADER_VERSION_MAX]; mutable RID_Owner gi_probe_instance_owner; enum { GI_PROBE_DEBUG_COLOR, GI_PROBE_DEBUG_LIGHT, GI_PROBE_DEBUG_EMISSION, GI_PROBE_DEBUG_LIGHT_FULL, GI_PROBE_DEBUG_MAX }; struct GIProbeDebugPushConstant { float projection[16]; uint32_t cell_offset; float dynamic_range; float alpha; uint32_t level; int32_t bounds[3]; uint32_t pad; }; GiprobeDebugShaderRD giprobe_debug_shader; RID giprobe_debug_shader_version; RID giprobe_debug_shader_version_shaders[GI_PROBE_DEBUG_MAX]; RenderPipelineVertexFormatCacheRD giprobe_debug_shader_version_pipelines[GI_PROBE_DEBUG_MAX]; RID giprobe_debug_uniform_set; /* SHADOW ATLAS */ struct ShadowAtlas { enum { QUADRANT_SHIFT = 27, SHADOW_INDEX_MASK = (1 << QUADRANT_SHIFT) - 1, SHADOW_INVALID = 0xFFFFFFFF }; struct Quadrant { uint32_t subdivision; struct Shadow { RID owner; uint64_t version; uint64_t alloc_tick; Shadow() { version = 0; alloc_tick = 0; } }; Vector shadows; Quadrant() { subdivision = 0; //not in use } } quadrants[4]; int size_order[4] = { 0, 1, 2, 3 }; uint32_t smallest_subdiv = 0; int size = 0; RID depth; RID fb; //for copying Map shadow_owners; }; RID_Owner shadow_atlas_owner; bool _shadow_atlas_find_shadow(ShadowAtlas *shadow_atlas, int *p_in_quadrants, int p_quadrant_count, int p_current_subdiv, uint64_t p_tick, int &r_quadrant, int &r_shadow); /* DIRECTIONAL SHADOW */ struct DirectionalShadow { RID depth; RID fb; //for copying int light_count = 0; int size = 0; int current_light = 0; } directional_shadow; /* SHADOW CUBEMAPS */ struct ShadowCubemap { RID cubemap; RID side_fb[6]; }; Map shadow_cubemaps; ShadowCubemap *_get_shadow_cubemap(int p_size); struct ShadowMap { RID depth; RID fb; }; Map shadow_maps; ShadowMap *_get_shadow_map(const Size2i &p_size); void _create_shadow_cubemaps(); /* LIGHT INSTANCE */ struct LightInstance { struct ShadowTransform { CameraMatrix camera; Transform transform; float farplane; float split; float bias_scale; Rect2 atlas_rect; }; VS::LightType light_type; ShadowTransform shadow_transform[4]; RID self; RID light; Transform transform; Vector3 light_vector; Vector3 spot_vector; float linear_att; uint64_t shadow_pass = 0; uint64_t last_scene_pass = 0; uint64_t last_scene_shadow_pass = 0; uint64_t last_pass = 0; uint32_t light_index = 0; uint32_t light_directional_index = 0; uint32_t current_shadow_atlas_key; Vector2 dp; Rect2 directional_rect; Set shadow_atlases; //shadow atlases where this light is registered LightInstance() {} }; mutable RID_Owner light_instance_owner; /* ENVIRONMENT */ struct Environent { // BG VS::EnvironmentBG background = VS::ENV_BG_CLEAR_COLOR; RID sky; float sky_custom_fov = 0.0; Basis sky_orientation; Color bg_color; float bg_energy = 1.0; int canvas_max_layer = 0; VS::EnvironmentAmbientSource ambient_source = VS::ENV_AMBIENT_SOURCE_BG; Color ambient_light; float ambient_light_energy = 1.0; float ambient_sky_contribution = 1.0; VS::EnvironmentReflectionSource reflection_source = VS::ENV_REFLECTION_SOURCE_BG; /// Tonemap VS::EnvironmentToneMapper tone_mapper; float exposure = 1.0; float white = 1.0; bool auto_exposure = false; float min_luminance = 0.2; float max_luminance = 8.0; float auto_exp_speed = 0.2; float auto_exp_scale = 0.5; uint64_t auto_exposure_version = 0; /// Glow bool glow_enabled = false; int glow_levels = (1 << 2) | (1 << 4); float glow_intensity = 0.8; float glow_strength = 1.0; float glow_bloom = 0.0; float glow_mix = 0.01; VS::EnvironmentGlowBlendMode glow_blend_mode = VS::GLOW_BLEND_MODE_SOFTLIGHT; float glow_hdr_bleed_threshold = 1.0; float glow_hdr_luminance_cap = 12.0; float glow_hdr_bleed_scale = 2.0; bool glow_bicubic_upscale = false; }; static uint64_t auto_exposure_counter; mutable RID_Owner environment_owner; /* CAMERA EFFECTS */ struct CameraEffects { bool dof_blur_far_enabled = false; float dof_blur_far_distance = 10; float dof_blur_far_transition = 5; bool dof_blur_near_enabled = false; float dof_blur_near_distance = 2; float dof_blur_near_transition = 1; float dof_blur_amount = 0.1; VS::DOFBlurQuality dof_blur_quality = VS::DOF_BLUR_QUALITY_MEDIUM; bool override_exposure_enabled = false; float override_exposure = 1; }; mutable RID_Owner camera_effects_owner; /* RENDER BUFFERS */ struct RenderBuffers { RenderBufferData *data = nullptr; int width = 0, height = 0; VS::ViewportMSAA msaa = VS::VIEWPORT_MSAA_DISABLED; RID render_target; uint64_t auto_exposure_version = 1; RID texture; //main texture for rendering to, must be filled after done rendering RID depth_texture; //main depth texture //built-in textures used for ping pong image processing and blurring struct Blur { RID texture; struct Mipmap { RID texture; RID framebuffer; int width; int height; }; Vector mipmaps; }; Blur blur[2]; //the second one starts from the first mipmap struct Luminance { Vector reduce; RID current; } luminance; }; mutable RID_Owner render_buffers_owner; void _free_render_buffer_data(RenderBuffers *rb); void _allocate_blur_textures(RenderBuffers *rb); void _allocate_luminance_textures(RenderBuffers *rb); void _render_buffers_debug_draw(RID p_render_buffers, RID p_shadow_atlas); void _render_buffers_post_process_and_tonemap(RID p_render_buffers, RID p_environment, RID p_camera_effects, const CameraMatrix &p_projection); uint64_t scene_pass = 0; uint64_t shadow_atlas_realloc_tolerance_msec = 500; public: /* SHADOW ATLAS API */ RID shadow_atlas_create(); void shadow_atlas_set_size(RID p_atlas, int p_size); void shadow_atlas_set_quadrant_subdivision(RID p_atlas, int p_quadrant, int p_subdivision); bool shadow_atlas_update_light(RID p_atlas, RID p_light_intance, float p_coverage, uint64_t p_light_version); _FORCE_INLINE_ bool shadow_atlas_owns_light_instance(RID p_atlas, RID p_light_intance) { ShadowAtlas *atlas = shadow_atlas_owner.getornull(p_atlas); ERR_FAIL_COND_V(!atlas, false); return atlas->shadow_owners.has(p_light_intance); } _FORCE_INLINE_ RID shadow_atlas_get_texture(RID p_atlas) { ShadowAtlas *atlas = shadow_atlas_owner.getornull(p_atlas); ERR_FAIL_COND_V(!atlas, RID()); return atlas->depth; } _FORCE_INLINE_ Size2i shadow_atlas_get_size(RID p_atlas) { ShadowAtlas *atlas = shadow_atlas_owner.getornull(p_atlas); ERR_FAIL_COND_V(!atlas, Size2i()); return Size2(atlas->size, atlas->size); } void directional_shadow_atlas_set_size(int p_size); int get_directional_light_shadow_size(RID p_light_intance); void set_directional_shadow_count(int p_count); _FORCE_INLINE_ RID directional_shadow_get_texture() { return directional_shadow.depth; } _FORCE_INLINE_ Size2i directional_shadow_get_size() { return Size2i(directional_shadow.size, directional_shadow.size); } /* SKY API */ RID sky_create(); void sky_set_radiance_size(RID p_sky, int p_radiance_size); void sky_set_mode(RID p_sky, VS::SkyMode p_mode); void sky_set_texture(RID p_sky, RID p_panorama); RID sky_get_panorama_texture_rd(RID p_sky) const; RID sky_get_radiance_texture_rd(RID p_sky) const; /* ENVIRONMENT API */ RID environment_create(); void environment_set_background(RID p_env, VS::EnvironmentBG p_bg); void environment_set_sky(RID p_env, RID p_sky); void environment_set_sky_custom_fov(RID p_env, float p_scale); void environment_set_sky_orientation(RID p_env, const Basis &p_orientation); void environment_set_bg_color(RID p_env, const Color &p_color); void environment_set_bg_energy(RID p_env, float p_energy); void environment_set_canvas_max_layer(RID p_env, int p_max_layer); void environment_set_ambient_light(RID p_env, const Color &p_color, VS::EnvironmentAmbientSource p_ambient = VS::ENV_AMBIENT_SOURCE_BG, float p_energy = 1.0, float p_sky_contribution = 0.0, VS::EnvironmentReflectionSource p_reflection_source = VS::ENV_REFLECTION_SOURCE_BG); VS::EnvironmentBG environment_get_background(RID p_env) const; RID environment_get_sky(RID p_env) const; float environment_get_sky_custom_fov(RID p_env) const; Basis environment_get_sky_orientation(RID p_env) const; Color environment_get_bg_color(RID p_env) const; float environment_get_bg_energy(RID p_env) const; int environment_get_canvas_max_layer(RID p_env) const; Color environment_get_ambient_light_color(RID p_env) const; VS::EnvironmentAmbientSource environment_get_ambient_light_ambient_source(RID p_env) const; float environment_get_ambient_light_ambient_energy(RID p_env) const; float environment_get_ambient_sky_contribution(RID p_env) const; VS::EnvironmentReflectionSource environment_get_reflection_source(RID p_env) const; bool is_environment(RID p_env) const; void environment_set_glow(RID p_env, bool p_enable, int p_level_flags, float p_intensity, float p_strength, float p_mix, float p_bloom_threshold, VS::EnvironmentGlowBlendMode p_blend_mode, float p_hdr_bleed_threshold, float p_hdr_bleed_scale, float p_hdr_luminance_cap, bool p_bicubic_upscale); void environment_set_fog(RID p_env, bool p_enable, float p_begin, float p_end, RID p_gradient_texture) {} void environment_set_ssr(RID p_env, bool p_enable, int p_max_steps, float p_fade_int, float p_fade_out, float p_depth_tolerance, bool p_roughness) {} void environment_set_ssao(RID p_env, bool p_enable, float p_radius, float p_intensity, float p_radius2, float p_intensity2, float p_bias, float p_light_affect, float p_ao_channel_affect, const Color &p_color, VS::EnvironmentSSAOQuality p_quality, VS::EnvironmentSSAOBlur p_blur, float p_bilateral_sharpness) {} void environment_set_tonemap(RID p_env, VS::EnvironmentToneMapper p_tone_mapper, float p_exposure, float p_white, bool p_auto_exposure, float p_min_luminance, float p_max_luminance, float p_auto_exp_speed, float p_auto_exp_scale); void environment_set_adjustment(RID p_env, bool p_enable, float p_brightness, float p_contrast, float p_saturation, RID p_ramp) {} void environment_set_fog(RID p_env, bool p_enable, const Color &p_color, const Color &p_sun_color, float p_sun_amount) {} void environment_set_fog_depth(RID p_env, bool p_enable, float p_depth_begin, float p_depth_end, float p_depth_curve, bool p_transmit, float p_transmit_curve) {} void environment_set_fog_height(RID p_env, bool p_enable, float p_min_height, float p_max_height, float p_height_curve) {} virtual RID camera_effects_create(); virtual void camera_effects_set_dof_blur(RID p_camera_effects, bool p_far_enable, float p_far_distance, float p_far_transition, bool p_near_enable, float p_near_distance, float p_near_transition, float p_amount, VS::DOFBlurQuality p_quality); virtual void camera_effects_set_custom_exposure(RID p_camera_effects, bool p_enable, float p_exposure); RID light_instance_create(RID p_light); void light_instance_set_transform(RID p_light_instance, const Transform &p_transform); void light_instance_set_shadow_transform(RID p_light_instance, const CameraMatrix &p_projection, const Transform &p_transform, float p_far, float p_split, int p_pass, float p_bias_scale = 1.0); void light_instance_mark_visible(RID p_light_instance); _FORCE_INLINE_ RID light_instance_get_base_light(RID p_light_instance) { LightInstance *li = light_instance_owner.getornull(p_light_instance); return li->light; } _FORCE_INLINE_ Transform light_instance_get_base_transform(RID p_light_instance) { LightInstance *li = light_instance_owner.getornull(p_light_instance); return li->transform; } _FORCE_INLINE_ Rect2 light_instance_get_shadow_atlas_rect(RID p_light_instance, RID p_shadow_atlas) { ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas); LightInstance *li = light_instance_owner.getornull(p_light_instance); uint32_t key = shadow_atlas->shadow_owners[li->self]; uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3; uint32_t shadow = key & ShadowAtlas::SHADOW_INDEX_MASK; ERR_FAIL_COND_V(shadow >= (uint32_t)shadow_atlas->quadrants[quadrant].shadows.size(), Rect2()); uint32_t atlas_size = shadow_atlas->size; uint32_t quadrant_size = atlas_size >> 1; uint32_t x = (quadrant & 1) * quadrant_size; uint32_t y = (quadrant >> 1) * quadrant_size; uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision); x += (shadow % shadow_atlas->quadrants[quadrant].subdivision) * shadow_size; y += (shadow / shadow_atlas->quadrants[quadrant].subdivision) * shadow_size; uint32_t width = shadow_size; uint32_t height = shadow_size; return Rect2(x / float(shadow_atlas->size), y / float(shadow_atlas->size), width / float(shadow_atlas->size), height / float(shadow_atlas->size)); } _FORCE_INLINE_ CameraMatrix light_instance_get_shadow_camera(RID p_light_instance, int p_index) { LightInstance *li = light_instance_owner.getornull(p_light_instance); return li->shadow_transform[p_index].camera; } _FORCE_INLINE_ Transform light_instance_get_shadow_transform(RID p_light_instance, int p_index) { LightInstance *li = light_instance_owner.getornull(p_light_instance); return li->shadow_transform[p_index].transform; } _FORCE_INLINE_ Rect2 light_instance_get_directional_shadow_atlas_rect(RID p_light_instance, int p_index) { LightInstance *li = light_instance_owner.getornull(p_light_instance); return li->shadow_transform[p_index].atlas_rect; } _FORCE_INLINE_ float light_instance_get_directional_shadow_split(RID p_light_instance, int p_index) { LightInstance *li = light_instance_owner.getornull(p_light_instance); return li->shadow_transform[p_index].split; } _FORCE_INLINE_ void light_instance_set_render_pass(RID p_light_instance, uint64_t p_pass) { LightInstance *li = light_instance_owner.getornull(p_light_instance); li->last_pass = p_pass; } _FORCE_INLINE_ uint64_t light_instance_get_render_pass(RID p_light_instance) { LightInstance *li = light_instance_owner.getornull(p_light_instance); return li->last_pass; } _FORCE_INLINE_ void light_instance_set_index(RID p_light_instance, uint32_t p_index) { LightInstance *li = light_instance_owner.getornull(p_light_instance); li->light_index = p_index; } _FORCE_INLINE_ uint32_t light_instance_get_index(RID p_light_instance) { LightInstance *li = light_instance_owner.getornull(p_light_instance); return li->light_index; } _FORCE_INLINE_ VS::LightType light_instance_get_type(RID p_light_instance) { LightInstance *li = light_instance_owner.getornull(p_light_instance); return li->light_type; } virtual RID reflection_atlas_create(); virtual void reflection_atlas_set_size(RID p_ref_atlas, int p_reflection_size, int p_reflection_count); _FORCE_INLINE_ RID reflection_atlas_get_texture(RID p_ref_atlas) { ReflectionAtlas *atlas = reflection_atlas_owner.getornull(p_ref_atlas); ERR_FAIL_COND_V(!atlas, RID()); return atlas->reflection; } virtual RID reflection_probe_instance_create(RID p_probe); virtual void reflection_probe_instance_set_transform(RID p_instance, const Transform &p_transform); virtual void reflection_probe_release_atlas_index(RID p_instance); virtual bool reflection_probe_instance_needs_redraw(RID p_instance); virtual bool reflection_probe_instance_has_reflection(RID p_instance); virtual bool reflection_probe_instance_begin_render(RID p_instance, RID p_reflection_atlas); virtual bool reflection_probe_instance_postprocess_step(RID p_instance); uint32_t reflection_probe_instance_get_resolution(RID p_instance); RID reflection_probe_instance_get_framebuffer(RID p_instance, int p_index); RID reflection_probe_instance_get_depth_framebuffer(RID p_instance, int p_index); _FORCE_INLINE_ RID reflection_probe_instance_get_probe(RID p_instance) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND_V(!rpi, RID()); return rpi->probe; } _FORCE_INLINE_ void reflection_probe_instance_set_render_index(RID p_instance, uint32_t p_render_index) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND(!rpi); rpi->render_index = p_render_index; } _FORCE_INLINE_ uint32_t reflection_probe_instance_get_render_index(RID p_instance) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND_V(!rpi, 0); return rpi->render_index; } _FORCE_INLINE_ void reflection_probe_instance_set_render_pass(RID p_instance, uint32_t p_render_pass) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND(!rpi); rpi->last_pass = p_render_pass; } _FORCE_INLINE_ uint32_t reflection_probe_instance_get_render_pass(RID p_instance) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND_V(!rpi, 0); return rpi->last_pass; } _FORCE_INLINE_ Transform reflection_probe_instance_get_transform(RID p_instance) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND_V(!rpi, Transform()); return rpi->transform; } _FORCE_INLINE_ int reflection_probe_instance_get_atlas_index(RID p_instance) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND_V(!rpi, -1); return rpi->atlas_index; } RID gi_probe_instance_create(RID p_base); void gi_probe_instance_set_transform_to_data(RID p_probe, const Transform &p_xform); bool gi_probe_needs_update(RID p_probe) const; void gi_probe_update(RID p_probe, bool p_update_light_instances, const Vector &p_light_instances, int p_dynamic_object_count, InstanceBase **p_dynamic_objects); _FORCE_INLINE_ uint32_t gi_probe_instance_get_slot(RID p_probe) { GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_probe); return gi_probe->slot; } _FORCE_INLINE_ RID gi_probe_instance_get_base_probe(RID p_probe) { GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_probe); return gi_probe->probe; } _FORCE_INLINE_ Transform gi_probe_instance_get_transform_to_cell(RID p_probe) { GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_probe); return storage->gi_probe_get_to_cell_xform(gi_probe->probe) * gi_probe->transform.affine_inverse(); } _FORCE_INLINE_ RID gi_probe_instance_get_texture(RID p_probe) { GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_probe); return gi_probe->texture; } _FORCE_INLINE_ RID gi_probe_instance_get_aniso_texture(RID p_probe, int p_index) { GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_probe); return gi_probe->anisotropy[p_index]; } _FORCE_INLINE_ void gi_probe_instance_set_render_index(RID p_instance, uint32_t p_render_index) { GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND(!gi_probe); gi_probe->render_index = p_render_index; } _FORCE_INLINE_ uint32_t gi_probe_instance_get_render_index(RID p_instance) { GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND_V(!gi_probe, 0); return gi_probe->render_index; } _FORCE_INLINE_ void gi_probe_instance_set_render_pass(RID p_instance, uint32_t p_render_pass) { GIProbeInstance *g_probe = gi_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND(!g_probe); g_probe->last_pass = p_render_pass; } _FORCE_INLINE_ uint32_t gi_probe_instance_get_render_pass(RID p_instance) { GIProbeInstance *g_probe = gi_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND_V(!g_probe, 0); return g_probe->last_pass; } const Vector &gi_probe_get_slots() const; bool gi_probe_slots_are_dirty() const; void gi_probe_slots_make_not_dirty(); _FORCE_INLINE_ bool gi_probe_is_anisotropic() const { return gi_probe_use_anisotropy; } GIProbeQuality gi_probe_get_quality() const; RID render_buffers_create(); void render_buffers_configure(RID p_render_buffers, RID p_render_target, int p_width, int p_height, VS::ViewportMSAA p_msaa); RID render_buffers_get_back_buffer_texture(RID p_render_buffers); void render_scene(RID p_render_buffers, const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID *p_light_cull_result, int p_light_cull_count, RID *p_reflection_probe_cull_result, int p_reflection_probe_cull_count, RID *p_gi_probe_cull_result, int p_gi_probe_cull_count, RID p_environment, RID p_shadow_atlas, RID p_camera_effects, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass); void render_shadow(RID p_light, RID p_shadow_atlas, int p_pass, InstanceBase **p_cull_result, int p_cull_count); void render_material(const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID p_framebuffer, const Rect2i &p_region); virtual void set_scene_pass(uint64_t p_pass) { scene_pass = p_pass; } _FORCE_INLINE_ uint64_t get_scene_pass() { return scene_pass; } int get_roughness_layers() const; bool is_using_radiance_cubemap_array() const; virtual bool free(RID p_rid); virtual void update(); virtual void set_debug_draw_mode(VS::ViewportDebugDraw p_debug_draw); _FORCE_INLINE_ VS::ViewportDebugDraw get_debug_draw_mode() const { return debug_draw; } virtual void set_time(double p_time, double p_step); RasterizerSceneRD(RasterizerStorageRD *p_storage); ~RasterizerSceneRD(); }; #endif // RASTERIZER_SCENE_RD_H