#include "rasterizer_scene_rd.h" #include "core/os/os.h" #include "core/project_settings.h" void RasterizerSceneRD::_clear_reflection_data(ReflectionData &rd) { if (rd.radiance.is_valid()) { //if size changes, everything must be cleared RD::get_singleton()->free(rd.radiance); //everything else gets dependency, erase, so just clean it up rd.radiance = RID(); rd.layers.clear(); rd.radiance_base_cubemap = RID(); } } void RasterizerSceneRD::_update_reflection_data(ReflectionData &rd, int p_size, bool p_quality) { //recreate radiance and all data int mipmaps = Image::get_image_required_mipmaps(p_size, p_size, Image::FORMAT_RGBAH) + 1; if (!p_quality) { //use less mipmaps mipmaps = MIN(8, mipmaps); } uint32_t w = p_size, h = p_size; if (sky_use_cubemap_array) { //array (higher quality, 6 times more memory) RD::TextureFormat tf; tf.array_layers = roughness_layers * 6; tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT; tf.type = RD::TEXTURE_TYPE_CUBE_ARRAY; tf.mipmaps = mipmaps; tf.width = w; tf.height = h; tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT; rd.radiance = RD::get_singleton()->texture_create(tf, RD::TextureView()); for (int i = 0; i < roughness_layers; i++) { ReflectionData::Layer layer; uint32_t mmw = w; uint32_t mmh = h; layer.mipmaps.resize(mipmaps); for (int j = 0; j < mipmaps; j++) { ReflectionData::Layer::Mipmap &mm = layer.mipmaps.write[j]; mm.size.width = mmw; mm.size.height = mmh; for (int k = 0; k < 6; k++) { mm.views[k] = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rd.radiance, i * 6 + k, j); Vector fbtex; fbtex.push_back(mm.views[k]); mm.framebuffers[k] = RD::get_singleton()->framebuffer_create(fbtex); } mmw = MAX(1, mmw >> 1); mmh = MAX(1, mmh >> 1); } rd.layers.push_back(layer); } } else { //regular cubemap, lower quality (aliasing, less memory) RD::TextureFormat tf; tf.array_layers = 6; tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT; tf.type = RD::TEXTURE_TYPE_CUBE; tf.mipmaps = roughness_layers; tf.width = w; tf.height = h; tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT; rd.radiance = RD::get_singleton()->texture_create(tf, RD::TextureView()); ReflectionData::Layer layer; uint32_t mmw = w; uint32_t mmh = h; layer.mipmaps.resize(roughness_layers); for (int j = 0; j < roughness_layers; j++) { ReflectionData::Layer::Mipmap &mm = layer.mipmaps.write[j]; mm.size.width = mmw; mm.size.height = mmh; for (int k = 0; k < 6; k++) { mm.views[k] = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rd.radiance, k, j); Vector fbtex; fbtex.push_back(mm.views[k]); mm.framebuffers[k] = RD::get_singleton()->framebuffer_create(fbtex); } mmw = MAX(1, mmw >> 1); mmh = MAX(1, mmh >> 1); } rd.layers.push_back(layer); } rd.radiance_base_cubemap = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rd.radiance, 0, 0, RD::TEXTURE_SLICE_CUBEMAP); } void RasterizerSceneRD::_create_reflection_from_panorama(ReflectionData &rd, RID p_panorama, bool p_quality) { if (sky_use_cubemap_array) { if (p_quality) { //render directly to the layers for (int i = 0; i < rd.layers.size(); i++) { for (int j = 0; j < 6; j++) { storage->get_effects()->cubemap_roughness(p_panorama, true, rd.layers[i].mipmaps[0].framebuffers[j], j, sky_ggx_samples_quality, float(i) / (rd.layers.size() - 1.0)); } } } else { //render to first mipmap for (int j = 0; j < 6; j++) { storage->get_effects()->cubemap_roughness(p_panorama, true, rd.layers[0].mipmaps[0].framebuffers[j], j, sky_ggx_samples_realtime, 0.0); } //do the rest in other mipmaps and use cubemap itself as source for (int i = 1; i < roughness_layers; i++) { //render using a smaller mipmap, then copy to main layer for (int j = 0; j < 6; j++) { //storage->get_effects()->cubemap_roughness(rd.radiance_base_cubemap, false, rd.layers[0].mipmaps[i].framebuffers[0], j, sky_ggx_samples_realtime, float(i) / (rd.layers.size() - 1.0)); storage->get_effects()->cubemap_roughness(p_panorama, true, rd.layers[0].mipmaps[i].framebuffers[0], j, sky_ggx_samples_realtime, float(i) / (rd.layers.size() - 1.0)); storage->get_effects()->region_copy(rd.layers[0].mipmaps[i].views[0], rd.layers[i].mipmaps[0].framebuffers[j], Rect2()); } } } } else { if (p_quality) { //render directly to the layers for (int i = 0; i < rd.layers[0].mipmaps.size(); i++) { for (int j = 0; j < 6; j++) { storage->get_effects()->cubemap_roughness(p_panorama, true, rd.layers[0].mipmaps[i].framebuffers[j], j, sky_ggx_samples_quality, float(i) / (rd.layers[0].mipmaps.size() - 1.0)); } } } else { for (int j = 0; j < 6; j++) { storage->get_effects()->cubemap_roughness(p_panorama, true, rd.layers[0].mipmaps[0].framebuffers[j], j, sky_ggx_samples_realtime, 0); } for (int i = 1; i < rd.layers[0].mipmaps.size(); i++) { for (int j = 0; j < 6; j++) { storage->get_effects()->cubemap_roughness(rd.radiance_base_cubemap, false, rd.layers[0].mipmaps[i].framebuffers[j], j, sky_ggx_samples_realtime, float(i) / (rd.layers[0].mipmaps.size() - 1.0)); } } } } } void RasterizerSceneRD::_create_reflection_from_base_mipmap(ReflectionData &rd, bool p_quality, int p_cube_side) { if (sky_use_cubemap_array) { if (p_quality) { //render directly to the layers for (int i = 1; i < rd.layers.size(); i++) { storage->get_effects()->cubemap_roughness(rd.radiance_base_cubemap, false, rd.layers[i].mipmaps[0].framebuffers[p_cube_side], p_cube_side, sky_ggx_samples_quality, float(i) / (rd.layers.size() - 1.0)); } } else { //do the rest in other mipmaps and use cubemap itself as source for (int i = 1; i < roughness_layers; i++) { //render using a smaller mipmap, then copy to main layer storage->get_effects()->cubemap_roughness(rd.radiance_base_cubemap, false, rd.layers[0].mipmaps[i].framebuffers[0], p_cube_side, sky_ggx_samples_realtime, float(i) / (rd.layers.size() - 1.0)); storage->get_effects()->region_copy(rd.layers[0].mipmaps[i].views[0], rd.layers[i].mipmaps[0].framebuffers[p_cube_side], Rect2()); } } } else { if (p_quality) { //render directly to the layers for (int i = 1; i < rd.layers[0].mipmaps.size(); i++) { storage->get_effects()->cubemap_roughness(rd.radiance_base_cubemap, false, rd.layers[0].mipmaps[i].framebuffers[p_cube_side], p_cube_side, sky_ggx_samples_quality, float(i) / (rd.layers[0].mipmaps.size() - 1.0)); } } else { for (int i = 1; i < rd.layers[0].mipmaps.size(); i++) { storage->get_effects()->cubemap_roughness(rd.radiance_base_cubemap, false, rd.layers[0].mipmaps[i].framebuffers[p_cube_side], p_cube_side, sky_ggx_samples_realtime, float(i) / (rd.layers[0].mipmaps.size() - 1.0)); } } } } void RasterizerSceneRD::_update_reflection_mipmaps(ReflectionData &rd, bool p_quality) { if (sky_use_cubemap_array) { for (int i = 0; i < rd.layers.size(); i++) { for (int j = 0; j < rd.layers[i].mipmaps.size() - 1; j++) { for (int k = 0; k < 6; k++) { RID view = rd.layers[i].mipmaps[j].views[k]; RID fb = rd.layers[i].mipmaps[j + 1].framebuffers[k]; Vector2 size = rd.layers[i].mipmaps[j].size; size = Vector2(1.0 / size.x, 1.0 / size.y); storage->get_effects()->make_mipmap(view, fb, size); } } } } } RID RasterizerSceneRD::sky_create() { return sky_owner.make_rid(Sky()); } void RasterizerSceneRD::_sky_invalidate(Sky *p_sky) { if (!p_sky->dirty) { p_sky->dirty = true; p_sky->dirty_list = dirty_sky_list; dirty_sky_list = p_sky; } } void RasterizerSceneRD::sky_set_radiance_size(RID p_sky, int p_radiance_size) { Sky *sky = sky_owner.getornull(p_sky); ERR_FAIL_COND(!sky); ERR_FAIL_COND(p_radiance_size < 32 || p_radiance_size > 2048); if (sky->radiance_size == p_radiance_size) { return; } sky->radiance_size = p_radiance_size; _sky_invalidate(sky); _clear_reflection_data(sky->reflection); } void RasterizerSceneRD::sky_set_mode(RID p_sky, VS::SkyMode p_mode) { Sky *sky = sky_owner.getornull(p_sky); ERR_FAIL_COND(!sky); if (sky->mode == p_mode) { return; } sky->mode = p_mode; _sky_invalidate(sky); } void RasterizerSceneRD::sky_set_texture(RID p_sky, RID p_panorama) { Sky *sky = sky_owner.getornull(p_sky); ERR_FAIL_COND(!sky); if (sky->panorama.is_valid()) { sky->panorama = RID(); _clear_reflection_data(sky->reflection); } sky->panorama = p_panorama; if (!sky->panorama.is_valid()) return; //cleared _sky_invalidate(sky); } void RasterizerSceneRD::_update_dirty_skys() { Sky *sky = dirty_sky_list; while (sky) { //update sky configuration if texture is missing if (sky->reflection.radiance.is_null()) { _update_reflection_data(sky->reflection, sky->radiance_size, sky->mode == VS::SKY_MODE_QUALITY); } RID panorama_texture = storage->texture_get_rd_texture(sky->panorama); if (panorama_texture.is_valid()) { //is there a panorama texture? _create_reflection_from_panorama(sky->reflection, panorama_texture, sky->mode == VS::SKY_MODE_QUALITY); _update_reflection_mipmaps(sky->reflection, sky->mode == VS::SKY_MODE_QUALITY); } Sky *next = sky->dirty_list; sky->dirty_list = nullptr; sky->dirty = false; sky = next; } dirty_sky_list = nullptr; } RID RasterizerSceneRD::sky_get_panorama_texture_rd(RID p_sky) const { Sky *sky = sky_owner.getornull(p_sky); ERR_FAIL_COND_V(!sky, RID()); if (sky->panorama.is_null()) { return RID(); } return storage->texture_get_rd_texture(sky->panorama, true); } RID RasterizerSceneRD::sky_get_radiance_texture_rd(RID p_sky) const { Sky *sky = sky_owner.getornull(p_sky); ERR_FAIL_COND_V(!sky, RID()); return sky->reflection.radiance; } RID RasterizerSceneRD::environment_create() { return environment_owner.make_rid(Environent()); } void RasterizerSceneRD::environment_set_background(RID p_env, VS::EnvironmentBG p_bg) { Environent *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->background = p_bg; } void RasterizerSceneRD::environment_set_sky(RID p_env, RID p_sky) { Environent *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->sky = p_sky; } void RasterizerSceneRD::environment_set_sky_custom_fov(RID p_env, float p_scale) { Environent *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->sky_custom_fov = p_scale; } void RasterizerSceneRD::environment_set_sky_orientation(RID p_env, const Basis &p_orientation) { Environent *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->sky_orientation = p_orientation; } void RasterizerSceneRD::environment_set_bg_color(RID p_env, const Color &p_color) { Environent *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->bg_color = p_color; } void RasterizerSceneRD::environment_set_bg_energy(RID p_env, float p_energy) { Environent *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->bg_energy = p_energy; } void RasterizerSceneRD::environment_set_canvas_max_layer(RID p_env, int p_max_layer) { Environent *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->canvas_max_layer = p_max_layer; } void RasterizerSceneRD::environment_set_ambient_light(RID p_env, const Color &p_color, VS::EnvironmentAmbientSource p_ambient, float p_energy, float p_sky_contribution, VS::EnvironmentReflectionSource p_reflection_source) { Environent *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->ambient_light = p_color; env->ambient_source = p_ambient; env->ambient_light_energy = p_energy; env->ambient_sky_contribution = p_sky_contribution; env->reflection_source = p_reflection_source; } VS::EnvironmentBG RasterizerSceneRD::environment_get_background(RID p_env) const { Environent *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, VS::ENV_BG_MAX); return env->background; } RID RasterizerSceneRD::environment_get_sky(RID p_env) const { Environent *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, RID()); return env->sky; } float RasterizerSceneRD::environment_get_sky_custom_fov(RID p_env) const { Environent *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, 0); return env->sky_custom_fov; } Basis RasterizerSceneRD::environment_get_sky_orientation(RID p_env) const { Environent *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, Basis()); return env->sky_orientation; } Color RasterizerSceneRD::environment_get_bg_color(RID p_env) const { Environent *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, Color()); return env->bg_color; } float RasterizerSceneRD::environment_get_bg_energy(RID p_env) const { Environent *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, 0); return env->bg_energy; } int RasterizerSceneRD::environment_get_canvas_max_layer(RID p_env) const { Environent *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, 0); return env->canvas_max_layer; } Color RasterizerSceneRD::environment_get_ambient_light_color(RID p_env) const { Environent *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, Color()); return env->ambient_light; } VS::EnvironmentAmbientSource RasterizerSceneRD::environment_get_ambient_light_ambient_source(RID p_env) const { Environent *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, VS::ENV_AMBIENT_SOURCE_BG); return env->ambient_source; } float RasterizerSceneRD::environment_get_ambient_light_ambient_energy(RID p_env) const { Environent *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, 0); return env->ambient_light_energy; } float RasterizerSceneRD::environment_get_ambient_sky_contribution(RID p_env) const { Environent *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, 0); return env->ambient_sky_contribution; } VS::EnvironmentReflectionSource RasterizerSceneRD::environment_get_reflection_source(RID p_env) const { Environent *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, VS::ENV_REFLECTION_SOURCE_DISABLED); return env->reflection_source; } void RasterizerSceneRD::environment_set_tonemap(RID p_env, VS::EnvironmentToneMapper p_tone_mapper, float p_exposure, float p_white, bool p_auto_exposure, float p_min_luminance, float p_max_luminance, float p_auto_exp_speed, float p_auto_exp_scale) { Environent *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->tone_mapper = p_tone_mapper; env->auto_exposure = p_auto_exposure; env->white = p_white; env->min_luminance = p_min_luminance; env->max_luminance = p_max_luminance; env->auto_exp_speed = p_auto_exp_speed; env->auto_exp_scale = p_auto_exp_scale; } VS::EnvironmentToneMapper RasterizerSceneRD::environment_get_tonemapper(RID p_env) const { Environent *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, VS::ENV_TONE_MAPPER_LINEAR); return env->tone_mapper; } float RasterizerSceneRD::environment_get_exposure(RID p_env) const { Environent *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, 0); return env->exposure; } float RasterizerSceneRD::environment_get_white(RID p_env) const { Environent *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, 0); return env->white; } bool RasterizerSceneRD::environment_get_auto_exposure(RID p_env) const { Environent *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, false); return env->auto_exposure; } float RasterizerSceneRD::environment_get_min_luminance(RID p_env) const { Environent *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, 0); return env->min_luminance; } float RasterizerSceneRD::environment_get_max_luminance(RID p_env) const { Environent *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, 0); return env->max_luminance; } float RasterizerSceneRD::environment_get_auto_exposure_scale(RID p_env) const { Environent *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, 0); return env->auto_exp_scale; } float RasterizerSceneRD::environment_get_auto_exposure_speed(RID p_env) const { Environent *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, 0); return env->auto_exp_speed; } bool RasterizerSceneRD::is_environment(RID p_env) const { return environment_owner.owns(p_env); } //////////////////////////////////////////////////////////// RID RasterizerSceneRD::reflection_probe_instance_create(RID p_probe) { ReflectionProbeInstance rpi; rpi.probe = p_probe; return reflection_probe_instance_owner.make_rid(rpi); } void RasterizerSceneRD::reflection_probe_instance_set_transform(RID p_instance, const Transform &p_transform) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND(!rpi); rpi->transform = p_transform; rpi->dirty = true; } bool RasterizerSceneRD::reflection_probe_instance_needs_redraw(RID p_instance) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND_V(!rpi, false); if (rpi->rendering) { return false; } if (rpi->dirty) { return true; } if (rpi->current_resolution != storage->reflection_probe_get_resolution(rpi->probe)) { return true; } if (storage->reflection_probe_get_update_mode(rpi->probe) == VS::REFLECTION_PROBE_UPDATE_ALWAYS) { return true; } return false; } void RasterizerSceneRD::reflection_probe_instance_begin_render(RID p_instance) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND(!rpi); rpi->rendering = true; rpi->processing_side = 0; int probe_resolution = storage->reflection_probe_get_resolution(rpi->probe); if (rpi->current_resolution != probe_resolution) { //need to re-create everything _clear_reflection_data(rpi->reflection); _update_reflection_data(rpi->reflection, probe_resolution, storage->reflection_probe_get_update_mode(rpi->probe) == VS::REFLECTION_PROBE_UPDATE_ONCE); rpi->current_resolution = probe_resolution; if (rpi->depth_buffer.is_valid()) { RD::get_singleton()->free(rpi->depth_buffer); } { RD::TextureFormat tf; tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D24_UNORM_S8_UINT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D24_UNORM_S8_UINT : RD::DATA_FORMAT_D32_SFLOAT_S8_UINT; tf.width = probe_resolution; tf.height = probe_resolution; tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT; rpi->depth_buffer = RD::get_singleton()->texture_create(tf, RD::TextureView()); } for (int i = 0; i < 6; i++) { Vector fb; fb.push_back(rpi->reflection.layers[0].mipmaps[0].views[i]); fb.push_back(rpi->depth_buffer); rpi->render_fb[i] = RD::get_singleton()->framebuffer_create(fb); } } } bool RasterizerSceneRD::reflection_probe_instance_postprocess_step(RID p_instance) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND_V(!rpi, false); ERR_FAIL_COND_V(!rpi->rendering, false); _create_reflection_from_base_mipmap(rpi->reflection, storage->reflection_probe_get_update_mode(rpi->probe) == VS::REFLECTION_PROBE_UPDATE_ONCE, rpi->processing_side); rpi->processing_side++; if (rpi->processing_side == 6) { rpi->rendering = false; rpi->processing_side = 0; return true; } else { return false; } } uint32_t RasterizerSceneRD::reflection_probe_instance_get_resolution(RID p_instance) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND_V(!rpi, 0); return rpi->current_resolution; } RID RasterizerSceneRD::reflection_probe_instance_get_framebuffer(RID p_instance, int p_index) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND_V(!rpi, RID()); ERR_FAIL_INDEX_V(p_index, 6, RID()); return rpi->render_fb[p_index]; } /////////////////////////////////////////////////////////// RID RasterizerSceneRD::shadow_atlas_create() { return shadow_atlas_owner.make_rid(ShadowAtlas()); } void RasterizerSceneRD::shadow_atlas_set_size(RID p_atlas, int p_size) { ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas); ERR_FAIL_COND(!shadow_atlas); ERR_FAIL_COND(p_size < 0); p_size = next_power_of_2(p_size); if (p_size == shadow_atlas->size) return; // erasing atlas if (shadow_atlas->depth.is_valid()) { RD::get_singleton()->free(shadow_atlas->depth); shadow_atlas->depth = RID(); shadow_atlas->fb = RID(); } for (int i = 0; i < 4; i++) { //clear subdivisions shadow_atlas->quadrants[i].shadows.resize(0); shadow_atlas->quadrants[i].shadows.resize(1 << shadow_atlas->quadrants[i].subdivision); } //erase shadow atlas reference from lights for (Map::Element *E = shadow_atlas->shadow_owners.front(); E; E = E->next()) { LightInstance *li = light_instance_owner.getornull(E->key()); ERR_CONTINUE(!li); li->shadow_atlases.erase(p_atlas); } //clear owners shadow_atlas->shadow_owners.clear(); shadow_atlas->size = p_size; if (shadow_atlas->size) { RD::TextureFormat tf; tf.format = RD::DATA_FORMAT_R32_SFLOAT; tf.width = shadow_atlas->size; tf.height = shadow_atlas->size; tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT; shadow_atlas->depth = RD::get_singleton()->texture_create(tf, RD::TextureView()); Vector fb; fb.push_back(shadow_atlas->depth); shadow_atlas->fb = RD::get_singleton()->framebuffer_create(fb); } } void RasterizerSceneRD::shadow_atlas_set_quadrant_subdivision(RID p_atlas, int p_quadrant, int p_subdivision) { ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas); ERR_FAIL_COND(!shadow_atlas); ERR_FAIL_INDEX(p_quadrant, 4); ERR_FAIL_INDEX(p_subdivision, 16384); uint32_t subdiv = next_power_of_2(p_subdivision); if (subdiv & 0xaaaaaaaa) { //sqrt(subdiv) must be integer subdiv <<= 1; } subdiv = int(Math::sqrt((float)subdiv)); //obtain the number that will be x*x if (shadow_atlas->quadrants[p_quadrant].subdivision == subdiv) return; //erase all data from quadrant for (int i = 0; i < shadow_atlas->quadrants[p_quadrant].shadows.size(); i++) { if (shadow_atlas->quadrants[p_quadrant].shadows[i].owner.is_valid()) { shadow_atlas->shadow_owners.erase(shadow_atlas->quadrants[p_quadrant].shadows[i].owner); LightInstance *li = light_instance_owner.getornull(shadow_atlas->quadrants[p_quadrant].shadows[i].owner); ERR_CONTINUE(!li); li->shadow_atlases.erase(p_atlas); } } shadow_atlas->quadrants[p_quadrant].shadows.resize(0); shadow_atlas->quadrants[p_quadrant].shadows.resize(subdiv * subdiv); shadow_atlas->quadrants[p_quadrant].subdivision = subdiv; //cache the smallest subdiv (for faster allocation in light update) shadow_atlas->smallest_subdiv = 1 << 30; for (int i = 0; i < 4; i++) { if (shadow_atlas->quadrants[i].subdivision) { shadow_atlas->smallest_subdiv = MIN(shadow_atlas->smallest_subdiv, shadow_atlas->quadrants[i].subdivision); } } if (shadow_atlas->smallest_subdiv == 1 << 30) { shadow_atlas->smallest_subdiv = 0; } //resort the size orders, simple bublesort for 4 elements.. int swaps = 0; do { swaps = 0; for (int i = 0; i < 3; i++) { if (shadow_atlas->quadrants[shadow_atlas->size_order[i]].subdivision < shadow_atlas->quadrants[shadow_atlas->size_order[i + 1]].subdivision) { SWAP(shadow_atlas->size_order[i], shadow_atlas->size_order[i + 1]); swaps++; } } } while (swaps > 0); } bool RasterizerSceneRD::_shadow_atlas_find_shadow(ShadowAtlas *shadow_atlas, int *p_in_quadrants, int p_quadrant_count, int p_current_subdiv, uint64_t p_tick, int &r_quadrant, int &r_shadow) { for (int i = p_quadrant_count - 1; i >= 0; i--) { int qidx = p_in_quadrants[i]; if (shadow_atlas->quadrants[qidx].subdivision == (uint32_t)p_current_subdiv) { return false; } //look for an empty space int sc = shadow_atlas->quadrants[qidx].shadows.size(); ShadowAtlas::Quadrant::Shadow *sarr = shadow_atlas->quadrants[qidx].shadows.ptrw(); int found_free_idx = -1; //found a free one int found_used_idx = -1; //found existing one, must steal it uint64_t min_pass = 0; // pass of the existing one, try to use the least recently used one (LRU fashion) for (int j = 0; j < sc; j++) { if (!sarr[j].owner.is_valid()) { found_free_idx = j; break; } LightInstance *sli = light_instance_owner.getornull(sarr[j].owner); ERR_CONTINUE(!sli); if (sli->last_scene_pass != scene_pass) { //was just allocated, don't kill it so soon, wait a bit.. if (p_tick - sarr[j].alloc_tick < shadow_atlas_realloc_tolerance_msec) continue; if (found_used_idx == -1 || sli->last_scene_pass < min_pass) { found_used_idx = j; min_pass = sli->last_scene_pass; } } } if (found_free_idx == -1 && found_used_idx == -1) continue; //nothing found if (found_free_idx == -1 && found_used_idx != -1) { found_free_idx = found_used_idx; } r_quadrant = qidx; r_shadow = found_free_idx; return true; } return false; } bool RasterizerSceneRD::shadow_atlas_update_light(RID p_atlas, RID p_light_intance, float p_coverage, uint64_t p_light_version) { ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas); ERR_FAIL_COND_V(!shadow_atlas, false); LightInstance *li = light_instance_owner.getornull(p_light_intance); ERR_FAIL_COND_V(!li, false); if (shadow_atlas->size == 0 || shadow_atlas->smallest_subdiv == 0) { return false; } uint32_t quad_size = shadow_atlas->size >> 1; int desired_fit = MIN(quad_size / shadow_atlas->smallest_subdiv, next_power_of_2(quad_size * p_coverage)); int valid_quadrants[4]; int valid_quadrant_count = 0; int best_size = -1; //best size found int best_subdiv = -1; //subdiv for the best size //find the quadrants this fits into, and the best possible size it can fit into for (int i = 0; i < 4; i++) { int q = shadow_atlas->size_order[i]; int sd = shadow_atlas->quadrants[q].subdivision; if (sd == 0) continue; //unused int max_fit = quad_size / sd; if (best_size != -1 && max_fit > best_size) break; //too large valid_quadrants[valid_quadrant_count++] = q; best_subdiv = sd; if (max_fit >= desired_fit) { best_size = max_fit; } } ERR_FAIL_COND_V(valid_quadrant_count == 0, false); uint64_t tick = OS::get_singleton()->get_ticks_msec(); //see if it already exists if (shadow_atlas->shadow_owners.has(p_light_intance)) { //it does! uint32_t key = shadow_atlas->shadow_owners[p_light_intance]; uint32_t q = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3; uint32_t s = key & ShadowAtlas::SHADOW_INDEX_MASK; bool should_realloc = shadow_atlas->quadrants[q].subdivision != (uint32_t)best_subdiv && (shadow_atlas->quadrants[q].shadows[s].alloc_tick - tick > shadow_atlas_realloc_tolerance_msec); bool should_redraw = shadow_atlas->quadrants[q].shadows[s].version != p_light_version; if (!should_realloc) { shadow_atlas->quadrants[q].shadows.write[s].version = p_light_version; //already existing, see if it should redraw or it's just OK return should_redraw; } int new_quadrant, new_shadow; //find a better place if (_shadow_atlas_find_shadow(shadow_atlas, valid_quadrants, valid_quadrant_count, shadow_atlas->quadrants[q].subdivision, tick, new_quadrant, new_shadow)) { //found a better place! ShadowAtlas::Quadrant::Shadow *sh = &shadow_atlas->quadrants[new_quadrant].shadows.write[new_shadow]; if (sh->owner.is_valid()) { //is taken, but is invalid, erasing it shadow_atlas->shadow_owners.erase(sh->owner); LightInstance *sli = light_instance_owner.getornull(sh->owner); sli->shadow_atlases.erase(p_atlas); } //erase previous shadow_atlas->quadrants[q].shadows.write[s].version = 0; shadow_atlas->quadrants[q].shadows.write[s].owner = RID(); sh->owner = p_light_intance; sh->alloc_tick = tick; sh->version = p_light_version; li->shadow_atlases.insert(p_atlas); //make new key key = new_quadrant << ShadowAtlas::QUADRANT_SHIFT; key |= new_shadow; //update it in map shadow_atlas->shadow_owners[p_light_intance] = key; //make it dirty, as it should redraw anyway return true; } //no better place for this shadow found, keep current //already existing, see if it should redraw or it's just OK shadow_atlas->quadrants[q].shadows.write[s].version = p_light_version; return should_redraw; } int new_quadrant, new_shadow; //find a better place if (_shadow_atlas_find_shadow(shadow_atlas, valid_quadrants, valid_quadrant_count, -1, tick, new_quadrant, new_shadow)) { //found a better place! ShadowAtlas::Quadrant::Shadow *sh = &shadow_atlas->quadrants[new_quadrant].shadows.write[new_shadow]; if (sh->owner.is_valid()) { //is taken, but is invalid, erasing it shadow_atlas->shadow_owners.erase(sh->owner); LightInstance *sli = light_instance_owner.getornull(sh->owner); sli->shadow_atlases.erase(p_atlas); } sh->owner = p_light_intance; sh->alloc_tick = tick; sh->version = p_light_version; li->shadow_atlases.insert(p_atlas); //make new key uint32_t key = new_quadrant << ShadowAtlas::QUADRANT_SHIFT; key |= new_shadow; //update it in map shadow_atlas->shadow_owners[p_light_intance] = key; //make it dirty, as it should redraw anyway return true; } //no place to allocate this light, apologies return false; } void RasterizerSceneRD::directional_shadow_atlas_set_size(int p_size) { p_size = nearest_power_of_2_templated(p_size); if (directional_shadow.size == p_size) { return; } if (directional_shadow.depth.is_valid()) { RD::get_singleton()->free(directional_shadow.depth); directional_shadow.depth = RID(); directional_shadow.fb = RID(); } if (p_size > 0) { RD::TextureFormat tf; tf.format = RD::DATA_FORMAT_R32_SFLOAT; tf.width = p_size; tf.height = p_size; tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT; directional_shadow.depth = RD::get_singleton()->texture_create(tf, RD::TextureView()); Vector fb; fb.push_back(directional_shadow.depth); directional_shadow.fb = RD::get_singleton()->framebuffer_create(fb); } } void RasterizerSceneRD::set_directional_shadow_count(int p_count) { directional_shadow.light_count = p_count; directional_shadow.current_light = 0; } int RasterizerSceneRD::get_directional_light_shadow_size(RID p_light_intance) { ERR_FAIL_COND_V(directional_shadow.light_count == 0, 0); int shadow_size; if (directional_shadow.light_count == 1) { shadow_size = directional_shadow.size; } else { shadow_size = directional_shadow.size / 2; //more than 4 not supported anyway } LightInstance *light_instance = light_instance_owner.getornull(p_light_intance); ERR_FAIL_COND_V(!light_instance, 0); switch (storage->light_directional_get_shadow_mode(light_instance->light)) { case VS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL: break; //none case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS: case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS: shadow_size /= 2; break; } return shadow_size; } ////////////////////////////////////////////////// RID RasterizerSceneRD::light_instance_create(RID p_light) { RID li = light_instance_owner.make_rid(LightInstance()); LightInstance *light_instance = light_instance_owner.getornull(li); light_instance->self = li; light_instance->light = p_light; light_instance->light_type = storage->light_get_type(p_light); return li; } void RasterizerSceneRD::light_instance_set_transform(RID p_light_instance, const Transform &p_transform) { LightInstance *light_instance = light_instance_owner.getornull(p_light_instance); ERR_FAIL_COND(!light_instance); light_instance->transform = p_transform; } void RasterizerSceneRD::light_instance_set_shadow_transform(RID p_light_instance, const CameraMatrix &p_projection, const Transform &p_transform, float p_far, float p_split, int p_pass, float p_bias_scale) { LightInstance *light_instance = light_instance_owner.getornull(p_light_instance); ERR_FAIL_COND(!light_instance); if (storage->light_get_type(light_instance->light) != VS::LIGHT_DIRECTIONAL) { p_pass = 0; } ERR_FAIL_INDEX(p_pass, 4); light_instance->shadow_transform[p_pass].camera = p_projection; light_instance->shadow_transform[p_pass].transform = p_transform; light_instance->shadow_transform[p_pass].farplane = p_far; light_instance->shadow_transform[p_pass].split = p_split; light_instance->shadow_transform[p_pass].bias_scale = p_bias_scale; } void RasterizerSceneRD::light_instance_mark_visible(RID p_light_instance) { LightInstance *light_instance = light_instance_owner.getornull(p_light_instance); ERR_FAIL_COND(!light_instance); light_instance->last_scene_pass = scene_pass; } RasterizerSceneRD::ShadowCubemap *RasterizerSceneRD::_get_shadow_cubemap(int p_size) { if (!shadow_cubemaps.has(p_size)) { ShadowCubemap sc; { RD::TextureFormat tf; tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32; tf.width = p_size; tf.height = p_size; tf.type = RD::TEXTURE_TYPE_CUBE; tf.array_layers = 6; tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT; sc.cubemap = RD::get_singleton()->texture_create(tf, RD::TextureView()); } for (int i = 0; i < 6; i++) { RID side_texture = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), sc.cubemap, i, 0); Vector fbtex; fbtex.push_back(side_texture); sc.side_fb[i] = RD::get_singleton()->framebuffer_create(fbtex); } shadow_cubemaps[p_size] = sc; } return &shadow_cubemaps[p_size]; } RasterizerSceneRD::ShadowMap *RasterizerSceneRD::_get_shadow_map(const Size2i &p_size) { if (!shadow_maps.has(p_size)) { ShadowMap sm; { RD::TextureFormat tf; tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32; tf.width = p_size.width; tf.height = p_size.height; tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT; sm.depth = RD::get_singleton()->texture_create(tf, RD::TextureView()); } Vector fbtex; fbtex.push_back(sm.depth); sm.fb = RD::get_singleton()->framebuffer_create(fbtex); shadow_maps[p_size] = sm; } return &shadow_maps[p_size]; } //////////////////////////////// RID RasterizerSceneRD::render_buffers_create() { RenderBuffers rb; rb.data = _create_render_buffer_data(); return render_buffers_owner.make_rid(rb); } void RasterizerSceneRD::render_buffers_configure(RID p_render_buffers, RID p_render_target, int p_width, int p_height, VS::ViewportMSAA p_msaa) { RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); rb->width = p_width; rb->height = p_height; rb->render_target = p_render_target; rb->msaa = p_msaa; rb->data->configure(p_render_target, p_width, p_height, p_msaa); } int RasterizerSceneRD::get_roughness_layers() const { return roughness_layers; } bool RasterizerSceneRD::is_using_radiance_cubemap_array() const { return sky_use_cubemap_array; } void RasterizerSceneRD::render_scene(RID p_render_buffers, const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID *p_light_cull_result, int p_light_cull_count, RID *p_reflection_probe_cull_result, int p_reflection_probe_cull_count, RID p_environment, RID p_shadow_atlas, RID p_reflection_probe, int p_reflection_probe_pass) { RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND(!rb && p_render_buffers.is_valid()); _render_scene(rb->data, p_cam_transform, p_cam_projection, p_cam_ortogonal, p_cull_result, p_cull_count, p_light_cull_result, p_light_cull_count, p_reflection_probe_cull_result, p_reflection_probe_cull_count, p_environment, p_shadow_atlas, p_reflection_probe, p_reflection_probe_pass); } void RasterizerSceneRD::render_shadow(RID p_light, RID p_shadow_atlas, int p_pass, InstanceBase **p_cull_result, int p_cull_count) { LightInstance *light_instance = light_instance_owner.getornull(p_light); ERR_FAIL_COND(!light_instance); Rect2i atlas_rect; RID atlas_fb; int atlas_fb_size; bool using_dual_paraboloid = false; bool using_dual_paraboloid_flip = false; float zfar = 0; RID render_fb; RID render_texture; float bias = 0; float normal_bias = 0; bool render_cubemap = false; bool finalize_cubemap = false; CameraMatrix light_projection; Transform light_transform; if (storage->light_get_type(light_instance->light) == VS::LIGHT_DIRECTIONAL) { //set pssm stuff if (light_instance->last_scene_shadow_pass != scene_pass) { //assign rect if unassigned light_instance->light_directional_index = directional_shadow.current_light; light_instance->last_scene_shadow_pass = scene_pass; directional_shadow.current_light++; if (directional_shadow.light_count == 1) { light_instance->directional_rect = Rect2(0, 0, directional_shadow.size, directional_shadow.size); } else if (directional_shadow.light_count == 2) { light_instance->directional_rect = Rect2(0, 0, directional_shadow.size, directional_shadow.size / 2); if (light_instance->light_directional_index == 1) { light_instance->directional_rect.position.x += light_instance->directional_rect.size.x; } } else { //3 and 4 light_instance->directional_rect = Rect2(0, 0, directional_shadow.size / 2, directional_shadow.size / 2); if (light_instance->light_directional_index & 1) { light_instance->directional_rect.position.x += light_instance->directional_rect.size.x; } if (light_instance->light_directional_index / 2) { light_instance->directional_rect.position.y += light_instance->directional_rect.size.y; } } } light_projection = light_instance->shadow_transform[p_pass].camera; light_transform = light_instance->shadow_transform[p_pass].transform; atlas_rect.position.x = light_instance->directional_rect.position.x; atlas_rect.position.y = light_instance->directional_rect.position.y; atlas_rect.size.width = light_instance->directional_rect.size.x; atlas_rect.size.height = light_instance->directional_rect.size.y; if (storage->light_directional_get_shadow_mode(light_instance->light) == VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS) { atlas_rect.size.width /= 2; atlas_rect.size.height /= 2; if (p_pass == 1) { atlas_rect.position.x += atlas_rect.size.width; } else if (p_pass == 2) { atlas_rect.position.y += atlas_rect.size.height; } else if (p_pass == 3) { atlas_rect.position.x += atlas_rect.size.width; atlas_rect.position.y += atlas_rect.size.height; } } else if (storage->light_directional_get_shadow_mode(light_instance->light) == VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS) { atlas_rect.size.height /= 2; if (p_pass == 0) { } else { atlas_rect.position.y += atlas_rect.size.height; } } float bias_mult = Math::lerp(1.0f, light_instance->shadow_transform[p_pass].bias_scale, storage->light_get_param(light_instance->light, VS::LIGHT_PARAM_SHADOW_BIAS_SPLIT_SCALE)); zfar = storage->light_get_param(light_instance->light, VS::LIGHT_PARAM_RANGE); bias = storage->light_get_param(light_instance->light, VS::LIGHT_PARAM_SHADOW_BIAS) * bias_mult; normal_bias = storage->light_get_param(light_instance->light, VS::LIGHT_PARAM_SHADOW_NORMAL_BIAS) * bias_mult; ShadowMap *shadow_map = _get_shadow_map(atlas_rect.size); render_fb = shadow_map->fb; render_texture = shadow_map->depth; atlas_fb = directional_shadow.fb; atlas_fb_size = directional_shadow.size; } else { //set from shadow atlas ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas); ERR_FAIL_COND(!shadow_atlas); ERR_FAIL_COND(!shadow_atlas->shadow_owners.has(p_light)); uint32_t key = shadow_atlas->shadow_owners[p_light]; uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3; uint32_t shadow = key & ShadowAtlas::SHADOW_INDEX_MASK; ERR_FAIL_INDEX((int)shadow, shadow_atlas->quadrants[quadrant].shadows.size()); uint32_t quadrant_size = shadow_atlas->size >> 1; atlas_rect.position.x = (quadrant & 1) * quadrant_size; atlas_rect.position.y = (quadrant >> 1) * quadrant_size; uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision); atlas_rect.position.x += (shadow % shadow_atlas->quadrants[quadrant].subdivision) * shadow_size; atlas_rect.position.y += (shadow / shadow_atlas->quadrants[quadrant].subdivision) * shadow_size; atlas_rect.size.width = shadow_size; atlas_rect.size.height = shadow_size; atlas_fb = shadow_atlas->fb; atlas_fb_size = shadow_atlas->size; zfar = storage->light_get_param(light_instance->light, VS::LIGHT_PARAM_RANGE); bias = storage->light_get_param(light_instance->light, VS::LIGHT_PARAM_SHADOW_BIAS); normal_bias = storage->light_get_param(light_instance->light, VS::LIGHT_PARAM_SHADOW_NORMAL_BIAS); if (storage->light_get_type(light_instance->light) == VS::LIGHT_OMNI) { if (storage->light_omni_get_shadow_mode(light_instance->light) == VS::LIGHT_OMNI_SHADOW_CUBE) { ShadowCubemap *cubemap = _get_shadow_cubemap(shadow_size / 2); render_fb = cubemap->side_fb[p_pass]; render_texture = cubemap->cubemap; light_projection = light_instance->shadow_transform[0].camera; light_transform = light_instance->shadow_transform[0].transform; render_cubemap = true; finalize_cubemap = p_pass == 5; } else { light_projection = light_instance->shadow_transform[0].camera; light_transform = light_instance->shadow_transform[0].transform; atlas_rect.size.height /= 2; atlas_rect.position.y += p_pass * atlas_rect.size.height; using_dual_paraboloid = true; using_dual_paraboloid_flip = p_pass == 1; ShadowMap *shadow_map = _get_shadow_map(atlas_rect.size); render_fb = shadow_map->fb; render_texture = shadow_map->depth; } } else if (storage->light_get_type(light_instance->light) == VS::LIGHT_SPOT) { light_projection = light_instance->shadow_transform[0].camera; light_transform = light_instance->shadow_transform[0].transform; ShadowMap *shadow_map = _get_shadow_map(atlas_rect.size); render_fb = shadow_map->fb; render_texture = shadow_map->depth; } } if (render_cubemap) { //rendering to cubemap _render_shadow(render_fb, p_cull_result, p_cull_count, light_projection, light_transform, zfar, 0, 0, false, false); if (finalize_cubemap) { //reblit atlas_rect.size.height /= 2; storage->get_effects()->copy_cubemap_to_dp(render_texture, atlas_fb, atlas_rect, light_projection.get_z_near(), light_projection.get_z_far(), bias, false); atlas_rect.position.y += atlas_rect.size.height; storage->get_effects()->copy_cubemap_to_dp(render_texture, atlas_fb, atlas_rect, light_projection.get_z_near(), light_projection.get_z_far(), bias, true); } } else { //render shadow _render_shadow(render_fb, p_cull_result, p_cull_count, light_projection, light_transform, zfar, bias, normal_bias, using_dual_paraboloid, using_dual_paraboloid_flip); //copy to atlas storage->get_effects()->copy_to_rect(render_texture, atlas_fb, atlas_rect, true); //does not work from depth to color //RD::get_singleton()->texture_copy(render_texture, atlas_texture, Vector3(0, 0, 0), Vector3(atlas_rect.position.x, atlas_rect.position.y, 0), Vector3(atlas_rect.size.x, atlas_rect.size.y, 1), 0, 0, 0, 0, true); } } bool RasterizerSceneRD::free(RID p_rid) { if (render_buffers_owner.owns(p_rid)) { RenderBuffers *rb = render_buffers_owner.getornull(p_rid); memdelete(rb->data); render_buffers_owner.free(p_rid); } else if (environment_owner.owns(p_rid)) { //not much to delete, just free it environment_owner.free(p_rid); } else if (reflection_probe_instance_owner.owns(p_rid)) { //not much to delete, just free it ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_rid); _clear_reflection_data(rpi->reflection); reflection_probe_instance_owner.free(p_rid); } else if (sky_owner.owns(p_rid)) { _update_dirty_skys(); Sky *sky = sky_owner.getornull(p_rid); _clear_reflection_data(sky->reflection); sky_owner.free(p_rid); } else if (light_instance_owner.owns(p_rid)) { LightInstance *light_instance = light_instance_owner.getornull(p_rid); //remove from shadow atlases.. for (Set::Element *E = light_instance->shadow_atlases.front(); E; E = E->next()) { ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(E->get()); ERR_CONTINUE(!shadow_atlas->shadow_owners.has(p_rid)); uint32_t key = shadow_atlas->shadow_owners[p_rid]; uint32_t q = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3; uint32_t s = key & ShadowAtlas::SHADOW_INDEX_MASK; shadow_atlas->quadrants[q].shadows.write[s].owner = RID(); shadow_atlas->shadow_owners.erase(p_rid); } light_instance_owner.free(p_rid); } else if (shadow_atlas_owner.owns(p_rid)) { shadow_atlas_set_size(p_rid, 0); shadow_atlas_owner.free(p_rid); } else { return false; } return true; } void RasterizerSceneRD::update() { _update_dirty_skys(); } RasterizerSceneRD::RasterizerSceneRD(RasterizerStorageRD *p_storage) { storage = p_storage; roughness_layers = GLOBAL_GET("rendering/quality/reflections/roughness_layers"); sky_ggx_samples_quality = GLOBAL_GET("rendering/quality/reflections/ggx_samples"); sky_ggx_samples_realtime = GLOBAL_GET("rendering/quality/reflections/ggx_samples_realtime"); sky_use_cubemap_array = GLOBAL_GET("rendering/quality/reflections/texture_array_reflections"); sky_use_cubemap_array = false; } RasterizerSceneRD::~RasterizerSceneRD() { directional_shadow_atlas_set_size(0); for (Map::Element *E = shadow_maps.front(); E; E = E->next()) { RD::get_singleton()->free(E->get().depth); } for (Map::Element *E = shadow_cubemaps.front(); E; E = E->next()) { RD::get_singleton()->free(E->get().cubemap); } }