/*************************************************************************/ /* rendering_server_scene.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "rendering_server_scene.h" #include "core/os/os.h" #include "rendering_server_globals.h" #include "rendering_server_raster.h" #include /* CAMERA API */ RID RenderingServerScene::camera_create() { Camera *camera = memnew(Camera); return camera_owner.make_rid(camera); } void RenderingServerScene::camera_set_perspective(RID p_camera, float p_fovy_degrees, float p_z_near, float p_z_far) { Camera *camera = camera_owner.getornull(p_camera); ERR_FAIL_COND(!camera); camera->type = Camera::PERSPECTIVE; camera->fov = p_fovy_degrees; camera->znear = p_z_near; camera->zfar = p_z_far; } void RenderingServerScene::camera_set_orthogonal(RID p_camera, float p_size, float p_z_near, float p_z_far) { Camera *camera = camera_owner.getornull(p_camera); ERR_FAIL_COND(!camera); camera->type = Camera::ORTHOGONAL; camera->size = p_size; camera->znear = p_z_near; camera->zfar = p_z_far; } void RenderingServerScene::camera_set_frustum(RID p_camera, float p_size, Vector2 p_offset, float p_z_near, float p_z_far) { Camera *camera = camera_owner.getornull(p_camera); ERR_FAIL_COND(!camera); camera->type = Camera::FRUSTUM; camera->size = p_size; camera->offset = p_offset; camera->znear = p_z_near; camera->zfar = p_z_far; } void RenderingServerScene::camera_set_transform(RID p_camera, const Transform &p_transform) { Camera *camera = camera_owner.getornull(p_camera); ERR_FAIL_COND(!camera); camera->transform = p_transform.orthonormalized(); } void RenderingServerScene::camera_set_cull_mask(RID p_camera, uint32_t p_layers) { Camera *camera = camera_owner.getornull(p_camera); ERR_FAIL_COND(!camera); camera->visible_layers = p_layers; } void RenderingServerScene::camera_set_environment(RID p_camera, RID p_env) { Camera *camera = camera_owner.getornull(p_camera); ERR_FAIL_COND(!camera); camera->env = p_env; } void RenderingServerScene::camera_set_camera_effects(RID p_camera, RID p_fx) { Camera *camera = camera_owner.getornull(p_camera); ERR_FAIL_COND(!camera); camera->effects = p_fx; } void RenderingServerScene::camera_set_use_vertical_aspect(RID p_camera, bool p_enable) { Camera *camera = camera_owner.getornull(p_camera); ERR_FAIL_COND(!camera); camera->vaspect = p_enable; } /* SCENARIO API */ void *RenderingServerScene::_instance_pair(void *p_self, OctreeElementID, Instance *p_A, int, OctreeElementID, Instance *p_B, int) { //RenderingServerScene *self = (RenderingServerScene*)p_self; Instance *A = p_A; Instance *B = p_B; //instance indices are designed so greater always contains lesser if (A->base_type > B->base_type) { SWAP(A, B); //lesser always first } if (B->base_type == RS::INSTANCE_LIGHT && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) { InstanceLightData *light = static_cast(B->base_data); InstanceGeometryData *geom = static_cast(A->base_data); InstanceLightData::PairInfo pinfo; pinfo.geometry = A; pinfo.L = geom->lighting.push_back(B); List::Element *E = light->geometries.push_back(pinfo); if (geom->can_cast_shadows) { light->shadow_dirty = true; } geom->lighting_dirty = true; return E; //this element should make freeing faster } else if (B->base_type == RS::INSTANCE_REFLECTION_PROBE && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) { InstanceReflectionProbeData *reflection_probe = static_cast(B->base_data); InstanceGeometryData *geom = static_cast(A->base_data); InstanceReflectionProbeData::PairInfo pinfo; pinfo.geometry = A; pinfo.L = geom->reflection_probes.push_back(B); List::Element *E = reflection_probe->geometries.push_back(pinfo); geom->reflection_dirty = true; return E; //this element should make freeing faster } else if (B->base_type == RS::INSTANCE_DECAL && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) { InstanceDecalData *decal = static_cast(B->base_data); InstanceGeometryData *geom = static_cast(A->base_data); InstanceDecalData::PairInfo pinfo; pinfo.geometry = A; pinfo.L = geom->decals.push_back(B); List::Element *E = decal->geometries.push_back(pinfo); geom->decal_dirty = true; return E; //this element should make freeing faster } else if (B->base_type == RS::INSTANCE_LIGHTMAP_CAPTURE && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) { InstanceLightmapCaptureData *lightmap_capture = static_cast(B->base_data); InstanceGeometryData *geom = static_cast(A->base_data); InstanceLightmapCaptureData::PairInfo pinfo; pinfo.geometry = A; pinfo.L = geom->lightmap_captures.push_back(B); List::Element *E = lightmap_capture->geometries.push_back(pinfo); ((RenderingServerScene *)p_self)->_instance_queue_update(A, false, false); //need to update capture return E; //this element should make freeing faster } else if (B->base_type == RS::INSTANCE_GI_PROBE && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) { InstanceGIProbeData *gi_probe = static_cast(B->base_data); InstanceGeometryData *geom = static_cast(A->base_data); InstanceGIProbeData::PairInfo pinfo; pinfo.geometry = A; pinfo.L = geom->gi_probes.push_back(B); List::Element *E; if (A->dynamic_gi) { E = gi_probe->dynamic_geometries.push_back(pinfo); } else { E = gi_probe->geometries.push_back(pinfo); } geom->gi_probes_dirty = true; return E; //this element should make freeing faster } else if (B->base_type == RS::INSTANCE_GI_PROBE && A->base_type == RS::INSTANCE_LIGHT) { InstanceGIProbeData *gi_probe = static_cast(B->base_data); return gi_probe->lights.insert(A); } return nullptr; } void RenderingServerScene::_instance_unpair(void *p_self, OctreeElementID, Instance *p_A, int, OctreeElementID, Instance *p_B, int, void *udata) { //RenderingServerScene *self = (RenderingServerScene*)p_self; Instance *A = p_A; Instance *B = p_B; //instance indices are designed so greater always contains lesser if (A->base_type > B->base_type) { SWAP(A, B); //lesser always first } if (B->base_type == RS::INSTANCE_LIGHT && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) { InstanceLightData *light = static_cast(B->base_data); InstanceGeometryData *geom = static_cast(A->base_data); List::Element *E = reinterpret_cast::Element *>(udata); geom->lighting.erase(E->get().L); light->geometries.erase(E); if (geom->can_cast_shadows) { light->shadow_dirty = true; } geom->lighting_dirty = true; } else if (B->base_type == RS::INSTANCE_REFLECTION_PROBE && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) { InstanceReflectionProbeData *reflection_probe = static_cast(B->base_data); InstanceGeometryData *geom = static_cast(A->base_data); List::Element *E = reinterpret_cast::Element *>(udata); geom->reflection_probes.erase(E->get().L); reflection_probe->geometries.erase(E); geom->reflection_dirty = true; } else if (B->base_type == RS::INSTANCE_DECAL && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) { InstanceDecalData *decal = static_cast(B->base_data); InstanceGeometryData *geom = static_cast(A->base_data); List::Element *E = reinterpret_cast::Element *>(udata); geom->decals.erase(E->get().L); decal->geometries.erase(E); geom->decal_dirty = true; } else if (B->base_type == RS::INSTANCE_LIGHTMAP_CAPTURE && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) { InstanceLightmapCaptureData *lightmap_capture = static_cast(B->base_data); InstanceGeometryData *geom = static_cast(A->base_data); List::Element *E = reinterpret_cast::Element *>(udata); geom->lightmap_captures.erase(E->get().L); lightmap_capture->geometries.erase(E); ((RenderingServerScene *)p_self)->_instance_queue_update(A, false, false); //need to update capture } else if (B->base_type == RS::INSTANCE_GI_PROBE && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) { InstanceGIProbeData *gi_probe = static_cast(B->base_data); InstanceGeometryData *geom = static_cast(A->base_data); List::Element *E = reinterpret_cast::Element *>(udata); geom->gi_probes.erase(E->get().L); if (A->dynamic_gi) { gi_probe->dynamic_geometries.erase(E); } else { gi_probe->geometries.erase(E); } geom->gi_probes_dirty = true; } else if (B->base_type == RS::INSTANCE_GI_PROBE && A->base_type == RS::INSTANCE_LIGHT) { InstanceGIProbeData *gi_probe = static_cast(B->base_data); Set::Element *E = reinterpret_cast::Element *>(udata); gi_probe->lights.erase(E); } } RID RenderingServerScene::scenario_create() { Scenario *scenario = memnew(Scenario); ERR_FAIL_COND_V(!scenario, RID()); RID scenario_rid = scenario_owner.make_rid(scenario); scenario->self = scenario_rid; scenario->octree.set_pair_callback(_instance_pair, this); scenario->octree.set_unpair_callback(_instance_unpair, this); scenario->reflection_probe_shadow_atlas = RSG::scene_render->shadow_atlas_create(); RSG::scene_render->shadow_atlas_set_size(scenario->reflection_probe_shadow_atlas, 1024); //make enough shadows for close distance, don't bother with rest RSG::scene_render->shadow_atlas_set_quadrant_subdivision(scenario->reflection_probe_shadow_atlas, 0, 4); RSG::scene_render->shadow_atlas_set_quadrant_subdivision(scenario->reflection_probe_shadow_atlas, 1, 4); RSG::scene_render->shadow_atlas_set_quadrant_subdivision(scenario->reflection_probe_shadow_atlas, 2, 4); RSG::scene_render->shadow_atlas_set_quadrant_subdivision(scenario->reflection_probe_shadow_atlas, 3, 8); scenario->reflection_atlas = RSG::scene_render->reflection_atlas_create(); return scenario_rid; } void RenderingServerScene::scenario_set_debug(RID p_scenario, RS::ScenarioDebugMode p_debug_mode) { Scenario *scenario = scenario_owner.getornull(p_scenario); ERR_FAIL_COND(!scenario); scenario->debug = p_debug_mode; } void RenderingServerScene::scenario_set_environment(RID p_scenario, RID p_environment) { Scenario *scenario = scenario_owner.getornull(p_scenario); ERR_FAIL_COND(!scenario); scenario->environment = p_environment; } void RenderingServerScene::scenario_set_camera_effects(RID p_scenario, RID p_camera_effects) { Scenario *scenario = scenario_owner.getornull(p_scenario); ERR_FAIL_COND(!scenario); scenario->camera_effects = p_camera_effects; } void RenderingServerScene::scenario_set_fallback_environment(RID p_scenario, RID p_environment) { Scenario *scenario = scenario_owner.getornull(p_scenario); ERR_FAIL_COND(!scenario); scenario->fallback_environment = p_environment; } void RenderingServerScene::scenario_set_reflection_atlas_size(RID p_scenario, int p_reflection_size, int p_reflection_count) { Scenario *scenario = scenario_owner.getornull(p_scenario); ERR_FAIL_COND(!scenario); RSG::scene_render->reflection_atlas_set_size(scenario->reflection_atlas, p_reflection_size, p_reflection_count); } /* INSTANCING API */ void RenderingServerScene::_instance_queue_update(Instance *p_instance, bool p_update_aabb, bool p_update_dependencies) { if (p_update_aabb) p_instance->update_aabb = true; if (p_update_dependencies) p_instance->update_dependencies = true; if (p_instance->update_item.in_list()) return; _instance_update_list.add(&p_instance->update_item); } RID RenderingServerScene::instance_create() { Instance *instance = memnew(Instance); ERR_FAIL_COND_V(!instance, RID()); RID instance_rid = instance_owner.make_rid(instance); instance->self = instance_rid; return instance_rid; } void RenderingServerScene::instance_set_base(RID p_instance, RID p_base) { Instance *instance = instance_owner.getornull(p_instance); ERR_FAIL_COND(!instance); Scenario *scenario = instance->scenario; if (instance->base_type != RS::INSTANCE_NONE) { //free anything related to that base if (scenario && instance->octree_id) { scenario->octree.erase(instance->octree_id); //make dependencies generated by the octree go away instance->octree_id = 0; } switch (instance->base_type) { case RS::INSTANCE_LIGHT: { InstanceLightData *light = static_cast(instance->base_data); #ifdef DEBUG_ENABLED if (light->geometries.size()) { ERR_PRINT("BUG, indexing did not unpair geometries from light."); } #endif if (instance->scenario && light->D) { instance->scenario->directional_lights.erase(light->D); light->D = nullptr; } RSG::scene_render->free(light->instance); } break; case RS::INSTANCE_REFLECTION_PROBE: { InstanceReflectionProbeData *reflection_probe = static_cast(instance->base_data); RSG::scene_render->free(reflection_probe->instance); if (reflection_probe->update_list.in_list()) { reflection_probe_render_list.remove(&reflection_probe->update_list); } } break; case RS::INSTANCE_DECAL: { InstanceDecalData *decal = static_cast(instance->base_data); RSG::scene_render->free(decal->instance); } break; case RS::INSTANCE_LIGHTMAP_CAPTURE: { InstanceLightmapCaptureData *lightmap_capture = static_cast(instance->base_data); //erase dependencies, since no longer a lightmap while (lightmap_capture->users.front()) { instance_set_use_lightmap(lightmap_capture->users.front()->get()->self, RID(), RID()); } } break; case RS::INSTANCE_GI_PROBE: { InstanceGIProbeData *gi_probe = static_cast(instance->base_data); #ifdef DEBUG_ENABLED if (gi_probe->geometries.size()) { ERR_PRINT("BUG, indexing did not unpair geometries from GIProbe."); } #endif #ifdef DEBUG_ENABLED if (gi_probe->lights.size()) { ERR_PRINT("BUG, indexing did not unpair lights from GIProbe."); } #endif if (gi_probe->update_element.in_list()) { gi_probe_update_list.remove(&gi_probe->update_element); } if (instance->lightmap_capture) { Instance *capture = (Instance *)instance->lightmap_capture; InstanceLightmapCaptureData *lightmap_capture = static_cast(capture->base_data); lightmap_capture->users.erase(instance); instance->lightmap_capture = nullptr; instance->lightmap = RID(); } RSG::scene_render->free(gi_probe->probe_instance); } break; default: { } } if (instance->base_data) { memdelete(instance->base_data); instance->base_data = nullptr; } instance->blend_values.clear(); instance->materials.clear(); } instance->base_type = RS::INSTANCE_NONE; instance->base = RID(); if (p_base.is_valid()) { instance->base_type = RSG::storage->get_base_type(p_base); ERR_FAIL_COND(instance->base_type == RS::INSTANCE_NONE); switch (instance->base_type) { case RS::INSTANCE_LIGHT: { InstanceLightData *light = memnew(InstanceLightData); if (scenario && RSG::storage->light_get_type(p_base) == RS::LIGHT_DIRECTIONAL) { light->D = scenario->directional_lights.push_back(instance); } light->instance = RSG::scene_render->light_instance_create(p_base); instance->base_data = light; } break; case RS::INSTANCE_MESH: case RS::INSTANCE_MULTIMESH: case RS::INSTANCE_IMMEDIATE: case RS::INSTANCE_PARTICLES: { InstanceGeometryData *geom = memnew(InstanceGeometryData); instance->base_data = geom; if (instance->base_type == RS::INSTANCE_MESH) { instance->blend_values.resize(RSG::storage->mesh_get_blend_shape_count(p_base)); } } break; case RS::INSTANCE_REFLECTION_PROBE: { InstanceReflectionProbeData *reflection_probe = memnew(InstanceReflectionProbeData); reflection_probe->owner = instance; instance->base_data = reflection_probe; reflection_probe->instance = RSG::scene_render->reflection_probe_instance_create(p_base); } break; case RS::INSTANCE_DECAL: { InstanceDecalData *decal = memnew(InstanceDecalData); decal->owner = instance; instance->base_data = decal; decal->instance = RSG::scene_render->decal_instance_create(p_base); } break; case RS::INSTANCE_LIGHTMAP_CAPTURE: { InstanceLightmapCaptureData *lightmap_capture = memnew(InstanceLightmapCaptureData); instance->base_data = lightmap_capture; //lightmap_capture->instance = RSG::scene_render->lightmap_capture_instance_create(p_base); } break; case RS::INSTANCE_GI_PROBE: { InstanceGIProbeData *gi_probe = memnew(InstanceGIProbeData); instance->base_data = gi_probe; gi_probe->owner = instance; if (scenario && !gi_probe->update_element.in_list()) { gi_probe_update_list.add(&gi_probe->update_element); } gi_probe->probe_instance = RSG::scene_render->gi_probe_instance_create(p_base); } break; default: { } } instance->base = p_base; //forcefully update the dependency now, so if for some reason it gets removed, we can immediately clear it RSG::storage->base_update_dependency(p_base, instance); } _instance_queue_update(instance, true, true); } void RenderingServerScene::instance_set_scenario(RID p_instance, RID p_scenario) { Instance *instance = instance_owner.getornull(p_instance); ERR_FAIL_COND(!instance); if (instance->scenario) { instance->scenario->instances.remove(&instance->scenario_item); if (instance->octree_id) { instance->scenario->octree.erase(instance->octree_id); //make dependencies generated by the octree go away instance->octree_id = 0; } switch (instance->base_type) { case RS::INSTANCE_LIGHT: { InstanceLightData *light = static_cast(instance->base_data); #ifdef DEBUG_ENABLED if (light->geometries.size()) { ERR_PRINT("BUG, indexing did not unpair geometries from light."); } #endif if (light->D) { instance->scenario->directional_lights.erase(light->D); light->D = nullptr; } } break; case RS::INSTANCE_REFLECTION_PROBE: { InstanceReflectionProbeData *reflection_probe = static_cast(instance->base_data); RSG::scene_render->reflection_probe_release_atlas_index(reflection_probe->instance); } break; case RS::INSTANCE_GI_PROBE: { InstanceGIProbeData *gi_probe = static_cast(instance->base_data); #ifdef DEBUG_ENABLED if (gi_probe->geometries.size()) { ERR_PRINT("BUG, indexing did not unpair geometries from GIProbe."); } #endif #ifdef DEBUG_ENABLED if (gi_probe->lights.size()) { ERR_PRINT("BUG, indexing did not unpair lights from GIProbe."); } #endif if (gi_probe->update_element.in_list()) { gi_probe_update_list.remove(&gi_probe->update_element); } } break; default: { } } instance->scenario = nullptr; } if (p_scenario.is_valid()) { Scenario *scenario = scenario_owner.getornull(p_scenario); ERR_FAIL_COND(!scenario); instance->scenario = scenario; scenario->instances.add(&instance->scenario_item); switch (instance->base_type) { case RS::INSTANCE_LIGHT: { InstanceLightData *light = static_cast(instance->base_data); if (RSG::storage->light_get_type(instance->base) == RS::LIGHT_DIRECTIONAL) { light->D = scenario->directional_lights.push_back(instance); } } break; case RS::INSTANCE_GI_PROBE: { InstanceGIProbeData *gi_probe = static_cast(instance->base_data); if (!gi_probe->update_element.in_list()) { gi_probe_update_list.add(&gi_probe->update_element); } } break; default: { } } _instance_queue_update(instance, true, true); } } void RenderingServerScene::instance_set_layer_mask(RID p_instance, uint32_t p_mask) { Instance *instance = instance_owner.getornull(p_instance); ERR_FAIL_COND(!instance); instance->layer_mask = p_mask; } void RenderingServerScene::instance_set_transform(RID p_instance, const Transform &p_transform) { Instance *instance = instance_owner.getornull(p_instance); ERR_FAIL_COND(!instance); if (instance->transform == p_transform) return; //must be checked to avoid worst evil #ifdef DEBUG_ENABLED for (int i = 0; i < 4; i++) { const Vector3 &v = i < 3 ? p_transform.basis.elements[i] : p_transform.origin; ERR_FAIL_COND(Math::is_inf(v.x)); ERR_FAIL_COND(Math::is_nan(v.x)); ERR_FAIL_COND(Math::is_inf(v.y)); ERR_FAIL_COND(Math::is_nan(v.y)); ERR_FAIL_COND(Math::is_inf(v.z)); ERR_FAIL_COND(Math::is_nan(v.z)); } #endif instance->transform = p_transform; _instance_queue_update(instance, true); } void RenderingServerScene::instance_attach_object_instance_id(RID p_instance, ObjectID p_id) { Instance *instance = instance_owner.getornull(p_instance); ERR_FAIL_COND(!instance); instance->object_id = p_id; } void RenderingServerScene::instance_set_blend_shape_weight(RID p_instance, int p_shape, float p_weight) { Instance *instance = instance_owner.getornull(p_instance); ERR_FAIL_COND(!instance); if (instance->update_item.in_list()) { _update_dirty_instance(instance); } ERR_FAIL_INDEX(p_shape, instance->blend_values.size()); instance->blend_values.write[p_shape] = p_weight; } void RenderingServerScene::instance_set_surface_material(RID p_instance, int p_surface, RID p_material) { Instance *instance = instance_owner.getornull(p_instance); ERR_FAIL_COND(!instance); if (instance->base_type == RS::INSTANCE_MESH) { //may not have been updated yet, may also have not been set yet. When updated will be correcte, worst case instance->materials.resize(MAX(p_surface + 1, RSG::storage->mesh_get_surface_count(instance->base))); } ERR_FAIL_INDEX(p_surface, instance->materials.size()); instance->materials.write[p_surface] = p_material; _instance_queue_update(instance, false, true); } void RenderingServerScene::instance_set_visible(RID p_instance, bool p_visible) { Instance *instance = instance_owner.getornull(p_instance); ERR_FAIL_COND(!instance); if (instance->visible == p_visible) return; instance->visible = p_visible; switch (instance->base_type) { case RS::INSTANCE_LIGHT: { if (RSG::storage->light_get_type(instance->base) != RS::LIGHT_DIRECTIONAL && instance->octree_id && instance->scenario) { instance->scenario->octree.set_pairable(instance->octree_id, p_visible, 1 << RS::INSTANCE_LIGHT, p_visible ? RS::INSTANCE_GEOMETRY_MASK : 0); } } break; case RS::INSTANCE_REFLECTION_PROBE: { if (instance->octree_id && instance->scenario) { instance->scenario->octree.set_pairable(instance->octree_id, p_visible, 1 << RS::INSTANCE_REFLECTION_PROBE, p_visible ? RS::INSTANCE_GEOMETRY_MASK : 0); } } break; case RS::INSTANCE_DECAL: { if (instance->octree_id && instance->scenario) { instance->scenario->octree.set_pairable(instance->octree_id, p_visible, 1 << RS::INSTANCE_DECAL, p_visible ? RS::INSTANCE_GEOMETRY_MASK : 0); } } break; case RS::INSTANCE_LIGHTMAP_CAPTURE: { if (instance->octree_id && instance->scenario) { instance->scenario->octree.set_pairable(instance->octree_id, p_visible, 1 << RS::INSTANCE_LIGHTMAP_CAPTURE, p_visible ? RS::INSTANCE_GEOMETRY_MASK : 0); } } break; case RS::INSTANCE_GI_PROBE: { if (instance->octree_id && instance->scenario) { instance->scenario->octree.set_pairable(instance->octree_id, p_visible, 1 << RS::INSTANCE_GI_PROBE, p_visible ? (RS::INSTANCE_GEOMETRY_MASK | (1 << RS::INSTANCE_LIGHT)) : 0); } } break; default: { } } } inline bool is_geometry_instance(RenderingServer::InstanceType p_type) { return p_type == RS::INSTANCE_MESH || p_type == RS::INSTANCE_MULTIMESH || p_type == RS::INSTANCE_PARTICLES || p_type == RS::INSTANCE_IMMEDIATE; } void RenderingServerScene::instance_set_use_lightmap(RID p_instance, RID p_lightmap_instance, RID p_lightmap) { Instance *instance = instance_owner.getornull(p_instance); ERR_FAIL_COND(!instance); if (instance->lightmap_capture) { InstanceLightmapCaptureData *lightmap_capture = static_cast(((Instance *)instance->lightmap_capture)->base_data); lightmap_capture->users.erase(instance); instance->lightmap = RID(); instance->lightmap_capture = nullptr; } if (p_lightmap_instance.is_valid()) { Instance *lightmap_instance = instance_owner.getornull(p_lightmap_instance); ERR_FAIL_COND(!lightmap_instance); ERR_FAIL_COND(lightmap_instance->base_type != RS::INSTANCE_LIGHTMAP_CAPTURE); instance->lightmap_capture = lightmap_instance; InstanceLightmapCaptureData *lightmap_capture = static_cast(((Instance *)instance->lightmap_capture)->base_data); lightmap_capture->users.insert(instance); instance->lightmap = p_lightmap; } } void RenderingServerScene::instance_set_custom_aabb(RID p_instance, AABB p_aabb) { Instance *instance = instance_owner.getornull(p_instance); ERR_FAIL_COND(!instance); ERR_FAIL_COND(!is_geometry_instance(instance->base_type)); if (p_aabb != AABB()) { // Set custom AABB if (instance->custom_aabb == nullptr) instance->custom_aabb = memnew(AABB); *instance->custom_aabb = p_aabb; } else { // Clear custom AABB if (instance->custom_aabb != nullptr) { memdelete(instance->custom_aabb); instance->custom_aabb = nullptr; } } if (instance->scenario) _instance_queue_update(instance, true, false); } void RenderingServerScene::instance_attach_skeleton(RID p_instance, RID p_skeleton) { Instance *instance = instance_owner.getornull(p_instance); ERR_FAIL_COND(!instance); if (instance->skeleton == p_skeleton) return; instance->skeleton = p_skeleton; if (p_skeleton.is_valid()) { //update the dependency now, so if cleared, we remove it RSG::storage->skeleton_update_dependency(p_skeleton, instance); } _instance_queue_update(instance, true, true); } void RenderingServerScene::instance_set_exterior(RID p_instance, bool p_enabled) { } void RenderingServerScene::instance_set_extra_visibility_margin(RID p_instance, real_t p_margin) { Instance *instance = instance_owner.getornull(p_instance); ERR_FAIL_COND(!instance); instance->extra_margin = p_margin; _instance_queue_update(instance, true, false); } Vector RenderingServerScene::instances_cull_aabb(const AABB &p_aabb, RID p_scenario) const { Vector instances; Scenario *scenario = scenario_owner.getornull(p_scenario); ERR_FAIL_COND_V(!scenario, instances); const_cast(this)->update_dirty_instances(); // check dirty instances before culling int culled = 0; Instance *cull[1024]; culled = scenario->octree.cull_aabb(p_aabb, cull, 1024); for (int i = 0; i < culled; i++) { Instance *instance = cull[i]; ERR_CONTINUE(!instance); if (instance->object_id.is_null()) continue; instances.push_back(instance->object_id); } return instances; } Vector RenderingServerScene::instances_cull_ray(const Vector3 &p_from, const Vector3 &p_to, RID p_scenario) const { Vector instances; Scenario *scenario = scenario_owner.getornull(p_scenario); ERR_FAIL_COND_V(!scenario, instances); const_cast(this)->update_dirty_instances(); // check dirty instances before culling int culled = 0; Instance *cull[1024]; culled = scenario->octree.cull_segment(p_from, p_from + p_to * 10000, cull, 1024); for (int i = 0; i < culled; i++) { Instance *instance = cull[i]; ERR_CONTINUE(!instance); if (instance->object_id.is_null()) continue; instances.push_back(instance->object_id); } return instances; } Vector RenderingServerScene::instances_cull_convex(const Vector &p_convex, RID p_scenario) const { Vector instances; Scenario *scenario = scenario_owner.getornull(p_scenario); ERR_FAIL_COND_V(!scenario, instances); const_cast(this)->update_dirty_instances(); // check dirty instances before culling int culled = 0; Instance *cull[1024]; culled = scenario->octree.cull_convex(p_convex, cull, 1024); for (int i = 0; i < culled; i++) { Instance *instance = cull[i]; ERR_CONTINUE(!instance); if (instance->object_id.is_null()) continue; instances.push_back(instance->object_id); } return instances; } void RenderingServerScene::instance_geometry_set_flag(RID p_instance, RS::InstanceFlags p_flags, bool p_enabled) { Instance *instance = instance_owner.getornull(p_instance); ERR_FAIL_COND(!instance); //ERR_FAIL_COND(((1 << instance->base_type) & RS::INSTANCE_GEOMETRY_MASK)); switch (p_flags) { case RS::INSTANCE_FLAG_USE_BAKED_LIGHT: { instance->baked_light = p_enabled; } break; case RS::INSTANCE_FLAG_USE_DYNAMIC_GI: { if (p_enabled == instance->dynamic_gi) { //bye, redundant return; } if (instance->octree_id != 0) { //remove from octree, it needs to be re-paired instance->scenario->octree.erase(instance->octree_id); instance->octree_id = 0; _instance_queue_update(instance, true, true); } //once out of octree, can be changed instance->dynamic_gi = p_enabled; } break; case RS::INSTANCE_FLAG_DRAW_NEXT_FRAME_IF_VISIBLE: { instance->redraw_if_visible = p_enabled; } break; default: { } } } void RenderingServerScene::instance_geometry_set_cast_shadows_setting(RID p_instance, RS::ShadowCastingSetting p_shadow_casting_setting) { Instance *instance = instance_owner.getornull(p_instance); ERR_FAIL_COND(!instance); instance->cast_shadows = p_shadow_casting_setting; _instance_queue_update(instance, false, true); } void RenderingServerScene::instance_geometry_set_material_override(RID p_instance, RID p_material) { Instance *instance = instance_owner.getornull(p_instance); ERR_FAIL_COND(!instance); instance->material_override = p_material; _instance_queue_update(instance, false, true); } void RenderingServerScene::instance_geometry_set_draw_range(RID p_instance, float p_min, float p_max, float p_min_margin, float p_max_margin) { } void RenderingServerScene::instance_geometry_set_as_instance_lod(RID p_instance, RID p_as_lod_of_instance) { } void RenderingServerScene::_update_instance(Instance *p_instance) { p_instance->version++; if (p_instance->base_type == RS::INSTANCE_LIGHT) { InstanceLightData *light = static_cast(p_instance->base_data); RSG::scene_render->light_instance_set_transform(light->instance, p_instance->transform); light->shadow_dirty = true; } if (p_instance->base_type == RS::INSTANCE_REFLECTION_PROBE) { InstanceReflectionProbeData *reflection_probe = static_cast(p_instance->base_data); RSG::scene_render->reflection_probe_instance_set_transform(reflection_probe->instance, p_instance->transform); reflection_probe->reflection_dirty = true; } if (p_instance->base_type == RS::INSTANCE_DECAL) { InstanceDecalData *decal = static_cast(p_instance->base_data); RSG::scene_render->decal_instance_set_transform(decal->instance, p_instance->transform); } if (p_instance->base_type == RS::INSTANCE_GI_PROBE) { InstanceGIProbeData *gi_probe = static_cast(p_instance->base_data); RSG::scene_render->gi_probe_instance_set_transform_to_data(gi_probe->probe_instance, p_instance->transform); } if (p_instance->base_type == RS::INSTANCE_PARTICLES) { RSG::storage->particles_set_emission_transform(p_instance->base, p_instance->transform); } if (p_instance->aabb.has_no_surface()) { return; } if ((1 << p_instance->base_type) & RS::INSTANCE_GEOMETRY_MASK) { InstanceGeometryData *geom = static_cast(p_instance->base_data); //make sure lights are updated if it casts shadow if (geom->can_cast_shadows) { for (List::Element *E = geom->lighting.front(); E; E = E->next()) { InstanceLightData *light = static_cast(E->get()->base_data); light->shadow_dirty = true; } } if (!p_instance->lightmap_capture && geom->lightmap_captures.size()) { //affected by lightmap captures, must update capture info! _update_instance_lightmap_captures(p_instance); } else { if (!p_instance->lightmap_capture_data.empty()) { p_instance->lightmap_capture_data.resize(0); //not in use, clear capture data } } } p_instance->mirror = p_instance->transform.basis.determinant() < 0.0; AABB new_aabb; new_aabb = p_instance->transform.xform(p_instance->aabb); p_instance->transformed_aabb = new_aabb; if (!p_instance->scenario) { return; } if (p_instance->octree_id == 0) { uint32_t base_type = 1 << p_instance->base_type; uint32_t pairable_mask = 0; bool pairable = false; if (p_instance->base_type == RS::INSTANCE_LIGHT || p_instance->base_type == RS::INSTANCE_REFLECTION_PROBE || p_instance->base_type == RS::INSTANCE_DECAL || p_instance->base_type == RS::INSTANCE_LIGHTMAP_CAPTURE) { pairable_mask = p_instance->visible ? RS::INSTANCE_GEOMETRY_MASK : 0; pairable = true; } if (p_instance->base_type == RS::INSTANCE_GI_PROBE) { //lights and geometries pairable_mask = p_instance->visible ? RS::INSTANCE_GEOMETRY_MASK | (1 << RS::INSTANCE_LIGHT) : 0; pairable = true; } // not inside octree p_instance->octree_id = p_instance->scenario->octree.create(p_instance, new_aabb, 0, pairable, base_type, pairable_mask); } else { /* if (new_aabb==p_instance->data.transformed_aabb) return; */ p_instance->scenario->octree.move(p_instance->octree_id, new_aabb); } } void RenderingServerScene::_update_instance_aabb(Instance *p_instance) { AABB new_aabb; ERR_FAIL_COND(p_instance->base_type != RS::INSTANCE_NONE && !p_instance->base.is_valid()); switch (p_instance->base_type) { case RenderingServer::INSTANCE_NONE: { // do nothing } break; case RenderingServer::INSTANCE_MESH: { if (p_instance->custom_aabb) new_aabb = *p_instance->custom_aabb; else new_aabb = RSG::storage->mesh_get_aabb(p_instance->base, p_instance->skeleton); } break; case RenderingServer::INSTANCE_MULTIMESH: { if (p_instance->custom_aabb) new_aabb = *p_instance->custom_aabb; else new_aabb = RSG::storage->multimesh_get_aabb(p_instance->base); } break; case RenderingServer::INSTANCE_IMMEDIATE: { if (p_instance->custom_aabb) new_aabb = *p_instance->custom_aabb; else new_aabb = RSG::storage->immediate_get_aabb(p_instance->base); } break; case RenderingServer::INSTANCE_PARTICLES: { if (p_instance->custom_aabb) new_aabb = *p_instance->custom_aabb; else new_aabb = RSG::storage->particles_get_aabb(p_instance->base); } break; case RenderingServer::INSTANCE_LIGHT: { new_aabb = RSG::storage->light_get_aabb(p_instance->base); } break; case RenderingServer::INSTANCE_REFLECTION_PROBE: { new_aabb = RSG::storage->reflection_probe_get_aabb(p_instance->base); } break; case RenderingServer::INSTANCE_DECAL: { new_aabb = RSG::storage->decal_get_aabb(p_instance->base); } break; case RenderingServer::INSTANCE_GI_PROBE: { new_aabb = RSG::storage->gi_probe_get_bounds(p_instance->base); } break; case RenderingServer::INSTANCE_LIGHTMAP_CAPTURE: { new_aabb = RSG::storage->lightmap_capture_get_bounds(p_instance->base); } break; default: { } } // This is why I didn't re-use Instance::aabb to implement custom AABBs if (p_instance->extra_margin) new_aabb.grow_by(p_instance->extra_margin); p_instance->aabb = new_aabb; } _FORCE_INLINE_ static void _light_capture_sample_octree(const RasterizerStorage::LightmapCaptureOctree *p_octree, int p_cell_subdiv, const Vector3 &p_pos, const Vector3 &p_dir, float p_level, Vector3 &r_color, float &r_alpha) { static const Vector3 aniso_normal[6] = { Vector3(-1, 0, 0), Vector3(1, 0, 0), Vector3(0, -1, 0), Vector3(0, 1, 0), Vector3(0, 0, -1), Vector3(0, 0, 1) }; int size = 1 << (p_cell_subdiv - 1); int clamp_v = size - 1; //first of all, clamp Vector3 pos; pos.x = CLAMP(p_pos.x, 0, clamp_v); pos.y = CLAMP(p_pos.y, 0, clamp_v); pos.z = CLAMP(p_pos.z, 0, clamp_v); float level = (p_cell_subdiv - 1) - p_level; int target_level; float level_filter; if (level <= 0.0) { level_filter = 0; target_level = 0; } else { target_level = Math::ceil(level); level_filter = target_level - level; } Vector3 color[2][8]; float alpha[2][8]; zeromem(alpha, sizeof(float) * 2 * 8); //find cell at given level first for (int c = 0; c < 2; c++) { int current_level = MAX(0, target_level - c); int level_cell_size = (1 << (p_cell_subdiv - 1)) >> current_level; for (int n = 0; n < 8; n++) { int x = int(pos.x); int y = int(pos.y); int z = int(pos.z); if (n & 1) x += level_cell_size; if (n & 2) y += level_cell_size; if (n & 4) z += level_cell_size; int ofs_x = 0; int ofs_y = 0; int ofs_z = 0; x = CLAMP(x, 0, clamp_v); y = CLAMP(y, 0, clamp_v); z = CLAMP(z, 0, clamp_v); int half = size / 2; uint32_t cell = 0; for (int i = 0; i < current_level; i++) { const RasterizerStorage::LightmapCaptureOctree *bc = &p_octree[cell]; int child = 0; if (x >= ofs_x + half) { child |= 1; ofs_x += half; } if (y >= ofs_y + half) { child |= 2; ofs_y += half; } if (z >= ofs_z + half) { child |= 4; ofs_z += half; } cell = bc->children[child]; if (cell == RasterizerStorage::LightmapCaptureOctree::CHILD_EMPTY) break; half >>= 1; } if (cell == RasterizerStorage::LightmapCaptureOctree::CHILD_EMPTY) { alpha[c][n] = 0; } else { alpha[c][n] = p_octree[cell].alpha; for (int i = 0; i < 6; i++) { //anisotropic read light float amount = p_dir.dot(aniso_normal[i]); if (amount < 0) amount = 0; color[c][n].x += p_octree[cell].light[i][0] / 1024.0 * amount; color[c][n].y += p_octree[cell].light[i][1] / 1024.0 * amount; color[c][n].z += p_octree[cell].light[i][2] / 1024.0 * amount; } } //print_line("\tlev " + itos(c) + " - " + itos(n) + " alpha: " + rtos(cells[test_cell].alpha) + " col: " + color[c][n]); } } float target_level_size = size >> target_level; Vector3 pos_fract[2]; pos_fract[0].x = Math::fmod(pos.x, target_level_size) / target_level_size; pos_fract[0].y = Math::fmod(pos.y, target_level_size) / target_level_size; pos_fract[0].z = Math::fmod(pos.z, target_level_size) / target_level_size; target_level_size = size >> MAX(0, target_level - 1); pos_fract[1].x = Math::fmod(pos.x, target_level_size) / target_level_size; pos_fract[1].y = Math::fmod(pos.y, target_level_size) / target_level_size; pos_fract[1].z = Math::fmod(pos.z, target_level_size) / target_level_size; float alpha_interp[2]; Vector3 color_interp[2]; for (int i = 0; i < 2; i++) { Vector3 color_x00 = color[i][0].linear_interpolate(color[i][1], pos_fract[i].x); Vector3 color_xy0 = color[i][2].linear_interpolate(color[i][3], pos_fract[i].x); Vector3 blend_z0 = color_x00.linear_interpolate(color_xy0, pos_fract[i].y); Vector3 color_x0z = color[i][4].linear_interpolate(color[i][5], pos_fract[i].x); Vector3 color_xyz = color[i][6].linear_interpolate(color[i][7], pos_fract[i].x); Vector3 blend_z1 = color_x0z.linear_interpolate(color_xyz, pos_fract[i].y); color_interp[i] = blend_z0.linear_interpolate(blend_z1, pos_fract[i].z); float alpha_x00 = Math::lerp(alpha[i][0], alpha[i][1], pos_fract[i].x); float alpha_xy0 = Math::lerp(alpha[i][2], alpha[i][3], pos_fract[i].x); float alpha_z0 = Math::lerp(alpha_x00, alpha_xy0, pos_fract[i].y); float alpha_x0z = Math::lerp(alpha[i][4], alpha[i][5], pos_fract[i].x); float alpha_xyz = Math::lerp(alpha[i][6], alpha[i][7], pos_fract[i].x); float alpha_z1 = Math::lerp(alpha_x0z, alpha_xyz, pos_fract[i].y); alpha_interp[i] = Math::lerp(alpha_z0, alpha_z1, pos_fract[i].z); } r_color = color_interp[0].linear_interpolate(color_interp[1], level_filter); r_alpha = Math::lerp(alpha_interp[0], alpha_interp[1], level_filter); //print_line("pos: " + p_posf + " level " + rtos(p_level) + " down to " + itos(target_level) + "." + rtos(level_filter) + " color " + r_color + " alpha " + rtos(r_alpha)); } _FORCE_INLINE_ static Color _light_capture_voxel_cone_trace(const RasterizerStorage::LightmapCaptureOctree *p_octree, const Vector3 &p_pos, const Vector3 &p_dir, float p_aperture, int p_cell_subdiv) { float bias = 0.0; //no need for bias here float max_distance = (Vector3(1, 1, 1) * (1 << (p_cell_subdiv - 1))).length(); float dist = bias; float alpha = 0.0; Vector3 color; Vector3 scolor; float salpha; while (dist < max_distance && alpha < 0.95) { float diameter = MAX(1.0, 2.0 * p_aperture * dist); _light_capture_sample_octree(p_octree, p_cell_subdiv, p_pos + dist * p_dir, p_dir, log2(diameter), scolor, salpha); float a = (1.0 - alpha); color += scolor * a; alpha += a * salpha; dist += diameter * 0.5; } return Color(color.x, color.y, color.z, alpha); } void RenderingServerScene::_update_instance_lightmap_captures(Instance *p_instance) { InstanceGeometryData *geom = static_cast(p_instance->base_data); static const Vector3 cone_traces[12] = { Vector3(0, 0, 1), Vector3(0.866025, 0, 0.5), Vector3(0.267617, 0.823639, 0.5), Vector3(-0.700629, 0.509037, 0.5), Vector3(-0.700629, -0.509037, 0.5), Vector3(0.267617, -0.823639, 0.5), Vector3(0, 0, -1), Vector3(0.866025, 0, -0.5), Vector3(0.267617, 0.823639, -0.5), Vector3(-0.700629, 0.509037, -0.5), Vector3(-0.700629, -0.509037, -0.5), Vector3(0.267617, -0.823639, -0.5) }; float cone_aperture = 0.577; // tan(angle) 60 degrees if (p_instance->lightmap_capture_data.empty()) { p_instance->lightmap_capture_data.resize(12); } //print_line("update captures for pos: " + p_instance->transform.origin); for (int i = 0; i < 12; i++) new (&p_instance->lightmap_capture_data.ptrw()[i]) Color; //this could use some sort of blending.. for (List::Element *E = geom->lightmap_captures.front(); E; E = E->next()) { const Vector *octree = RSG::storage->lightmap_capture_get_octree_ptr(E->get()->base); //print_line("octree size: " + itos(octree->size())); if (octree->size() == 0) continue; Transform to_cell_xform = RSG::storage->lightmap_capture_get_octree_cell_transform(E->get()->base); int cell_subdiv = RSG::storage->lightmap_capture_get_octree_cell_subdiv(E->get()->base); to_cell_xform = to_cell_xform * E->get()->transform.affine_inverse(); const RasterizerStorage::LightmapCaptureOctree *octree_r = octree->ptr(); Vector3 pos = to_cell_xform.xform(p_instance->transform.origin); for (int i = 0; i < 12; i++) { Vector3 dir = to_cell_xform.basis.xform(cone_traces[i]).normalized(); Color capture = _light_capture_voxel_cone_trace(octree_r, pos, dir, cone_aperture, cell_subdiv); p_instance->lightmap_capture_data.write[i] += capture; } } } bool RenderingServerScene::_light_instance_update_shadow(Instance *p_instance, const Transform p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_orthogonal, bool p_cam_vaspect, RID p_shadow_atlas, Scenario *p_scenario) { InstanceLightData *light = static_cast(p_instance->base_data); Transform light_transform = p_instance->transform; light_transform.orthonormalize(); //scale does not count on lights bool animated_material_found = false; switch (RSG::storage->light_get_type(p_instance->base)) { case RS::LIGHT_DIRECTIONAL: { real_t max_distance = p_cam_projection.get_z_far(); real_t shadow_max = RSG::storage->light_get_param(p_instance->base, RS::LIGHT_PARAM_SHADOW_MAX_DISTANCE); if (shadow_max > 0 && !p_cam_orthogonal) { //its impractical (and leads to unwanted behaviors) to set max distance in orthogonal camera max_distance = MIN(shadow_max, max_distance); } max_distance = MAX(max_distance, p_cam_projection.get_z_near() + 0.001); real_t min_distance = MIN(p_cam_projection.get_z_near(), max_distance); RS::LightDirectionalShadowDepthRangeMode depth_range_mode = RSG::storage->light_directional_get_shadow_depth_range_mode(p_instance->base); real_t pancake_size = RSG::storage->light_get_param(p_instance->base, RS::LIGHT_PARAM_SHADOW_PANCAKE_SIZE); if (depth_range_mode == RS::LIGHT_DIRECTIONAL_SHADOW_DEPTH_RANGE_OPTIMIZED) { //optimize min/max Vector planes = p_cam_projection.get_projection_planes(p_cam_transform); int cull_count = p_scenario->octree.cull_convex(planes, instance_shadow_cull_result, MAX_INSTANCE_CULL, RS::INSTANCE_GEOMETRY_MASK); Plane base(p_cam_transform.origin, -p_cam_transform.basis.get_axis(2)); //check distance max and min bool found_items = false; real_t z_max = -1e20; real_t z_min = 1e20; for (int i = 0; i < cull_count; i++) { Instance *instance = instance_shadow_cull_result[i]; if (!instance->visible || !((1 << instance->base_type) & RS::INSTANCE_GEOMETRY_MASK) || !static_cast(instance->base_data)->can_cast_shadows) { continue; } if (static_cast(instance->base_data)->material_is_animated) { animated_material_found = true; } real_t max, min; instance->transformed_aabb.project_range_in_plane(base, min, max); if (max > z_max) { z_max = max; } if (min < z_min) { z_min = min; } found_items = true; } if (found_items) { min_distance = MAX(min_distance, z_min); max_distance = MIN(max_distance, z_max); } } real_t range = max_distance - min_distance; int splits = 0; switch (RSG::storage->light_directional_get_shadow_mode(p_instance->base)) { case RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL: splits = 1; break; case RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS: splits = 2; break; case RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS: splits = 4; break; } real_t distances[5]; distances[0] = min_distance; for (int i = 0; i < splits; i++) { distances[i + 1] = min_distance + RSG::storage->light_get_param(p_instance->base, RS::LightParam(RS::LIGHT_PARAM_SHADOW_SPLIT_1_OFFSET + i)) * range; }; distances[splits] = max_distance; real_t texture_size = RSG::scene_render->get_directional_light_shadow_size(light->instance); bool overlap = RSG::storage->light_directional_get_blend_splits(p_instance->base); real_t first_radius = 0.0; real_t min_distance_bias_scale = pancake_size > 0 ? distances[1] / 10.0 : 0; for (int i = 0; i < splits; i++) { RENDER_TIMESTAMP("Culling Directional Light split" + itos(i)); // setup a camera matrix for that range! CameraMatrix camera_matrix; real_t aspect = p_cam_projection.get_aspect(); if (p_cam_orthogonal) { Vector2 vp_he = p_cam_projection.get_viewport_half_extents(); camera_matrix.set_orthogonal(vp_he.y * 2.0, aspect, distances[(i == 0 || !overlap) ? i : i - 1], distances[i + 1], false); } else { real_t fov = p_cam_projection.get_fov(); //this is actually yfov, because set aspect tries to keep it camera_matrix.set_perspective(fov, aspect, distances[(i == 0 || !overlap) ? i : i - 1], distances[i + 1], true); } //obtain the frustum endpoints Vector3 endpoints[8]; // frustum plane endpoints bool res = camera_matrix.get_endpoints(p_cam_transform, endpoints); ERR_CONTINUE(!res); // obtain the light frustm ranges (given endpoints) Transform transform = light_transform; //discard scale and stabilize light Vector3 x_vec = transform.basis.get_axis(Vector3::AXIS_X).normalized(); Vector3 y_vec = transform.basis.get_axis(Vector3::AXIS_Y).normalized(); Vector3 z_vec = transform.basis.get_axis(Vector3::AXIS_Z).normalized(); //z_vec points agsint the camera, like in default opengl real_t x_min = 0.f, x_max = 0.f; real_t y_min = 0.f, y_max = 0.f; real_t z_min = 0.f, z_max = 0.f; // FIXME: z_max_cam is defined, computed, but not used below when setting up // ortho_camera. Commented out for now to fix warnings but should be investigated. real_t x_min_cam = 0.f, x_max_cam = 0.f; real_t y_min_cam = 0.f, y_max_cam = 0.f; real_t z_min_cam = 0.f; //real_t z_max_cam = 0.f; real_t bias_scale = 1.0; real_t aspect_bias_scale = 1.0; //used for culling for (int j = 0; j < 8; j++) { real_t d_x = x_vec.dot(endpoints[j]); real_t d_y = y_vec.dot(endpoints[j]); real_t d_z = z_vec.dot(endpoints[j]); if (j == 0 || d_x < x_min) x_min = d_x; if (j == 0 || d_x > x_max) x_max = d_x; if (j == 0 || d_y < y_min) y_min = d_y; if (j == 0 || d_y > y_max) y_max = d_y; if (j == 0 || d_z < z_min) z_min = d_z; if (j == 0 || d_z > z_max) z_max = d_z; } real_t radius = 0; real_t soft_shadow_expand = 0; Vector3 center; { //camera viewport stuff for (int j = 0; j < 8; j++) { center += endpoints[j]; } center /= 8.0; //center=x_vec*(x_max-x_min)*0.5 + y_vec*(y_max-y_min)*0.5 + z_vec*(z_max-z_min)*0.5; for (int j = 0; j < 8; j++) { real_t d = center.distance_to(endpoints[j]); if (d > radius) radius = d; } radius *= texture_size / (texture_size - 2.0); //add a texel by each side if (i == 0) { first_radius = radius; } else { bias_scale = radius / first_radius; } z_min_cam = z_vec.dot(center) - radius; { float soft_shadow_angle = RSG::storage->light_get_param(p_instance->base, RS::LIGHT_PARAM_SIZE); if (soft_shadow_angle > 0.0 && pancake_size > 0.0) { float z_range = (z_vec.dot(center) + radius + pancake_size) - z_min_cam; soft_shadow_expand = Math::tan(Math::deg2rad(soft_shadow_angle)) * z_range; x_max += soft_shadow_expand; y_max += soft_shadow_expand; x_min -= soft_shadow_expand; y_min -= soft_shadow_expand; } } x_max_cam = x_vec.dot(center) + radius + soft_shadow_expand; x_min_cam = x_vec.dot(center) - radius - soft_shadow_expand; y_max_cam = y_vec.dot(center) + radius + soft_shadow_expand; y_min_cam = y_vec.dot(center) - radius - soft_shadow_expand; if (depth_range_mode == RS::LIGHT_DIRECTIONAL_SHADOW_DEPTH_RANGE_STABLE) { //this trick here is what stabilizes the shadow (make potential jaggies to not move) //at the cost of some wasted resolution. Still the quality increase is very well worth it real_t unit = radius * 2.0 / texture_size; x_max_cam = Math::stepify(x_max_cam, unit); x_min_cam = Math::stepify(x_min_cam, unit); y_max_cam = Math::stepify(y_max_cam, unit); y_min_cam = Math::stepify(y_min_cam, unit); } } //now that we now all ranges, we can proceed to make the light frustum planes, for culling octree Vector light_frustum_planes; light_frustum_planes.resize(6); //right/left light_frustum_planes.write[0] = Plane(x_vec, x_max); light_frustum_planes.write[1] = Plane(-x_vec, -x_min); //top/bottom light_frustum_planes.write[2] = Plane(y_vec, y_max); light_frustum_planes.write[3] = Plane(-y_vec, -y_min); //near/far light_frustum_planes.write[4] = Plane(z_vec, z_max + 1e6); light_frustum_planes.write[5] = Plane(-z_vec, -z_min); // z_min is ok, since casters further than far-light plane are not needed int cull_count = p_scenario->octree.cull_convex(light_frustum_planes, instance_shadow_cull_result, MAX_INSTANCE_CULL, RS::INSTANCE_GEOMETRY_MASK); // a pre pass will need to be needed to determine the actual z-near to be used Plane near_plane(light_transform.origin, -light_transform.basis.get_axis(2)); real_t cull_max = 0; for (int j = 0; j < cull_count; j++) { real_t min, max; Instance *instance = instance_shadow_cull_result[j]; if (!instance->visible || !((1 << instance->base_type) & RS::INSTANCE_GEOMETRY_MASK) || !static_cast(instance->base_data)->can_cast_shadows) { cull_count--; SWAP(instance_shadow_cull_result[j], instance_shadow_cull_result[cull_count]); j--; continue; } instance->transformed_aabb.project_range_in_plane(Plane(z_vec, 0), min, max); instance->depth = near_plane.distance_to(instance->transform.origin); instance->depth_layer = 0; if (j == 0 || max > cull_max) { cull_max = max; } } if (cull_max > z_max) { z_max = cull_max; } if (pancake_size > 0) { z_max = z_vec.dot(center) + radius + pancake_size; } if (aspect != 1.0) { // if the aspect is different, then the radius will become larger. // if this happens, then bias needs to be adjusted too, as depth will increase // to do this, compare the depth of one that would have resulted from a square frustum CameraMatrix camera_matrix_square; if (p_cam_orthogonal) { Vector2 vp_he = camera_matrix.get_viewport_half_extents(); if (p_cam_vaspect) { camera_matrix_square.set_orthogonal(vp_he.x * 2.0, 1.0, distances[(i == 0 || !overlap) ? i : i - 1], distances[i + 1], true); } else { camera_matrix_square.set_orthogonal(vp_he.y * 2.0, 1.0, distances[(i == 0 || !overlap) ? i : i - 1], distances[i + 1], false); } } else { Vector2 vp_he = camera_matrix.get_viewport_half_extents(); if (p_cam_vaspect) { camera_matrix_square.set_frustum(vp_he.x * 2.0, 1.0, Vector2(), distances[(i == 0 || !overlap) ? i : i - 1], distances[i + 1], true); } else { camera_matrix_square.set_frustum(vp_he.y * 2.0, 1.0, Vector2(), distances[(i == 0 || !overlap) ? i : i - 1], distances[i + 1], false); } if (i == 0) { //print_line("prev he: " + vp_he + " new he: " + camera_matrix_square.get_viewport_half_extents()); } } Vector3 endpoints_square[8]; // frustum plane endpoints res = camera_matrix_square.get_endpoints(p_cam_transform, endpoints_square); ERR_CONTINUE(!res); Vector3 center_square; real_t z_max_square = 0; for (int j = 0; j < 8; j++) { center_square += endpoints_square[j]; real_t d_z = z_vec.dot(endpoints_square[j]); if (j == 0 || d_z > z_max_square) z_max_square = d_z; } if (cull_max > z_max_square) { z_max_square = cull_max; } center_square /= 8.0; real_t radius_square = 0; for (int j = 0; j < 8; j++) { real_t d = center_square.distance_to(endpoints_square[j]); if (d > radius_square) radius_square = d; } radius_square *= texture_size / (texture_size - 2.0); //add a texel by each side if (pancake_size > 0) { z_max_square = z_vec.dot(center_square) + radius_square + pancake_size; } real_t z_min_cam_square = z_vec.dot(center_square) - radius_square; aspect_bias_scale = (z_max - z_min_cam) / (z_max_square - z_min_cam_square); // this is not entirely perfect, because the cull-adjusted z-max may be different // but at least it's warranted that it results in a greater bias, so no acne should be present either way. // pancaking also helps with this. } { CameraMatrix ortho_camera; real_t half_x = (x_max_cam - x_min_cam) * 0.5; real_t half_y = (y_max_cam - y_min_cam) * 0.5; ortho_camera.set_orthogonal(-half_x, half_x, -half_y, half_y, 0, (z_max - z_min_cam)); Vector2 uv_scale(1.0 / (x_max_cam - x_min_cam), 1.0 / (y_max_cam - y_min_cam)); Transform ortho_transform; ortho_transform.basis = transform.basis; ortho_transform.origin = x_vec * (x_min_cam + half_x) + y_vec * (y_min_cam + half_y) + z_vec * z_max; { Vector3 max_in_view = p_cam_transform.affine_inverse().xform(z_vec * cull_max); Vector3 dir_in_view = p_cam_transform.xform_inv(z_vec).normalized(); cull_max = dir_in_view.dot(max_in_view); } RSG::scene_render->light_instance_set_shadow_transform(light->instance, ortho_camera, ortho_transform, z_max - z_min_cam, distances[i + 1], i, radius * 2.0 / texture_size, bias_scale * aspect_bias_scale * min_distance_bias_scale, z_max, uv_scale); } RSG::scene_render->render_shadow(light->instance, p_shadow_atlas, i, (RasterizerScene::InstanceBase **)instance_shadow_cull_result, cull_count); } } break; case RS::LIGHT_OMNI: { RS::LightOmniShadowMode shadow_mode = RSG::storage->light_omni_get_shadow_mode(p_instance->base); if (shadow_mode == RS::LIGHT_OMNI_SHADOW_DUAL_PARABOLOID || !RSG::scene_render->light_instances_can_render_shadow_cube()) { for (int i = 0; i < 2; i++) { //using this one ensures that raster deferred will have it RENDER_TIMESTAMP("Culling Shadow Paraboloid" + itos(i)); real_t radius = RSG::storage->light_get_param(p_instance->base, RS::LIGHT_PARAM_RANGE); real_t z = i == 0 ? -1 : 1; Vector planes; planes.resize(5); planes.write[0] = light_transform.xform(Plane(Vector3(0, 0, z), radius)); planes.write[1] = light_transform.xform(Plane(Vector3(1, 0, z).normalized(), radius)); planes.write[2] = light_transform.xform(Plane(Vector3(-1, 0, z).normalized(), radius)); planes.write[3] = light_transform.xform(Plane(Vector3(0, 1, z).normalized(), radius)); planes.write[4] = light_transform.xform(Plane(Vector3(0, -1, z).normalized(), radius)); int cull_count = p_scenario->octree.cull_convex(planes, instance_shadow_cull_result, MAX_INSTANCE_CULL, RS::INSTANCE_GEOMETRY_MASK); Plane near_plane(light_transform.origin, light_transform.basis.get_axis(2) * z); for (int j = 0; j < cull_count; j++) { Instance *instance = instance_shadow_cull_result[j]; if (!instance->visible || !((1 << instance->base_type) & RS::INSTANCE_GEOMETRY_MASK) || !static_cast(instance->base_data)->can_cast_shadows) { cull_count--; SWAP(instance_shadow_cull_result[j], instance_shadow_cull_result[cull_count]); j--; } else { if (static_cast(instance->base_data)->material_is_animated) { animated_material_found = true; } instance->depth = near_plane.distance_to(instance->transform.origin); instance->depth_layer = 0; } } RSG::scene_render->light_instance_set_shadow_transform(light->instance, CameraMatrix(), light_transform, radius, 0, i, 0); RSG::scene_render->render_shadow(light->instance, p_shadow_atlas, i, (RasterizerScene::InstanceBase **)instance_shadow_cull_result, cull_count); } } else { //shadow cube real_t radius = RSG::storage->light_get_param(p_instance->base, RS::LIGHT_PARAM_RANGE); CameraMatrix cm; cm.set_perspective(90, 1, 0.01, radius); for (int i = 0; i < 6; i++) { RENDER_TIMESTAMP("Culling Shadow Cube side" + itos(i)); //using this one ensures that raster deferred will have it static const Vector3 view_normals[6] = { Vector3(+1, 0, 0), Vector3(-1, 0, 0), Vector3(0, -1, 0), Vector3(0, +1, 0), Vector3(0, 0, +1), Vector3(0, 0, -1) }; static const Vector3 view_up[6] = { Vector3(0, -1, 0), Vector3(0, -1, 0), Vector3(0, 0, -1), Vector3(0, 0, +1), Vector3(0, -1, 0), Vector3(0, -1, 0) }; Transform xform = light_transform * Transform().looking_at(view_normals[i], view_up[i]); Vector planes = cm.get_projection_planes(xform); int cull_count = p_scenario->octree.cull_convex(planes, instance_shadow_cull_result, MAX_INSTANCE_CULL, RS::INSTANCE_GEOMETRY_MASK); Plane near_plane(xform.origin, -xform.basis.get_axis(2)); for (int j = 0; j < cull_count; j++) { Instance *instance = instance_shadow_cull_result[j]; if (!instance->visible || !((1 << instance->base_type) & RS::INSTANCE_GEOMETRY_MASK) || !static_cast(instance->base_data)->can_cast_shadows) { cull_count--; SWAP(instance_shadow_cull_result[j], instance_shadow_cull_result[cull_count]); j--; } else { if (static_cast(instance->base_data)->material_is_animated) { animated_material_found = true; } instance->depth = near_plane.distance_to(instance->transform.origin); instance->depth_layer = 0; } } RSG::scene_render->light_instance_set_shadow_transform(light->instance, cm, xform, radius, 0, i, 0); RSG::scene_render->render_shadow(light->instance, p_shadow_atlas, i, (RasterizerScene::InstanceBase **)instance_shadow_cull_result, cull_count); } //restore the regular DP matrix RSG::scene_render->light_instance_set_shadow_transform(light->instance, CameraMatrix(), light_transform, radius, 0, 0, 0); } } break; case RS::LIGHT_SPOT: { RENDER_TIMESTAMP("Culling Spot Light"); real_t radius = RSG::storage->light_get_param(p_instance->base, RS::LIGHT_PARAM_RANGE); real_t angle = RSG::storage->light_get_param(p_instance->base, RS::LIGHT_PARAM_SPOT_ANGLE); CameraMatrix cm; cm.set_perspective(angle * 2.0, 1.0, 0.01, radius); Vector planes = cm.get_projection_planes(light_transform); int cull_count = p_scenario->octree.cull_convex(planes, instance_shadow_cull_result, MAX_INSTANCE_CULL, RS::INSTANCE_GEOMETRY_MASK); Plane near_plane(light_transform.origin, -light_transform.basis.get_axis(2)); for (int j = 0; j < cull_count; j++) { Instance *instance = instance_shadow_cull_result[j]; if (!instance->visible || !((1 << instance->base_type) & RS::INSTANCE_GEOMETRY_MASK) || !static_cast(instance->base_data)->can_cast_shadows) { cull_count--; SWAP(instance_shadow_cull_result[j], instance_shadow_cull_result[cull_count]); j--; } else { if (static_cast(instance->base_data)->material_is_animated) { animated_material_found = true; } instance->depth = near_plane.distance_to(instance->transform.origin); instance->depth_layer = 0; } } RSG::scene_render->light_instance_set_shadow_transform(light->instance, cm, light_transform, radius, 0, 0, 0); RSG::scene_render->render_shadow(light->instance, p_shadow_atlas, 0, (RasterizerScene::InstanceBase **)instance_shadow_cull_result, cull_count); } break; } return animated_material_found; } void RenderingServerScene::render_camera(RID p_render_buffers, RID p_camera, RID p_scenario, Size2 p_viewport_size, RID p_shadow_atlas) { // render to mono camera #ifndef _3D_DISABLED Camera *camera = camera_owner.getornull(p_camera); ERR_FAIL_COND(!camera); /* STEP 1 - SETUP CAMERA */ CameraMatrix camera_matrix; bool ortho = false; switch (camera->type) { case Camera::ORTHOGONAL: { camera_matrix.set_orthogonal( camera->size, p_viewport_size.width / (float)p_viewport_size.height, camera->znear, camera->zfar, camera->vaspect); ortho = true; } break; case Camera::PERSPECTIVE: { camera_matrix.set_perspective( camera->fov, p_viewport_size.width / (float)p_viewport_size.height, camera->znear, camera->zfar, camera->vaspect); ortho = false; } break; case Camera::FRUSTUM: { camera_matrix.set_frustum( camera->size, p_viewport_size.width / (float)p_viewport_size.height, camera->offset, camera->znear, camera->zfar, camera->vaspect); ortho = false; } break; } _prepare_scene(camera->transform, camera_matrix, ortho, camera->vaspect, camera->env, camera->effects, camera->visible_layers, p_scenario, p_shadow_atlas, RID()); _render_scene(p_render_buffers, camera->transform, camera_matrix, ortho, camera->env, camera->effects, p_scenario, p_shadow_atlas, RID(), -1); #endif } void RenderingServerScene::render_camera(RID p_render_buffers, Ref &p_interface, XRInterface::Eyes p_eye, RID p_camera, RID p_scenario, Size2 p_viewport_size, RID p_shadow_atlas) { // render for AR/VR interface Camera *camera = camera_owner.getornull(p_camera); ERR_FAIL_COND(!camera); /* SETUP CAMERA, we are ignoring type and FOV here */ float aspect = p_viewport_size.width / (float)p_viewport_size.height; CameraMatrix camera_matrix = p_interface->get_projection_for_eye(p_eye, aspect, camera->znear, camera->zfar); // We also ignore our camera position, it will have been positioned with a slightly old tracking position. // Instead we take our origin point and have our ar/vr interface add fresh tracking data! Whoohoo! Transform world_origin = XRServer::get_singleton()->get_world_origin(); Transform cam_transform = p_interface->get_transform_for_eye(p_eye, world_origin); // For stereo render we only prepare for our left eye and then reuse the outcome for our right eye if (p_eye == XRInterface::EYE_LEFT) { // Center our transform, we assume basis is equal. Transform mono_transform = cam_transform; Transform right_transform = p_interface->get_transform_for_eye(XRInterface::EYE_RIGHT, world_origin); mono_transform.origin += right_transform.origin; mono_transform.origin *= 0.5; // We need to combine our projection frustums for culling. // Ideally we should use our clipping planes for this and combine them, // however our shadow map logic uses our projection matrix. // Note: as our left and right frustums should be mirrored, we don't need our right projection matrix. // - get some base values we need float eye_dist = (mono_transform.origin - cam_transform.origin).length(); float z_near = camera_matrix.get_z_near(); // get our near plane float z_far = camera_matrix.get_z_far(); // get our far plane float width = (2.0 * z_near) / camera_matrix.matrix[0][0]; float x_shift = width * camera_matrix.matrix[2][0]; float height = (2.0 * z_near) / camera_matrix.matrix[1][1]; float y_shift = height * camera_matrix.matrix[2][1]; // printf("Eye_dist = %f, Near = %f, Far = %f, Width = %f, Shift = %f\n", eye_dist, z_near, z_far, width, x_shift); // - calculate our near plane size (horizontal only, right_near is mirrored) float left_near = -eye_dist - ((width - x_shift) * 0.5); // - calculate our far plane size (horizontal only, right_far is mirrored) float left_far = -eye_dist - (z_far * (width - x_shift) * 0.5 / z_near); float left_far_right_eye = eye_dist - (z_far * (width + x_shift) * 0.5 / z_near); if (left_far > left_far_right_eye) { // on displays smaller then double our iod, the right eye far frustrum can overtake the left eyes. left_far = left_far_right_eye; } // - figure out required z-shift float slope = (left_far - left_near) / (z_far - z_near); float z_shift = (left_near / slope) - z_near; // - figure out new vertical near plane size (this will be slightly oversized thanks to our z-shift) float top_near = (height - y_shift) * 0.5; top_near += (top_near / z_near) * z_shift; float bottom_near = -(height + y_shift) * 0.5; bottom_near += (bottom_near / z_near) * z_shift; // printf("Left_near = %f, Left_far = %f, Top_near = %f, Bottom_near = %f, Z_shift = %f\n", left_near, left_far, top_near, bottom_near, z_shift); // - generate our frustum CameraMatrix combined_matrix; combined_matrix.set_frustum(left_near, -left_near, bottom_near, top_near, z_near + z_shift, z_far + z_shift); // and finally move our camera back Transform apply_z_shift; apply_z_shift.origin = Vector3(0.0, 0.0, z_shift); // z negative is forward so this moves it backwards mono_transform *= apply_z_shift; // now prepare our scene with our adjusted transform projection matrix _prepare_scene(mono_transform, combined_matrix, false, false, camera->env, camera->effects, camera->visible_layers, p_scenario, p_shadow_atlas, RID()); } else if (p_eye == XRInterface::EYE_MONO) { // For mono render, prepare as per usual _prepare_scene(cam_transform, camera_matrix, false, false, camera->env, camera->effects, camera->visible_layers, p_scenario, p_shadow_atlas, RID()); } // And render our scene... _render_scene(p_render_buffers, cam_transform, camera_matrix, false, camera->env, camera->effects, p_scenario, p_shadow_atlas, RID(), -1); }; void RenderingServerScene::_prepare_scene(const Transform p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_orthogonal, bool p_cam_vaspect, RID p_force_environment, RID p_force_camera_effects, uint32_t p_visible_layers, RID p_scenario, RID p_shadow_atlas, RID p_reflection_probe, bool p_using_shadows) { // Note, in stereo rendering: // - p_cam_transform will be a transform in the middle of our two eyes // - p_cam_projection is a wider frustrum that encompasses both eyes Scenario *scenario = scenario_owner.getornull(p_scenario); render_pass++; uint32_t camera_layer_mask = p_visible_layers; RSG::scene_render->set_scene_pass(render_pass); RENDER_TIMESTAMP("Frustum Culling"); //rasterizer->set_camera(camera->transform, camera_matrix,ortho); Vector planes = p_cam_projection.get_projection_planes(p_cam_transform); Plane near_plane(p_cam_transform.origin, -p_cam_transform.basis.get_axis(2).normalized()); float z_far = p_cam_projection.get_z_far(); /* STEP 2 - CULL */ instance_cull_count = scenario->octree.cull_convex(planes, instance_cull_result, MAX_INSTANCE_CULL); light_cull_count = 0; reflection_probe_cull_count = 0; decal_cull_count = 0; gi_probe_cull_count = 0; //light_samplers_culled=0; /* print_line("OT: "+rtos( (OS::get_singleton()->get_ticks_usec()-t)/1000.0)); print_line("OTO: "+itos(p_scenario->octree.get_octant_count())); print_line("OTE: "+itos(p_scenario->octree.get_elem_count())); print_line("OTP: "+itos(p_scenario->octree.get_pair_count())); */ /* STEP 3 - PROCESS PORTALS, VALIDATE ROOMS */ //removed, will replace with culling /* STEP 4 - REMOVE FURTHER CULLED OBJECTS, ADD LIGHTS */ for (int i = 0; i < instance_cull_count; i++) { Instance *ins = instance_cull_result[i]; bool keep = false; if ((camera_layer_mask & ins->layer_mask) == 0) { //failure } else if (ins->base_type == RS::INSTANCE_LIGHT && ins->visible) { if (light_cull_count < MAX_LIGHTS_CULLED) { InstanceLightData *light = static_cast(ins->base_data); if (!light->geometries.empty()) { //do not add this light if no geometry is affected by it.. light_cull_result[light_cull_count] = ins; light_instance_cull_result[light_cull_count] = light->instance; if (p_shadow_atlas.is_valid() && RSG::storage->light_has_shadow(ins->base)) { RSG::scene_render->light_instance_mark_visible(light->instance); //mark it visible for shadow allocation later } light_cull_count++; } } } else if (ins->base_type == RS::INSTANCE_REFLECTION_PROBE && ins->visible) { if (reflection_probe_cull_count < MAX_REFLECTION_PROBES_CULLED) { InstanceReflectionProbeData *reflection_probe = static_cast(ins->base_data); if (p_reflection_probe != reflection_probe->instance) { //avoid entering The Matrix if (!reflection_probe->geometries.empty()) { //do not add this light if no geometry is affected by it.. if (reflection_probe->reflection_dirty || RSG::scene_render->reflection_probe_instance_needs_redraw(reflection_probe->instance)) { if (!reflection_probe->update_list.in_list()) { reflection_probe->render_step = 0; reflection_probe_render_list.add_last(&reflection_probe->update_list); } reflection_probe->reflection_dirty = false; } if (RSG::scene_render->reflection_probe_instance_has_reflection(reflection_probe->instance)) { reflection_probe_instance_cull_result[reflection_probe_cull_count] = reflection_probe->instance; reflection_probe_cull_count++; } } } } } else if (ins->base_type == RS::INSTANCE_DECAL && ins->visible) { if (decal_cull_count < MAX_DECALS_CULLED) { InstanceDecalData *decal = static_cast(ins->base_data); if (!decal->geometries.empty()) { //do not add this decal if no geometry is affected by it.. decal_instance_cull_result[decal_cull_count] = decal->instance; decal_cull_count++; } } } else if (ins->base_type == RS::INSTANCE_GI_PROBE && ins->visible) { InstanceGIProbeData *gi_probe = static_cast(ins->base_data); if (!gi_probe->update_element.in_list()) { gi_probe_update_list.add(&gi_probe->update_element); } if (gi_probe_cull_count < MAX_GI_PROBES_CULLED) { gi_probe_instance_cull_result[gi_probe_cull_count] = gi_probe->probe_instance; gi_probe_cull_count++; } } else if (((1 << ins->base_type) & RS::INSTANCE_GEOMETRY_MASK) && ins->visible && ins->cast_shadows != RS::SHADOW_CASTING_SETTING_SHADOWS_ONLY) { keep = true; InstanceGeometryData *geom = static_cast(ins->base_data); if (ins->redraw_if_visible) { RenderingServerRaster::redraw_request(); } if (ins->base_type == RS::INSTANCE_PARTICLES) { //particles visible? process them if (RSG::storage->particles_is_inactive(ins->base)) { //but if nothing is going on, don't do it. keep = false; } else { RSG::storage->particles_request_process(ins->base); //particles visible? request redraw RenderingServerRaster::redraw_request(); } } if (geom->lighting_dirty) { int l = 0; //only called when lights AABB enter/exit this geometry ins->light_instances.resize(geom->lighting.size()); for (List::Element *E = geom->lighting.front(); E; E = E->next()) { InstanceLightData *light = static_cast(E->get()->base_data); ins->light_instances.write[l++] = light->instance; } geom->lighting_dirty = false; } if (geom->reflection_dirty) { int l = 0; //only called when reflection probe AABB enter/exit this geometry ins->reflection_probe_instances.resize(geom->reflection_probes.size()); for (List::Element *E = geom->reflection_probes.front(); E; E = E->next()) { InstanceReflectionProbeData *reflection_probe = static_cast(E->get()->base_data); ins->reflection_probe_instances.write[l++] = reflection_probe->instance; } geom->reflection_dirty = false; } if (geom->gi_probes_dirty) { int l = 0; //only called when reflection probe AABB enter/exit this geometry ins->gi_probe_instances.resize(geom->gi_probes.size()); for (List::Element *E = geom->gi_probes.front(); E; E = E->next()) { InstanceGIProbeData *gi_probe = static_cast(E->get()->base_data); ins->gi_probe_instances.write[l++] = gi_probe->probe_instance; } geom->gi_probes_dirty = false; } ins->depth = near_plane.distance_to(ins->transform.origin); ins->depth_layer = CLAMP(int(ins->depth * 16 / z_far), 0, 15); } if (!keep) { // remove, no reason to keep instance_cull_count--; SWAP(instance_cull_result[i], instance_cull_result[instance_cull_count]); i--; ins->last_render_pass = 0; // make invalid } else { ins->last_render_pass = render_pass; } } /* STEP 5 - PROCESS LIGHTS */ RID *directional_light_ptr = &light_instance_cull_result[light_cull_count]; directional_light_count = 0; // directional lights { Instance **lights_with_shadow = (Instance **)alloca(sizeof(Instance *) * scenario->directional_lights.size()); int directional_shadow_count = 0; for (List::Element *E = scenario->directional_lights.front(); E; E = E->next()) { if (light_cull_count + directional_light_count >= MAX_LIGHTS_CULLED) { break; } if (!E->get()->visible) continue; InstanceLightData *light = static_cast(E->get()->base_data); //check shadow.. if (light) { if (p_using_shadows && p_shadow_atlas.is_valid() && RSG::storage->light_has_shadow(E->get()->base)) { lights_with_shadow[directional_shadow_count++] = E->get(); } //add to list directional_light_ptr[directional_light_count++] = light->instance; } } RSG::scene_render->set_directional_shadow_count(directional_shadow_count); for (int i = 0; i < directional_shadow_count; i++) { RENDER_TIMESTAMP(">Rendering Directional Light " + itos(i)); _light_instance_update_shadow(lights_with_shadow[i], p_cam_transform, p_cam_projection, p_cam_orthogonal, p_cam_vaspect, p_shadow_atlas, scenario); RENDER_TIMESTAMP(" sorter; //sorter.sort(light_cull_result,light_cull_count); for (int i = 0; i < light_cull_count; i++) { Instance *ins = light_cull_result[i]; if (!p_shadow_atlas.is_valid() || !RSG::storage->light_has_shadow(ins->base)) continue; InstanceLightData *light = static_cast(ins->base_data); float coverage = 0.f; { //compute coverage Transform cam_xf = p_cam_transform; float zn = p_cam_projection.get_z_near(); Plane p(cam_xf.origin + cam_xf.basis.get_axis(2) * -zn, -cam_xf.basis.get_axis(2)); //camera near plane // near plane half width and height Vector2 vp_half_extents = p_cam_projection.get_viewport_half_extents(); switch (RSG::storage->light_get_type(ins->base)) { case RS::LIGHT_OMNI: { float radius = RSG::storage->light_get_param(ins->base, RS::LIGHT_PARAM_RANGE); //get two points parallel to near plane Vector3 points[2] = { ins->transform.origin, ins->transform.origin + cam_xf.basis.get_axis(0) * radius }; if (!p_cam_orthogonal) { //if using perspetive, map them to near plane for (int j = 0; j < 2; j++) { if (p.distance_to(points[j]) < 0) { points[j].z = -zn; //small hack to keep size constant when hitting the screen } p.intersects_segment(cam_xf.origin, points[j], &points[j]); //map to plane } } float screen_diameter = points[0].distance_to(points[1]) * 2; coverage = screen_diameter / (vp_half_extents.x + vp_half_extents.y); } break; case RS::LIGHT_SPOT: { float radius = RSG::storage->light_get_param(ins->base, RS::LIGHT_PARAM_RANGE); float angle = RSG::storage->light_get_param(ins->base, RS::LIGHT_PARAM_SPOT_ANGLE); float w = radius * Math::sin(Math::deg2rad(angle)); float d = radius * Math::cos(Math::deg2rad(angle)); Vector3 base = ins->transform.origin - ins->transform.basis.get_axis(2).normalized() * d; Vector3 points[2] = { base, base + cam_xf.basis.get_axis(0) * w }; if (!p_cam_orthogonal) { //if using perspetive, map them to near plane for (int j = 0; j < 2; j++) { if (p.distance_to(points[j]) < 0) { points[j].z = -zn; //small hack to keep size constant when hitting the screen } p.intersects_segment(cam_xf.origin, points[j], &points[j]); //map to plane } } float screen_diameter = points[0].distance_to(points[1]) * 2; coverage = screen_diameter / (vp_half_extents.x + vp_half_extents.y); } break; default: { ERR_PRINT("Invalid Light Type"); } } } if (light->shadow_dirty) { light->last_version++; light->shadow_dirty = false; } bool redraw = RSG::scene_render->shadow_atlas_update_light(p_shadow_atlas, light->instance, coverage, light->last_version); if (redraw) { //must redraw! RENDER_TIMESTAMP(">Rendering Light " + itos(i)); light->shadow_dirty = _light_instance_update_shadow(ins, p_cam_transform, p_cam_projection, p_cam_orthogonal, p_cam_vaspect, p_shadow_atlas, scenario); RENDER_TIMESTAMP("environment.is_valid()) environment = scenario->environment; else environment = scenario->fallback_environment; RID camera_effects; if (p_force_camera_effects.is_valid()) { camera_effects = p_force_camera_effects; } else { camera_effects = scenario->camera_effects; } /* PROCESS GEOMETRY AND DRAW SCENE */ RENDER_TIMESTAMP("Render Scene "); RSG::scene_render->render_scene(p_render_buffers, p_cam_transform, p_cam_projection, p_cam_orthogonal, (RasterizerScene::InstanceBase **)instance_cull_result, instance_cull_count, light_instance_cull_result, light_cull_count + directional_light_count, reflection_probe_instance_cull_result, reflection_probe_cull_count, gi_probe_instance_cull_result, gi_probe_cull_count, decal_instance_cull_result, decal_cull_count, environment, camera_effects, p_shadow_atlas, p_reflection_probe.is_valid() ? RID() : scenario->reflection_atlas, p_reflection_probe, p_reflection_probe_pass); } void RenderingServerScene::render_empty_scene(RID p_render_buffers, RID p_scenario, RID p_shadow_atlas) { #ifndef _3D_DISABLED Scenario *scenario = scenario_owner.getornull(p_scenario); RID environment; if (scenario->environment.is_valid()) environment = scenario->environment; else environment = scenario->fallback_environment; RENDER_TIMESTAMP("Render Empty Scene "); RSG::scene_render->render_scene(p_render_buffers, Transform(), CameraMatrix(), true, nullptr, 0, nullptr, 0, nullptr, 0, nullptr, 0, nullptr, 0, environment, RID(), p_shadow_atlas, scenario->reflection_atlas, RID(), 0); #endif } bool RenderingServerScene::_render_reflection_probe_step(Instance *p_instance, int p_step) { InstanceReflectionProbeData *reflection_probe = static_cast(p_instance->base_data); Scenario *scenario = p_instance->scenario; ERR_FAIL_COND_V(!scenario, true); RenderingServerRaster::redraw_request(); //update, so it updates in editor if (p_step == 0) { if (!RSG::scene_render->reflection_probe_instance_begin_render(reflection_probe->instance, scenario->reflection_atlas)) { return true; //all full } } if (p_step >= 0 && p_step < 6) { static const Vector3 view_normals[6] = { Vector3(+1, 0, 0), Vector3(-1, 0, 0), Vector3(0, +1, 0), Vector3(0, -1, 0), Vector3(0, 0, +1), Vector3(0, 0, -1) }; static const Vector3 view_up[6] = { Vector3(0, -1, 0), Vector3(0, -1, 0), Vector3(0, 0, +1), Vector3(0, 0, -1), Vector3(0, -1, 0), Vector3(0, -1, 0) }; Vector3 extents = RSG::storage->reflection_probe_get_extents(p_instance->base); Vector3 origin_offset = RSG::storage->reflection_probe_get_origin_offset(p_instance->base); float max_distance = RSG::storage->reflection_probe_get_origin_max_distance(p_instance->base); Vector3 edge = view_normals[p_step] * extents; float distance = ABS(view_normals[p_step].dot(edge) - view_normals[p_step].dot(origin_offset)); //distance from origin offset to actual view distance limit max_distance = MAX(max_distance, distance); //render cubemap side CameraMatrix cm; cm.set_perspective(90, 1, 0.01, max_distance); Transform local_view; local_view.set_look_at(origin_offset, origin_offset + view_normals[p_step], view_up[p_step]); Transform xform = p_instance->transform * local_view; RID shadow_atlas; bool use_shadows = RSG::storage->reflection_probe_renders_shadows(p_instance->base); if (use_shadows) { shadow_atlas = scenario->reflection_probe_shadow_atlas; } RENDER_TIMESTAMP("Render Reflection Probe, Step " + itos(p_step)); _prepare_scene(xform, cm, false, false, RID(), RID(), RSG::storage->reflection_probe_get_cull_mask(p_instance->base), p_instance->scenario->self, shadow_atlas, reflection_probe->instance, use_shadows); _render_scene(RID(), xform, cm, false, RID(), RID(), p_instance->scenario->self, shadow_atlas, reflection_probe->instance, p_step); } else { //do roughness postprocess step until it believes it's done RENDER_TIMESTAMP("Post-Process Reflection Probe, Step " + itos(p_step)); return RSG::scene_render->reflection_probe_instance_postprocess_step(reflection_probe->instance); } return false; } void RenderingServerScene::render_probes() { /* REFLECTION PROBES */ SelfList *ref_probe = reflection_probe_render_list.first(); bool busy = false; while (ref_probe) { SelfList *next = ref_probe->next(); RID base = ref_probe->self()->owner->base; switch (RSG::storage->reflection_probe_get_update_mode(base)) { case RS::REFLECTION_PROBE_UPDATE_ONCE: { if (busy) //already rendering something break; bool done = _render_reflection_probe_step(ref_probe->self()->owner, ref_probe->self()->render_step); if (done) { reflection_probe_render_list.remove(ref_probe); } else { ref_probe->self()->render_step++; } busy = true; //do not render another one of this kind } break; case RS::REFLECTION_PROBE_UPDATE_ALWAYS: { int step = 0; bool done = false; while (!done) { done = _render_reflection_probe_step(ref_probe->self()->owner, step); step++; } reflection_probe_render_list.remove(ref_probe); } break; } ref_probe = next; } /* GI PROBES */ SelfList *gi_probe = gi_probe_update_list.first(); if (gi_probe) { RENDER_TIMESTAMP("Render GI Probes"); } while (gi_probe) { SelfList *next = gi_probe->next(); InstanceGIProbeData *probe = gi_probe->self(); //Instance *instance_probe = probe->owner; //check if probe must be setup, but don't do if on the lighting thread bool cache_dirty = false; int cache_count = 0; { int light_cache_size = probe->light_cache.size(); const InstanceGIProbeData::LightCache *caches = probe->light_cache.ptr(); const RID *instance_caches = probe->light_instances.ptr(); int idx = 0; //must count visible lights for (Set::Element *E = probe->lights.front(); E; E = E->next()) { Instance *instance = E->get(); InstanceLightData *instance_light = (InstanceLightData *)instance->base_data; if (!instance->visible) { continue; } if (cache_dirty) { //do nothing, since idx must count all visible lights anyway } else if (idx >= light_cache_size) { cache_dirty = true; } else { const InstanceGIProbeData::LightCache *cache = &caches[idx]; if ( instance_caches[idx] != instance_light->instance || cache->has_shadow != RSG::storage->light_has_shadow(instance->base) || cache->type != RSG::storage->light_get_type(instance->base) || cache->transform != instance->transform || cache->color != RSG::storage->light_get_color(instance->base) || cache->energy != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_ENERGY) || cache->bake_energy != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_INDIRECT_ENERGY) || cache->radius != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_RANGE) || cache->attenuation != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_ATTENUATION) || cache->spot_angle != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_SPOT_ANGLE) || cache->spot_attenuation != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_SPOT_ATTENUATION)) { cache_dirty = true; } } idx++; } for (List::Element *E = probe->owner->scenario->directional_lights.front(); E; E = E->next()) { Instance *instance = E->get(); InstanceLightData *instance_light = (InstanceLightData *)instance->base_data; if (!instance->visible) { continue; } if (cache_dirty) { //do nothing, since idx must count all visible lights anyway } else if (idx >= light_cache_size) { cache_dirty = true; } else { const InstanceGIProbeData::LightCache *cache = &caches[idx]; if ( instance_caches[idx] != instance_light->instance || cache->has_shadow != RSG::storage->light_has_shadow(instance->base) || cache->type != RSG::storage->light_get_type(instance->base) || cache->transform != instance->transform || cache->color != RSG::storage->light_get_color(instance->base) || cache->energy != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_ENERGY) || cache->bake_energy != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_INDIRECT_ENERGY) || cache->radius != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_RANGE) || cache->attenuation != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_ATTENUATION) || cache->spot_angle != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_SPOT_ANGLE) || cache->spot_attenuation != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_SPOT_ATTENUATION)) { cache_dirty = true; } } idx++; } if (idx != light_cache_size) { cache_dirty = true; } cache_count = idx; } bool update_lights = RSG::scene_render->gi_probe_needs_update(probe->probe_instance); if (cache_dirty) { probe->light_cache.resize(cache_count); probe->light_instances.resize(cache_count); if (cache_count) { InstanceGIProbeData::LightCache *caches = probe->light_cache.ptrw(); RID *instance_caches = probe->light_instances.ptrw(); int idx = 0; //must count visible lights for (Set::Element *E = probe->lights.front(); E; E = E->next()) { Instance *instance = E->get(); InstanceLightData *instance_light = (InstanceLightData *)instance->base_data; if (!instance->visible) { continue; } InstanceGIProbeData::LightCache *cache = &caches[idx]; instance_caches[idx] = instance_light->instance; cache->has_shadow = RSG::storage->light_has_shadow(instance->base); cache->type = RSG::storage->light_get_type(instance->base); cache->transform = instance->transform; cache->color = RSG::storage->light_get_color(instance->base); cache->energy = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_ENERGY); cache->bake_energy = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_INDIRECT_ENERGY); cache->radius = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_RANGE); cache->attenuation = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_ATTENUATION); cache->spot_angle = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_SPOT_ANGLE); cache->spot_attenuation = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_SPOT_ATTENUATION); idx++; } for (List::Element *E = probe->owner->scenario->directional_lights.front(); E; E = E->next()) { Instance *instance = E->get(); InstanceLightData *instance_light = (InstanceLightData *)instance->base_data; if (!instance->visible) { continue; } InstanceGIProbeData::LightCache *cache = &caches[idx]; instance_caches[idx] = instance_light->instance; cache->has_shadow = RSG::storage->light_has_shadow(instance->base); cache->type = RSG::storage->light_get_type(instance->base); cache->transform = instance->transform; cache->color = RSG::storage->light_get_color(instance->base); cache->energy = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_ENERGY); cache->bake_energy = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_INDIRECT_ENERGY); cache->radius = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_RANGE); cache->attenuation = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_ATTENUATION); cache->spot_angle = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_SPOT_ANGLE); cache->spot_attenuation = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_SPOT_ATTENUATION); idx++; } } update_lights = true; } instance_cull_count = 0; for (List::Element *E = probe->dynamic_geometries.front(); E; E = E->next()) { if (instance_cull_count < MAX_INSTANCE_CULL) { Instance *ins = E->get().geometry; if (!ins->visible) { continue; } InstanceGeometryData *geom = (InstanceGeometryData *)ins->base_data; if (geom->gi_probes_dirty) { //giprobes may be dirty, so update int l = 0; //only called when reflection probe AABB enter/exit this geometry ins->gi_probe_instances.resize(geom->gi_probes.size()); for (List::Element *F = geom->gi_probes.front(); F; F = F->next()) { InstanceGIProbeData *gi_probe2 = static_cast(F->get()->base_data); ins->gi_probe_instances.write[l++] = gi_probe2->probe_instance; } geom->gi_probes_dirty = false; } instance_cull_result[instance_cull_count++] = E->get().geometry; } } RSG::scene_render->gi_probe_update(probe->probe_instance, update_lights, probe->light_instances, instance_cull_count, (RasterizerScene::InstanceBase **)instance_cull_result); gi_probe_update_list.remove(gi_probe); gi_probe = next; } } void RenderingServerScene::_update_dirty_instance(Instance *p_instance) { if (p_instance->update_aabb) { _update_instance_aabb(p_instance); } if (p_instance->update_dependencies) { p_instance->instance_increase_version(); if (p_instance->base.is_valid()) { RSG::storage->base_update_dependency(p_instance->base, p_instance); } if (p_instance->material_override.is_valid()) { RSG::storage->material_update_dependency(p_instance->material_override, p_instance); } if (p_instance->base_type == RS::INSTANCE_MESH) { //remove materials no longer used and un-own them int new_mat_count = RSG::storage->mesh_get_surface_count(p_instance->base); p_instance->materials.resize(new_mat_count); int new_blend_shape_count = RSG::storage->mesh_get_blend_shape_count(p_instance->base); if (new_blend_shape_count != p_instance->blend_values.size()) { p_instance->blend_values.resize(new_blend_shape_count); for (int i = 0; i < new_blend_shape_count; i++) { p_instance->blend_values.write[i] = 0; } } } if ((1 << p_instance->base_type) & RS::INSTANCE_GEOMETRY_MASK) { InstanceGeometryData *geom = static_cast(p_instance->base_data); bool can_cast_shadows = true; bool is_animated = false; if (p_instance->cast_shadows == RS::SHADOW_CASTING_SETTING_OFF) { can_cast_shadows = false; } else if (p_instance->material_override.is_valid()) { can_cast_shadows = RSG::storage->material_casts_shadows(p_instance->material_override); is_animated = RSG::storage->material_is_animated(p_instance->material_override); } else { if (p_instance->base_type == RS::INSTANCE_MESH) { RID mesh = p_instance->base; if (mesh.is_valid()) { bool cast_shadows = false; for (int i = 0; i < p_instance->materials.size(); i++) { RID mat = p_instance->materials[i].is_valid() ? p_instance->materials[i] : RSG::storage->mesh_surface_get_material(mesh, i); if (!mat.is_valid()) { cast_shadows = true; } else { if (RSG::storage->material_casts_shadows(mat)) { cast_shadows = true; } if (RSG::storage->material_is_animated(mat)) { is_animated = true; } RSG::storage->material_update_dependency(mat, p_instance); } } if (!cast_shadows) { can_cast_shadows = false; } } } else if (p_instance->base_type == RS::INSTANCE_MULTIMESH) { RID mesh = RSG::storage->multimesh_get_mesh(p_instance->base); if (mesh.is_valid()) { bool cast_shadows = false; int sc = RSG::storage->mesh_get_surface_count(mesh); for (int i = 0; i < sc; i++) { RID mat = RSG::storage->mesh_surface_get_material(mesh, i); if (!mat.is_valid()) { cast_shadows = true; } else { if (RSG::storage->material_casts_shadows(mat)) { cast_shadows = true; } if (RSG::storage->material_is_animated(mat)) { is_animated = true; } RSG::storage->material_update_dependency(mat, p_instance); } } if (!cast_shadows) { can_cast_shadows = false; } RSG::storage->base_update_dependency(mesh, p_instance); } } else if (p_instance->base_type == RS::INSTANCE_IMMEDIATE) { RID mat = RSG::storage->immediate_get_material(p_instance->base); can_cast_shadows = !mat.is_valid() || RSG::storage->material_casts_shadows(mat); if (mat.is_valid() && RSG::storage->material_is_animated(mat)) { is_animated = true; } if (mat.is_valid()) { RSG::storage->material_update_dependency(mat, p_instance); } } else if (p_instance->base_type == RS::INSTANCE_PARTICLES) { bool cast_shadows = false; int dp = RSG::storage->particles_get_draw_passes(p_instance->base); for (int i = 0; i < dp; i++) { RID mesh = RSG::storage->particles_get_draw_pass_mesh(p_instance->base, i); if (!mesh.is_valid()) continue; int sc = RSG::storage->mesh_get_surface_count(mesh); for (int j = 0; j < sc; j++) { RID mat = RSG::storage->mesh_surface_get_material(mesh, j); if (!mat.is_valid()) { cast_shadows = true; } else { if (RSG::storage->material_casts_shadows(mat)) { cast_shadows = true; } if (RSG::storage->material_is_animated(mat)) { is_animated = true; } RSG::storage->material_update_dependency(mat, p_instance); } } } if (!cast_shadows) { can_cast_shadows = false; } } } if (can_cast_shadows != geom->can_cast_shadows) { //ability to cast shadows change, let lights now for (List::Element *E = geom->lighting.front(); E; E = E->next()) { InstanceLightData *light = static_cast(E->get()->base_data); light->shadow_dirty = true; } geom->can_cast_shadows = can_cast_shadows; } geom->material_is_animated = is_animated; } if (p_instance->skeleton.is_valid()) { RSG::storage->skeleton_update_dependency(p_instance->skeleton, p_instance); } p_instance->clean_up_dependencies(); } _instance_update_list.remove(&p_instance->update_item); _update_instance(p_instance); p_instance->update_aabb = false; p_instance->update_dependencies = false; } void RenderingServerScene::update_dirty_instances() { RSG::storage->update_dirty_resources(); while (_instance_update_list.first()) { _update_dirty_instance(_instance_update_list.first()->self()); } } bool RenderingServerScene::free(RID p_rid) { if (camera_owner.owns(p_rid)) { Camera *camera = camera_owner.getornull(p_rid); camera_owner.free(p_rid); memdelete(camera); } else if (scenario_owner.owns(p_rid)) { Scenario *scenario = scenario_owner.getornull(p_rid); while (scenario->instances.first()) { instance_set_scenario(scenario->instances.first()->self()->self, RID()); } RSG::scene_render->free(scenario->reflection_probe_shadow_atlas); RSG::scene_render->free(scenario->reflection_atlas); scenario_owner.free(p_rid); memdelete(scenario); } else if (instance_owner.owns(p_rid)) { // delete the instance update_dirty_instances(); Instance *instance = instance_owner.getornull(p_rid); instance_set_use_lightmap(p_rid, RID(), RID()); instance_set_scenario(p_rid, RID()); instance_set_base(p_rid, RID()); instance_geometry_set_material_override(p_rid, RID()); instance_attach_skeleton(p_rid, RID()); update_dirty_instances(); //in case something changed this instance_owner.free(p_rid); memdelete(instance); } else { return false; } return true; } RenderingServerScene *RenderingServerScene::singleton = nullptr; RenderingServerScene::RenderingServerScene() { render_pass = 1; singleton = this; } RenderingServerScene::~RenderingServerScene() { }