#[vertex] #version 450 #VERSION_DEFINES layout(location = 0) out vec2 uv_interp; void main() { vec2 base_arr[4] = vec2[](vec2(0.0, 0.0), vec2(0.0, 1.0), vec2(1.0, 1.0), vec2(1.0, 0.0)); uv_interp = base_arr[gl_VertexIndex]; gl_Position = vec4(uv_interp * 2.0 - 1.0, 0.0, 1.0); } #[fragment] #version 450 #VERSION_DEFINES layout(location = 0) in vec2 uv_interp; layout(set = 0, binding = 0) uniform sampler2D source_color; layout(set = 1, binding = 0) uniform sampler2D source_auto_exposure; layout(set = 2, binding = 0) uniform sampler2D source_glow; #ifdef USE_1D_LUT layout(set = 3, binding = 0) uniform sampler2D source_color_correction; #else layout(set = 3, binding = 0) uniform sampler3D source_color_correction; #endif layout(push_constant, binding = 1, std430) uniform Params { vec3 bcs; bool use_bcs; bool use_glow; bool use_auto_exposure; bool use_color_correction; uint tonemapper; uvec2 glow_texture_size; float glow_intensity; uint pad3; uint glow_mode; float glow_levels[7]; float exposure; float white; float auto_exposure_grey; uint pad2; vec2 pixel_size; bool use_fxaa; bool use_debanding; } params; layout(location = 0) out vec4 frag_color; #ifdef USE_GLOW_FILTER_BICUBIC // w0, w1, w2, and w3 are the four cubic B-spline basis functions float w0(float a) { return (1.0f / 6.0f) * (a * (a * (-a + 3.0f) - 3.0f) + 1.0f); } float w1(float a) { return (1.0f / 6.0f) * (a * a * (3.0f * a - 6.0f) + 4.0f); } float w2(float a) { return (1.0f / 6.0f) * (a * (a * (-3.0f * a + 3.0f) + 3.0f) + 1.0f); } float w3(float a) { return (1.0f / 6.0f) * (a * a * a); } // g0 and g1 are the two amplitude functions float g0(float a) { return w0(a) + w1(a); } float g1(float a) { return w2(a) + w3(a); } // h0 and h1 are the two offset functions float h0(float a) { return -1.0f + w1(a) / (w0(a) + w1(a)); } float h1(float a) { return 1.0f + w3(a) / (w2(a) + w3(a)); } vec4 texture2D_bicubic(sampler2D tex, vec2 uv, int p_lod) { float lod = float(p_lod); vec2 tex_size = vec2(params.glow_texture_size >> p_lod); vec2 pixel_size = vec2(1.0f) / tex_size; uv = uv * tex_size + vec2(0.5f); vec2 iuv = floor(uv); vec2 fuv = fract(uv); float g0x = g0(fuv.x); float g1x = g1(fuv.x); float h0x = h0(fuv.x); float h1x = h1(fuv.x); float h0y = h0(fuv.y); float h1y = h1(fuv.y); vec2 p0 = (vec2(iuv.x + h0x, iuv.y + h0y) - vec2(0.5f)) * pixel_size; vec2 p1 = (vec2(iuv.x + h1x, iuv.y + h0y) - vec2(0.5f)) * pixel_size; vec2 p2 = (vec2(iuv.x + h0x, iuv.y + h1y) - vec2(0.5f)) * pixel_size; vec2 p3 = (vec2(iuv.x + h1x, iuv.y + h1y) - vec2(0.5f)) * pixel_size; return (g0(fuv.y) * (g0x * textureLod(tex, p0, lod) + g1x * textureLod(tex, p1, lod))) + (g1(fuv.y) * (g0x * textureLod(tex, p2, lod) + g1x * textureLod(tex, p3, lod))); } #define GLOW_TEXTURE_SAMPLE(m_tex, m_uv, m_lod) texture2D_bicubic(m_tex, m_uv, m_lod) #else #define GLOW_TEXTURE_SAMPLE(m_tex, m_uv, m_lod) textureLod(m_tex, m_uv, float(m_lod)) #endif vec3 tonemap_filmic(vec3 color, float white) { // exposure bias: input scale (color *= bias, white *= bias) to make the brightness consistent with other tonemappers // also useful to scale the input to the range that the tonemapper is designed for (some require very high input values) // has no effect on the curve's general shape or visual properties const float exposure_bias = 2.0f; const float A = 0.22f * exposure_bias * exposure_bias; // bias baked into constants for performance const float B = 0.30f * exposure_bias; const float C = 0.10f; const float D = 0.20f; const float E = 0.01f; const float F = 0.30f; vec3 color_tonemapped = ((color * (A * color + C * B) + D * E) / (color * (A * color + B) + D * F)) - E / F; float white_tonemapped = ((white * (A * white + C * B) + D * E) / (white * (A * white + B) + D * F)) - E / F; return color_tonemapped / white_tonemapped; } vec3 tonemap_aces(vec3 color, float white) { const float exposure_bias = 0.85f; const float A = 2.51f * exposure_bias * exposure_bias; const float B = 0.03f * exposure_bias; const float C = 2.43f * exposure_bias * exposure_bias; const float D = 0.59f * exposure_bias; const float E = 0.14f; vec3 color_tonemapped = (color * (A * color + B)) / (color * (C * color + D) + E); float white_tonemapped = (white * (A * white + B)) / (white * (C * white + D) + E); return color_tonemapped / white_tonemapped; } vec3 tonemap_reinhard(vec3 color, float white) { // Ensure color values are positive. // They can be negative in the case of negative lights, which leads to undesired behavior. color = max(vec3(0.0), color); return (white * color + color) / (color * white + white); } vec3 linear_to_srgb(vec3 color) { //if going to srgb, clamp from 0 to 1. color = clamp(color, vec3(0.0), vec3(1.0)); const vec3 a = vec3(0.055f); return mix((vec3(1.0f) + a) * pow(color.rgb, vec3(1.0f / 2.4f)) - a, 12.92f * color.rgb, lessThan(color.rgb, vec3(0.0031308f))); } #define TONEMAPPER_LINEAR 0 #define TONEMAPPER_REINHARD 1 #define TONEMAPPER_FILMIC 2 #define TONEMAPPER_ACES 3 vec3 apply_tonemapping(vec3 color, float white) { // inputs are LINEAR, always outputs clamped [0;1] color if (params.tonemapper == TONEMAPPER_LINEAR) { return color; } else if (params.tonemapper == TONEMAPPER_REINHARD) { return tonemap_reinhard(color, white); } else if (params.tonemapper == TONEMAPPER_FILMIC) { return tonemap_filmic(color, white); } else { //aces return tonemap_aces(color, white); } } vec3 gather_glow(sampler2D tex, vec2 uv) { // sample all selected glow levels vec3 glow = vec3(0.0f); if (params.glow_levels[0] > 0.0001) { glow += GLOW_TEXTURE_SAMPLE(tex, uv, 0).rgb * params.glow_levels[0]; } if (params.glow_levels[1] > 0.0001) { glow += GLOW_TEXTURE_SAMPLE(tex, uv, 1).rgb * params.glow_levels[1]; } if (params.glow_levels[2] > 0.0001) { glow += GLOW_TEXTURE_SAMPLE(tex, uv, 2).rgb * params.glow_levels[2]; } if (params.glow_levels[3] > 0.0001) { glow += GLOW_TEXTURE_SAMPLE(tex, uv, 3).rgb * params.glow_levels[3]; } if (params.glow_levels[4] > 0.0001) { glow += GLOW_TEXTURE_SAMPLE(tex, uv, 4).rgb * params.glow_levels[4]; } if (params.glow_levels[5] > 0.0001) { glow += GLOW_TEXTURE_SAMPLE(tex, uv, 5).rgb * params.glow_levels[5]; } if (params.glow_levels[6] > 0.0001) { glow += GLOW_TEXTURE_SAMPLE(tex, uv, 6).rgb * params.glow_levels[6]; } return glow; } #define GLOW_MODE_ADD 0 #define GLOW_MODE_SCREEN 1 #define GLOW_MODE_SOFTLIGHT 2 #define GLOW_MODE_REPLACE 3 #define GLOW_MODE_MIX 4 vec3 apply_glow(vec3 color, vec3 glow) { // apply glow using the selected blending mode if (params.glow_mode == GLOW_MODE_ADD) { return color + glow; } else if (params.glow_mode == GLOW_MODE_SCREEN) { //need color clamping return max((color + glow) - (color * glow), vec3(0.0)); } else if (params.glow_mode == GLOW_MODE_SOFTLIGHT) { //need color clamping glow = glow * vec3(0.5f) + vec3(0.5f); color.r = (glow.r <= 0.5f) ? (color.r - (1.0f - 2.0f * glow.r) * color.r * (1.0f - color.r)) : (((glow.r > 0.5f) && (color.r <= 0.25f)) ? (color.r + (2.0f * glow.r - 1.0f) * (4.0f * color.r * (4.0f * color.r + 1.0f) * (color.r - 1.0f) + 7.0f * color.r)) : (color.r + (2.0f * glow.r - 1.0f) * (sqrt(color.r) - color.r))); color.g = (glow.g <= 0.5f) ? (color.g - (1.0f - 2.0f * glow.g) * color.g * (1.0f - color.g)) : (((glow.g > 0.5f) && (color.g <= 0.25f)) ? (color.g + (2.0f * glow.g - 1.0f) * (4.0f * color.g * (4.0f * color.g + 1.0f) * (color.g - 1.0f) + 7.0f * color.g)) : (color.g + (2.0f * glow.g - 1.0f) * (sqrt(color.g) - color.g))); color.b = (glow.b <= 0.5f) ? (color.b - (1.0f - 2.0f * glow.b) * color.b * (1.0f - color.b)) : (((glow.b > 0.5f) && (color.b <= 0.25f)) ? (color.b + (2.0f * glow.b - 1.0f) * (4.0f * color.b * (4.0f * color.b + 1.0f) * (color.b - 1.0f) + 7.0f * color.b)) : (color.b + (2.0f * glow.b - 1.0f) * (sqrt(color.b) - color.b))); return color; } else { //replace return glow; } } vec3 apply_bcs(vec3 color, vec3 bcs) { color = mix(vec3(0.0f), color, bcs.x); color = mix(vec3(0.5f), color, bcs.y); color = mix(vec3(dot(vec3(1.0f), color) * 0.33333f), color, bcs.z); return color; } #ifdef USE_1D_LUT vec3 apply_color_correction(vec3 color) { color.r = texture(source_color_correction, vec2(color.r, 0.0f)).r; color.g = texture(source_color_correction, vec2(color.g, 0.0f)).g; color.b = texture(source_color_correction, vec2(color.b, 0.0f)).b; return color; } #else vec3 apply_color_correction(vec3 color) { return textureLod(source_color_correction, color, 0.0).rgb; } #endif vec3 do_fxaa(vec3 color, float exposure, vec2 uv_interp) { const float FXAA_REDUCE_MIN = (1.0 / 128.0); const float FXAA_REDUCE_MUL = (1.0 / 8.0); const float FXAA_SPAN_MAX = 8.0; vec3 rgbNW = textureLod(source_color, uv_interp + vec2(-1.0, -1.0) * params.pixel_size, 0.0).xyz * exposure; vec3 rgbNE = textureLod(source_color, uv_interp + vec2(1.0, -1.0) * params.pixel_size, 0.0).xyz * exposure; vec3 rgbSW = textureLod(source_color, uv_interp + vec2(-1.0, 1.0) * params.pixel_size, 0.0).xyz * exposure; vec3 rgbSE = textureLod(source_color, uv_interp + vec2(1.0, 1.0) * params.pixel_size, 0.0).xyz * exposure; vec3 rgbM = color; vec3 luma = vec3(0.299, 0.587, 0.114); float lumaNW = dot(rgbNW, luma); float lumaNE = dot(rgbNE, luma); float lumaSW = dot(rgbSW, luma); float lumaSE = dot(rgbSE, luma); float lumaM = dot(rgbM, luma); float lumaMin = min(lumaM, min(min(lumaNW, lumaNE), min(lumaSW, lumaSE))); float lumaMax = max(lumaM, max(max(lumaNW, lumaNE), max(lumaSW, lumaSE))); vec2 dir; dir.x = -((lumaNW + lumaNE) - (lumaSW + lumaSE)); dir.y = ((lumaNW + lumaSW) - (lumaNE + lumaSE)); float dirReduce = max((lumaNW + lumaNE + lumaSW + lumaSE) * (0.25 * FXAA_REDUCE_MUL), FXAA_REDUCE_MIN); float rcpDirMin = 1.0 / (min(abs(dir.x), abs(dir.y)) + dirReduce); dir = min(vec2(FXAA_SPAN_MAX, FXAA_SPAN_MAX), max(vec2(-FXAA_SPAN_MAX, -FXAA_SPAN_MAX), dir * rcpDirMin)) * params.pixel_size; vec3 rgbA = 0.5 * exposure * (textureLod(source_color, uv_interp + dir * (1.0 / 3.0 - 0.5), 0.0).xyz + textureLod(source_color, uv_interp + dir * (2.0 / 3.0 - 0.5), 0.0).xyz); vec3 rgbB = rgbA * 0.5 + 0.25 * exposure * (textureLod(source_color, uv_interp + dir * -0.5, 0.0).xyz + textureLod(source_color, uv_interp + dir * 0.5, 0.0).xyz); float lumaB = dot(rgbB, luma); if ((lumaB < lumaMin) || (lumaB > lumaMax)) { return rgbA; } else { return rgbB; } } // From http://alex.vlachos.com/graphics/Alex_Vlachos_Advanced_VR_Rendering_GDC2015.pdf // and https://www.shadertoy.com/view/MslGR8 (5th one starting from the bottom) // NOTE: `frag_coord` is in pixels (i.e. not normalized UV). vec3 screen_space_dither(vec2 frag_coord) { // Iestyn's RGB dither (7 asm instructions) from Portal 2 X360, slightly modified for VR. vec3 dither = vec3(dot(vec2(171.0, 231.0), frag_coord)); dither.rgb = fract(dither.rgb / vec3(103.0, 71.0, 97.0)); // Subtract 0.5 to avoid slightly brightening the whole viewport. return (dither.rgb - 0.5) / 255.0; } void main() { vec3 color = textureLod(source_color, uv_interp, 0.0f).rgb; // Exposure float exposure = params.exposure; if (params.use_auto_exposure) { exposure *= 1.0 / (texelFetch(source_auto_exposure, ivec2(0, 0), 0).r / params.auto_exposure_grey); } color *= exposure; // Early Tonemap & SRGB Conversion if (params.use_glow && params.glow_mode == GLOW_MODE_MIX) { vec3 glow = gather_glow(source_glow, uv_interp); color.rgb = mix(color.rgb, glow, params.glow_intensity); } if (params.use_fxaa) { color = do_fxaa(color, exposure, uv_interp); } if (params.use_debanding) { // For best results, debanding should be done before tonemapping. // Otherwise, we're adding noise to an already-quantized image. color += screen_space_dither(gl_FragCoord.xy); } color = apply_tonemapping(color, params.white); color = linear_to_srgb(color); // regular linear -> SRGB conversion // Glow if (params.use_glow && params.glow_mode != GLOW_MODE_MIX) { vec3 glow = gather_glow(source_glow, uv_interp) * params.glow_intensity; // high dynamic range -> SRGB glow = apply_tonemapping(glow, params.white); glow = linear_to_srgb(glow); color = apply_glow(color, glow); } // Additional effects if (params.use_bcs) { color = apply_bcs(color, params.bcs); } if (params.use_color_correction) { color = apply_color_correction(color); } frag_color = vec4(color, 1.0f); }