/////////////////////////////////////////////////////////////////////////////////// // Copyright(c) 2016-2022 Panos Karabelas // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and / or sell // copies of the Software, and to permit persons to whom the Software is furnished // to do so, subject to the following conditions : // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS // FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE AUTHORS OR // COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER // IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN // CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. /////////////////////////////////////////////////////////////////////////////////// // File changes (yyyy-mm-dd) // 2022-05-06: Panos Karabelas: first commit // 2020-12-05: Joan Fons: convert to Vulkan and Godot /////////////////////////////////////////////////////////////////////////////////// #[compute] #version 450 #VERSION_DEFINES // Based on Spartan Engine's TAA implementation https://github.com/PanosK92/SpartanEngine/blob/master/Data/shaders/temporal_antialiasing.hlsl #define USE_SUBGROUPS #define GROUP_SIZE 8 #define FLT_MIN 0.00000001 #define FLT_MAX 32767.0 #define RPC_9 0.11111111111 #define RPC_16 0.0625 #ifdef USE_SUBGROUPS layout(local_size_x = GROUP_SIZE, local_size_y = GROUP_SIZE, local_size_z = 1) in; #endif layout(rgba16f, set = 0, binding = 0) uniform restrict readonly image2D color_buffer; layout(set = 0, binding = 1) uniform sampler2D depth_buffer; layout(rg16f, set = 0, binding = 2) uniform restrict readonly image2D velocity_buffer; layout(rg16f, set = 0, binding = 3) uniform restrict readonly image2D last_velocity_buffer; layout(set = 0, binding = 4) uniform sampler2D history_buffer; layout(rgba16f, set = 0, binding = 5) uniform restrict writeonly image2D output_buffer; layout(push_constant, std430) uniform Params { vec2 resolution; float disocclusion_threshold; // 0.1 / max(params.resolution.x, params.resolution.y float disocclusion_scale; } params; const ivec2 kOffsets3x3[9] = { ivec2(-1, -1), ivec2(0, -1), ivec2(1, -1), ivec2(-1, 0), ivec2(0, 0), ivec2(1, 0), ivec2(-1, 1), ivec2(0, 1), ivec2(1, 1), }; /*------------------------------------------------------------------------------ THREAD GROUP SHARED MEMORY (LDS) ------------------------------------------------------------------------------*/ const int kBorderSize = 1; const int kGroupSize = GROUP_SIZE; const int kTileDimension = kGroupSize + kBorderSize * 2; const int kTileDimension2 = kTileDimension * kTileDimension; vec3 reinhard(vec3 hdr) { return hdr / (hdr + 1.0); } vec3 reinhard_inverse(vec3 sdr) { return sdr / (1.0 - sdr); } float get_depth(ivec2 thread_id) { return texelFetch(depth_buffer, thread_id, 0).r; } #ifdef USE_SUBGROUPS shared vec3 tile_color[kTileDimension][kTileDimension]; shared float tile_depth[kTileDimension][kTileDimension]; vec3 load_color(uvec2 group_thread_id) { group_thread_id += kBorderSize; return tile_color[group_thread_id.x][group_thread_id.y]; } void store_color(uvec2 group_thread_id, vec3 color) { tile_color[group_thread_id.x][group_thread_id.y] = color; } float load_depth(uvec2 group_thread_id) { group_thread_id += kBorderSize; return tile_depth[group_thread_id.x][group_thread_id.y]; } void store_depth(uvec2 group_thread_id, float depth) { tile_depth[group_thread_id.x][group_thread_id.y] = depth; } void store_color_depth(uvec2 group_thread_id, ivec2 thread_id) { // out of bounds clamp thread_id = clamp(thread_id, ivec2(0, 0), ivec2(params.resolution) - ivec2(1, 1)); store_color(group_thread_id, imageLoad(color_buffer, thread_id).rgb); store_depth(group_thread_id, get_depth(thread_id)); } void populate_group_shared_memory(uvec2 group_id, uint group_index) { // Populate group shared memory ivec2 group_top_left = ivec2(group_id) * kGroupSize - kBorderSize; if (group_index < (kTileDimension2 >> 2)) { ivec2 group_thread_id_1 = ivec2(group_index % kTileDimension, group_index / kTileDimension); ivec2 group_thread_id_2 = ivec2((group_index + (kTileDimension2 >> 2)) % kTileDimension, (group_index + (kTileDimension2 >> 2)) / kTileDimension); ivec2 group_thread_id_3 = ivec2((group_index + (kTileDimension2 >> 1)) % kTileDimension, (group_index + (kTileDimension2 >> 1)) / kTileDimension); ivec2 group_thread_id_4 = ivec2((group_index + kTileDimension2 * 3 / 4) % kTileDimension, (group_index + kTileDimension2 * 3 / 4) / kTileDimension); store_color_depth(group_thread_id_1, group_top_left + group_thread_id_1); store_color_depth(group_thread_id_2, group_top_left + group_thread_id_2); store_color_depth(group_thread_id_3, group_top_left + group_thread_id_3); store_color_depth(group_thread_id_4, group_top_left + group_thread_id_4); } // Wait for group threads to load store data. groupMemoryBarrier(); barrier(); } #else vec3 load_color(uvec2 screen_pos) { return imageLoad(color_buffer, ivec2(screen_pos)).rgb; } float load_depth(uvec2 screen_pos) { return get_depth(ivec2(screen_pos)); } #endif /*------------------------------------------------------------------------------ VELOCITY ------------------------------------------------------------------------------*/ void depth_test_min(uvec2 pos, inout float min_depth, inout uvec2 min_pos) { float depth = load_depth(pos); if (depth < min_depth) { min_depth = depth; min_pos = pos; } } // Returns velocity with closest depth (3x3 neighborhood) void get_closest_pixel_velocity_3x3(in uvec2 group_pos, uvec2 group_top_left, out vec2 velocity) { float min_depth = 1.0; uvec2 min_pos = group_pos; depth_test_min(group_pos + kOffsets3x3[0], min_depth, min_pos); depth_test_min(group_pos + kOffsets3x3[1], min_depth, min_pos); depth_test_min(group_pos + kOffsets3x3[2], min_depth, min_pos); depth_test_min(group_pos + kOffsets3x3[3], min_depth, min_pos); depth_test_min(group_pos + kOffsets3x3[4], min_depth, min_pos); depth_test_min(group_pos + kOffsets3x3[5], min_depth, min_pos); depth_test_min(group_pos + kOffsets3x3[6], min_depth, min_pos); depth_test_min(group_pos + kOffsets3x3[7], min_depth, min_pos); depth_test_min(group_pos + kOffsets3x3[8], min_depth, min_pos); // Velocity out velocity = imageLoad(velocity_buffer, ivec2(group_top_left + min_pos)).xy; } /*------------------------------------------------------------------------------ HISTORY SAMPLING ------------------------------------------------------------------------------*/ vec3 sample_catmull_rom_9(sampler2D stex, vec2 uv, vec2 resolution) { // Source: https://gist.github.com/TheRealMJP/c83b8c0f46b63f3a88a5986f4fa982b1 // License: https://gist.github.com/TheRealMJP/bc503b0b87b643d3505d41eab8b332ae // We're going to sample a a 4x4 grid of texels surrounding the target UV coordinate. We'll do this by rounding // down the sample location to get the exact center of our "starting" texel. The starting texel will be at // location [1, 1] in the grid, where [0, 0] is the top left corner. vec2 sample_pos = uv * resolution; vec2 texPos1 = floor(sample_pos - 0.5f) + 0.5f; // Compute the fractional offset from our starting texel to our original sample location, which we'll // feed into the Catmull-Rom spline function to get our filter weights. vec2 f = sample_pos - texPos1; // Compute the Catmull-Rom weights using the fractional offset that we calculated earlier. // These equations are pre-expanded based on our knowledge of where the texels will be located, // which lets us avoid having to evaluate a piece-wise function. vec2 w0 = f * (-0.5f + f * (1.0f - 0.5f * f)); vec2 w1 = 1.0f + f * f * (-2.5f + 1.5f * f); vec2 w2 = f * (0.5f + f * (2.0f - 1.5f * f)); vec2 w3 = f * f * (-0.5f + 0.5f * f); // Work out weighting factors and sampling offsets that will let us use bilinear filtering to // simultaneously evaluate the middle 2 samples from the 4x4 grid. vec2 w12 = w1 + w2; vec2 offset12 = w2 / (w1 + w2); // Compute the final UV coordinates we'll use for sampling the texture vec2 texPos0 = texPos1 - 1.0f; vec2 texPos3 = texPos1 + 2.0f; vec2 texPos12 = texPos1 + offset12; texPos0 /= resolution; texPos3 /= resolution; texPos12 /= resolution; vec3 result = vec3(0.0f, 0.0f, 0.0f); result += textureLod(stex, vec2(texPos0.x, texPos0.y), 0.0).xyz * w0.x * w0.y; result += textureLod(stex, vec2(texPos12.x, texPos0.y), 0.0).xyz * w12.x * w0.y; result += textureLod(stex, vec2(texPos3.x, texPos0.y), 0.0).xyz * w3.x * w0.y; result += textureLod(stex, vec2(texPos0.x, texPos12.y), 0.0).xyz * w0.x * w12.y; result += textureLod(stex, vec2(texPos12.x, texPos12.y), 0.0).xyz * w12.x * w12.y; result += textureLod(stex, vec2(texPos3.x, texPos12.y), 0.0).xyz * w3.x * w12.y; result += textureLod(stex, vec2(texPos0.x, texPos3.y), 0.0).xyz * w0.x * w3.y; result += textureLod(stex, vec2(texPos12.x, texPos3.y), 0.0).xyz * w12.x * w3.y; result += textureLod(stex, vec2(texPos3.x, texPos3.y), 0.0).xyz * w3.x * w3.y; return max(result, 0.0f); } /*------------------------------------------------------------------------------ HISTORY CLIPPING ------------------------------------------------------------------------------*/ // Based on "Temporal Reprojection Anti-Aliasing" - https://github.com/playdeadgames/temporal vec3 clip_aabb(vec3 aabb_min, vec3 aabb_max, vec3 p, vec3 q) { vec3 r = q - p; vec3 rmax = (aabb_max - p.xyz); vec3 rmin = (aabb_min - p.xyz); if (r.x > rmax.x + FLT_MIN) r *= (rmax.x / r.x); if (r.y > rmax.y + FLT_MIN) r *= (rmax.y / r.y); if (r.z > rmax.z + FLT_MIN) r *= (rmax.z / r.z); if (r.x < rmin.x - FLT_MIN) r *= (rmin.x / r.x); if (r.y < rmin.y - FLT_MIN) r *= (rmin.y / r.y); if (r.z < rmin.z - FLT_MIN) r *= (rmin.z / r.z); return p + r; } // Clip history to the neighbourhood of the current sample vec3 clip_history_3x3(uvec2 group_pos, vec3 color_history, vec2 velocity_closest) { // Sample a 3x3 neighbourhood vec3 s1 = load_color(group_pos + kOffsets3x3[0]); vec3 s2 = load_color(group_pos + kOffsets3x3[1]); vec3 s3 = load_color(group_pos + kOffsets3x3[2]); vec3 s4 = load_color(group_pos + kOffsets3x3[3]); vec3 s5 = load_color(group_pos + kOffsets3x3[4]); vec3 s6 = load_color(group_pos + kOffsets3x3[5]); vec3 s7 = load_color(group_pos + kOffsets3x3[6]); vec3 s8 = load_color(group_pos + kOffsets3x3[7]); vec3 s9 = load_color(group_pos + kOffsets3x3[8]); // Compute min and max (with an adaptive box size, which greatly reduces ghosting) vec3 color_avg = (s1 + s2 + s3 + s4 + s5 + s6 + s7 + s8 + s9) * RPC_9; vec3 color_avg2 = ((s1 * s1) + (s2 * s2) + (s3 * s3) + (s4 * s4) + (s5 * s5) + (s6 * s6) + (s7 * s7) + (s8 * s8) + (s9 * s9)) * RPC_9; float box_size = mix(0.0f, 2.5f, smoothstep(0.02f, 0.0f, length(velocity_closest))); vec3 dev = sqrt(abs(color_avg2 - (color_avg * color_avg))) * box_size; vec3 color_min = color_avg - dev; vec3 color_max = color_avg + dev; // Variance clipping vec3 color = clip_aabb(color_min, color_max, clamp(color_avg, color_min, color_max), color_history); // Clamp to prevent NaNs color = clamp(color, FLT_MIN, FLT_MAX); return color; } /*------------------------------------------------------------------------------ TAA ------------------------------------------------------------------------------*/ const vec3 lumCoeff = vec3(0.299f, 0.587f, 0.114f); float luminance(vec3 color) { return max(dot(color, lumCoeff), 0.0001f); } float get_factor_disocclusion(vec2 uv_reprojected, vec2 velocity) { vec2 velocity_previous = imageLoad(last_velocity_buffer, ivec2(uv_reprojected * params.resolution)).xy; vec2 velocity_texels = velocity * params.resolution; vec2 prev_velocity_texels = velocity_previous * params.resolution; float disocclusion = length(prev_velocity_texels - velocity_texels) - params.disocclusion_threshold; return clamp(disocclusion * params.disocclusion_scale, 0.0, 1.0); } vec3 temporal_antialiasing(uvec2 pos_group_top_left, uvec2 pos_group, uvec2 pos_screen, vec2 uv, sampler2D tex_history) { // Get the velocity of the current pixel vec2 velocity = imageLoad(velocity_buffer, ivec2(pos_screen)).xy; // Get reprojected uv vec2 uv_reprojected = uv - velocity; // Get input color vec3 color_input = load_color(pos_group); // Get history color (catmull-rom reduces a lot of the blurring that you get under motion) vec3 color_history = sample_catmull_rom_9(tex_history, uv_reprojected, params.resolution).rgb; // Clip history to the neighbourhood of the current sample (fixes a lot of the ghosting). vec2 velocity_closest = vec2(0.0); // This is best done by using the velocity with the closest depth. get_closest_pixel_velocity_3x3(pos_group, pos_group_top_left, velocity_closest); color_history = clip_history_3x3(pos_group, color_history, velocity_closest); // Compute blend factor float blend_factor = RPC_16; // We want to be able to accumulate as many jitter samples as we generated, that is, 16. { // If re-projected UV is out of screen, converge to current color immediatel float factor_screen = any(lessThan(uv_reprojected, vec2(0.0))) || any(greaterThan(uv_reprojected, vec2(1.0))) ? 1.0 : 0.0; // Increase blend factor when there is disocclusion (fixes a lot of the remaining ghosting). float factor_disocclusion = get_factor_disocclusion(uv_reprojected, velocity); // Add to the blend factor blend_factor = clamp(blend_factor + factor_screen + factor_disocclusion, 0.0, 1.0); } // Resolve vec3 color_resolved = vec3(0.0); { // Tonemap color_history = reinhard(color_history); color_input = reinhard(color_input); // Reduce flickering float lum_color = luminance(color_input); float lum_history = luminance(color_history); float diff = abs(lum_color - lum_history) / max(lum_color, max(lum_history, 1.001)); diff = 1.0 - diff; diff = diff * diff; blend_factor = mix(0.0, blend_factor, diff); // Lerp/blend color_resolved = mix(color_history, color_input, blend_factor); // Inverse tonemap color_resolved = reinhard_inverse(color_resolved); } return color_resolved; } void main() { #ifdef USE_SUBGROUPS populate_group_shared_memory(gl_WorkGroupID.xy, gl_LocalInvocationIndex); #endif // Out of bounds check if (any(greaterThanEqual(vec2(gl_GlobalInvocationID.xy), params.resolution))) { return; } #ifdef USE_SUBGROUPS const uvec2 pos_group = gl_LocalInvocationID.xy; const uvec2 pos_group_top_left = gl_WorkGroupID.xy * kGroupSize - kBorderSize; #else const uvec2 pos_group = gl_GlobalInvocationID.xy; const uvec2 pos_group_top_left = uvec2(0, 0); #endif const uvec2 pos_screen = gl_GlobalInvocationID.xy; const vec2 uv = (gl_GlobalInvocationID.xy + 0.5f) / params.resolution; vec3 result = temporal_antialiasing(pos_group_top_left, pos_group, pos_screen, uv, history_buffer); imageStore(output_buffer, ivec2(gl_GlobalInvocationID.xy), vec4(result, 1.0)); }