#[compute] #version 450 #VERSION_DEFINES layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in; layout(set = 0, binding = 1, std430) buffer restrict writeonly DstVertexData { uint data[]; } dst_vertices; layout(set = 0, binding = 2, std430) buffer restrict readonly BlendShapeWeights { float data[]; } blend_shape_weights; layout(set = 1, binding = 0, std430) buffer restrict readonly SrcVertexData { uint data[]; } src_vertices; layout(set = 1, binding = 1, std430) buffer restrict readonly BoneWeightData { uint data[]; } src_bone_weights; layout(set = 1, binding = 2, std430) buffer restrict readonly BlendShapeData { uint data[]; } src_blend_shapes; layout(set = 2, binding = 0, std430) buffer restrict readonly SkeletonData { vec4 data[]; } bone_transforms; layout(push_constant, std430) uniform Params { bool has_normal; bool has_tangent; bool has_skeleton; bool has_blend_shape; uint vertex_count; uint vertex_stride; uint skin_stride; uint skin_weight_offset; uint blend_shape_count; bool normalized_blend_shapes; uint pad0; uint pad1; vec2 skeleton_transform_x; vec2 skeleton_transform_y; vec2 skeleton_transform_offset; vec2 inverse_transform_x; vec2 inverse_transform_y; vec2 inverse_transform_offset; } params; vec2 uint_to_vec2(uint base) { uvec2 decode = (uvec2(base) >> uvec2(0, 16)) & uvec2(0xFFFF, 0xFFFF); return vec2(decode) / vec2(65535.0, 65535.0) * 2.0 - 1.0; } vec3 oct_to_vec3(vec2 oct) { vec3 v = vec3(oct.xy, 1.0 - abs(oct.x) - abs(oct.y)); float t = max(-v.z, 0.0); v.xy += t * -sign(v.xy); return normalize(v); } vec3 decode_uint_oct_to_norm(uint base) { return oct_to_vec3(uint_to_vec2(base)); } vec4 decode_uint_oct_to_tang(uint base) { vec2 oct_sign_encoded = uint_to_vec2(base); // Binormal sign encoded in y component vec2 oct = vec2(oct_sign_encoded.x, abs(oct_sign_encoded.y) * 2.0 - 1.0); return vec4(oct_to_vec3(oct), sign(oct_sign_encoded.y)); } vec2 signNotZero(vec2 v) { return mix(vec2(-1.0), vec2(1.0), greaterThanEqual(v.xy, vec2(0.0))); } uint vec2_to_uint(vec2 base) { uvec2 enc = uvec2(clamp(ivec2(base * vec2(65535, 65535)), ivec2(0), ivec2(0xFFFF, 0xFFFF))) << uvec2(0, 16); return enc.x | enc.y; } vec2 vec3_to_oct(vec3 e) { e /= abs(e.x) + abs(e.y) + abs(e.z); vec2 oct = e.z >= 0.0f ? e.xy : (vec2(1.0f) - abs(e.yx)) * signNotZero(e.xy); return oct * 0.5f + 0.5f; } uint encode_norm_to_uint_oct(vec3 base) { return vec2_to_uint(vec3_to_oct(base)); } uint encode_tang_to_uint_oct(vec4 base) { vec2 oct = vec3_to_oct(base.xyz); // Encode binormal sign in y component oct.y = oct.y * 0.5f + 0.5f; oct.y = base.w >= 0.0f ? oct.y : 1 - oct.y; return vec2_to_uint(oct); } void main() { uint index = gl_GlobalInvocationID.x; if (index >= params.vertex_count) { return; } uint src_offset = index * params.vertex_stride; #ifdef MODE_2D vec2 vertex = uintBitsToFloat(uvec2(src_vertices.data[src_offset + 0], src_vertices.data[src_offset + 1])); if (params.has_blend_shape) { float blend_total = 0.0; vec2 blend_vertex = vec2(0.0); for (uint i = 0; i < params.blend_shape_count; i++) { float w = blend_shape_weights.data[i]; if (abs(w) > 0.0001) { uint base_offset = (params.vertex_count * i + index) * params.vertex_stride; blend_vertex += uintBitsToFloat(uvec2(src_blend_shapes.data[base_offset + 0], src_blend_shapes.data[base_offset + 1])) * w; base_offset += 2; blend_total += w; } } if (params.normalized_blend_shapes) { vertex = (1.0 - blend_total) * vertex; } vertex += blend_vertex; } if (params.has_skeleton) { uint skin_offset = params.skin_stride * index; uvec2 bones = uvec2(src_bone_weights.data[skin_offset + 0], src_bone_weights.data[skin_offset + 1]); uvec2 bones_01 = uvec2(bones.x & 0xFFFF, bones.x >> 16) * 2; //pre-add xform offset uvec2 bones_23 = uvec2(bones.y & 0xFFFF, bones.y >> 16) * 2; skin_offset += params.skin_weight_offset; uvec2 weights = uvec2(src_bone_weights.data[skin_offset + 0], src_bone_weights.data[skin_offset + 1]); vec2 weights_01 = unpackUnorm2x16(weights.x); vec2 weights_23 = unpackUnorm2x16(weights.y); mat4 m = mat4(bone_transforms.data[bones_01.x], bone_transforms.data[bones_01.x + 1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0)) * weights_01.x; m += mat4(bone_transforms.data[bones_01.y], bone_transforms.data[bones_01.y + 1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0)) * weights_01.y; m += mat4(bone_transforms.data[bones_23.x], bone_transforms.data[bones_23.x + 1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0)) * weights_23.x; m += mat4(bone_transforms.data[bones_23.y], bone_transforms.data[bones_23.y + 1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0)) * weights_23.y; mat4 skeleton_matrix = mat4(vec4(params.skeleton_transform_x, 0.0, 0.0), vec4(params.skeleton_transform_y, 0.0, 0.0), vec4(0.0, 0.0, 1.0, 0.0), vec4(params.skeleton_transform_offset, 0.0, 1.0)); mat4 inverse_matrix = mat4(vec4(params.inverse_transform_x, 0.0, 0.0), vec4(params.inverse_transform_y, 0.0, 0.0), vec4(0.0, 0.0, 1.0, 0.0), vec4(params.inverse_transform_offset, 0.0, 1.0)); m = skeleton_matrix * transpose(m) * inverse_matrix; vertex = (m * vec4(vertex, 0.0, 1.0)).xy; } uint dst_offset = index * params.vertex_stride; uvec2 uvertex = floatBitsToUint(vertex); dst_vertices.data[dst_offset + 0] = uvertex.x; dst_vertices.data[dst_offset + 1] = uvertex.y; #else vec3 vertex; vec3 normal; vec4 tangent; vertex = uintBitsToFloat(uvec3(src_vertices.data[src_offset + 0], src_vertices.data[src_offset + 1], src_vertices.data[src_offset + 2])); src_offset += 3; if (params.has_normal) { normal = decode_uint_oct_to_norm(src_vertices.data[src_offset]); src_offset++; } if (params.has_tangent) { tangent = decode_uint_oct_to_tang(src_vertices.data[src_offset]); } if (params.has_blend_shape) { float blend_total = 0.0; vec3 blend_vertex = vec3(0.0); vec3 blend_normal = vec3(0.0); vec3 blend_tangent = vec3(0.0); for (uint i = 0; i < params.blend_shape_count; i++) { float w = blend_shape_weights.data[i]; if (abs(w) > 0.0001) { uint base_offset = (params.vertex_count * i + index) * params.vertex_stride; blend_vertex += uintBitsToFloat(uvec3(src_blend_shapes.data[base_offset + 0], src_blend_shapes.data[base_offset + 1], src_blend_shapes.data[base_offset + 2])) * w; base_offset += 3; if (params.has_normal) { blend_normal += decode_uint_oct_to_norm(src_blend_shapes.data[base_offset]) * w; base_offset++; } if (params.has_tangent) { blend_tangent += decode_uint_oct_to_tang(src_blend_shapes.data[base_offset]).rgb * w; } blend_total += w; } } if (params.normalized_blend_shapes) { vertex = (1.0 - blend_total) * vertex; normal = (1.0 - blend_total) * normal; tangent.rgb = (1.0 - blend_total) * tangent.rgb; } vertex += blend_vertex; normal = normalize(normal + blend_normal); tangent.rgb = normalize(tangent.rgb + blend_tangent); } if (params.has_skeleton) { uint skin_offset = params.skin_stride * index; uvec2 bones = uvec2(src_bone_weights.data[skin_offset + 0], src_bone_weights.data[skin_offset + 1]); uvec2 bones_01 = uvec2(bones.x & 0xFFFF, bones.x >> 16) * 3; //pre-add xform offset uvec2 bones_23 = uvec2(bones.y & 0xFFFF, bones.y >> 16) * 3; skin_offset += params.skin_weight_offset; uvec2 weights = uvec2(src_bone_weights.data[skin_offset + 0], src_bone_weights.data[skin_offset + 1]); vec2 weights_01 = unpackUnorm2x16(weights.x); vec2 weights_23 = unpackUnorm2x16(weights.y); mat4 m = mat4(bone_transforms.data[bones_01.x], bone_transforms.data[bones_01.x + 1], bone_transforms.data[bones_01.x + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weights_01.x; m += mat4(bone_transforms.data[bones_01.y], bone_transforms.data[bones_01.y + 1], bone_transforms.data[bones_01.y + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weights_01.y; m += mat4(bone_transforms.data[bones_23.x], bone_transforms.data[bones_23.x + 1], bone_transforms.data[bones_23.x + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weights_23.x; m += mat4(bone_transforms.data[bones_23.y], bone_transforms.data[bones_23.y + 1], bone_transforms.data[bones_23.y + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weights_23.y; if (params.skin_weight_offset == 4) { //using 8 bones/weights skin_offset = params.skin_stride * index + 2; bones = uvec2(src_bone_weights.data[skin_offset + 0], src_bone_weights.data[skin_offset + 1]); bones_01 = uvec2(bones.x & 0xFFFF, bones.x >> 16) * 3; //pre-add xform offset bones_23 = uvec2(bones.y & 0xFFFF, bones.y >> 16) * 3; skin_offset += params.skin_weight_offset; weights = uvec2(src_bone_weights.data[skin_offset + 0], src_bone_weights.data[skin_offset + 1]); weights_01 = unpackUnorm2x16(weights.x); weights_23 = unpackUnorm2x16(weights.y); m += mat4(bone_transforms.data[bones_01.x], bone_transforms.data[bones_01.x + 1], bone_transforms.data[bones_01.x + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weights_01.x; m += mat4(bone_transforms.data[bones_01.y], bone_transforms.data[bones_01.y + 1], bone_transforms.data[bones_01.y + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weights_01.y; m += mat4(bone_transforms.data[bones_23.x], bone_transforms.data[bones_23.x + 1], bone_transforms.data[bones_23.x + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weights_23.x; m += mat4(bone_transforms.data[bones_23.y], bone_transforms.data[bones_23.y + 1], bone_transforms.data[bones_23.y + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weights_23.y; } //reverse order because its transposed vertex = (vec4(vertex, 1.0) * m).xyz; normal = normalize((vec4(normal, 0.0) * m).xyz); tangent.xyz = normalize((vec4(tangent.xyz, 0.0) * m).xyz); } uint dst_offset = index * params.vertex_stride; uvec3 uvertex = floatBitsToUint(vertex); dst_vertices.data[dst_offset + 0] = uvertex.x; dst_vertices.data[dst_offset + 1] = uvertex.y; dst_vertices.data[dst_offset + 2] = uvertex.z; dst_offset += 3; if (params.has_normal) { dst_vertices.data[dst_offset] = encode_norm_to_uint_oct(normal); dst_offset++; } if (params.has_tangent) { dst_vertices.data[dst_offset] = encode_tang_to_uint_oct(tangent); } #endif }