#[compute] #version 450 #VERSION_DEFINES layout(local_size_x = 8, local_size_y = 8, local_size_z = 1) in; #define MAX_CASCADES 8 layout(set = 0, binding = 1) uniform texture3D sdf_cascades[MAX_CASCADES]; layout(set = 0, binding = 2) uniform texture3D light_cascades[MAX_CASCADES]; layout(set = 0, binding = 3) uniform texture3D aniso0_cascades[MAX_CASCADES]; layout(set = 0, binding = 4) uniform texture3D aniso1_cascades[MAX_CASCADES]; layout(set = 0, binding = 5) uniform texture3D occlusion_texture; layout(set = 0, binding = 8) uniform sampler linear_sampler; struct CascadeData { vec3 offset; //offset of (0,0,0) in world coordinates float to_cell; // 1/bounds * grid_size ivec3 probe_world_offset; uint pad; vec4 pad2; }; layout(set = 0, binding = 9, std140) uniform Cascades { CascadeData data[MAX_CASCADES]; } cascades; layout(rgba16f, set = 0, binding = 10) uniform restrict writeonly image2D screen_buffer; layout(set = 0, binding = 11) uniform texture2DArray lightprobe_texture; layout(push_constant, std430) uniform Params { vec3 grid_size; uint max_cascades; ivec2 screen_size; float y_mult; float z_near; mat3x4 inv_projection; // We pack these more tightly than mat3 and vec3, which will require some reconstruction trickery. float cam_basis[3][3]; float cam_origin[3]; } params; vec3 linear_to_srgb(vec3 color) { //if going to srgb, clamp from 0 to 1. color = clamp(color, vec3(0.0), vec3(1.0)); const vec3 a = vec3(0.055f); return mix((vec3(1.0f) + a) * pow(color.rgb, vec3(1.0f / 2.4f)) - a, 12.92f * color.rgb, lessThan(color.rgb, vec3(0.0031308f))); } vec2 octahedron_wrap(vec2 v) { vec2 signVal; signVal.x = v.x >= 0.0 ? 1.0 : -1.0; signVal.y = v.y >= 0.0 ? 1.0 : -1.0; return (1.0 - abs(v.yx)) * signVal; } vec2 octahedron_encode(vec3 n) { // https://twitter.com/Stubbesaurus/status/937994790553227264 n /= (abs(n.x) + abs(n.y) + abs(n.z)); n.xy = n.z >= 0.0 ? n.xy : octahedron_wrap(n.xy); n.xy = n.xy * 0.5 + 0.5; return n.xy; } void main() { // Pixel being shaded ivec2 screen_pos = ivec2(gl_GlobalInvocationID.xy); if (any(greaterThanEqual(screen_pos, params.screen_size))) { //too large, do nothing return; } vec3 ray_pos; vec3 ray_dir; { ray_pos = vec3(params.cam_origin[0], params.cam_origin[1], params.cam_origin[2]); ray_dir.xy = ((vec2(screen_pos) / vec2(params.screen_size)) * 2.0 - 1.0); ray_dir.z = params.z_near; ray_dir = (vec4(ray_dir, 1.0) * mat4(params.inv_projection)).xyz; mat3 cam_basis; { vec3 c0 = vec3(params.cam_basis[0][0], params.cam_basis[0][1], params.cam_basis[0][2]); vec3 c1 = vec3(params.cam_basis[1][0], params.cam_basis[1][1], params.cam_basis[1][2]); vec3 c2 = vec3(params.cam_basis[2][0], params.cam_basis[2][1], params.cam_basis[2][2]); cam_basis = mat3(c0, c1, c2); } ray_dir = normalize(cam_basis * ray_dir); } ray_pos.y *= params.y_mult; ray_dir.y *= params.y_mult; ray_dir = normalize(ray_dir); vec3 pos_to_uvw = 1.0 / params.grid_size; vec3 light = vec3(0.0); float blend = 0.0; #if 1 // No interpolation vec3 inv_dir = 1.0 / ray_dir; float rough = 0.5; bool hit = false; for (uint i = 0; i < params.max_cascades; i++) { //convert to local bounds vec3 pos = ray_pos - cascades.data[i].offset; pos *= cascades.data[i].to_cell; // Should never happen for debug, since we start mostly at the bounds center, // but add anyway. //if (any(lessThan(pos,vec3(0.0))) || any(greaterThanEqual(pos,params.grid_size))) { // continue; //already past bounds for this cascade, goto next //} //find maximum advance distance (until reaching bounds) vec3 t0 = -pos * inv_dir; vec3 t1 = (params.grid_size - pos) * inv_dir; vec3 tmax = max(t0, t1); float max_advance = min(tmax.x, min(tmax.y, tmax.z)); float advance = 0.0; vec3 uvw; hit = false; while (advance < max_advance) { //read how much to advance from SDF uvw = (pos + ray_dir * advance) * pos_to_uvw; float distance = texture(sampler3D(sdf_cascades[i], linear_sampler), uvw).r * 255.0 - 1.7; if (distance < 0.001) { //consider hit hit = true; break; } advance += distance; } if (!hit) { pos += ray_dir * min(advance, max_advance); pos /= cascades.data[i].to_cell; pos += cascades.data[i].offset; ray_pos = pos; continue; } //compute albedo, emission and normal at hit point const float EPSILON = 0.001; vec3 hit_normal = normalize(vec3( texture(sampler3D(sdf_cascades[i], linear_sampler), uvw + vec3(EPSILON, 0.0, 0.0)).r - texture(sampler3D(sdf_cascades[i], linear_sampler), uvw - vec3(EPSILON, 0.0, 0.0)).r, texture(sampler3D(sdf_cascades[i], linear_sampler), uvw + vec3(0.0, EPSILON, 0.0)).r - texture(sampler3D(sdf_cascades[i], linear_sampler), uvw - vec3(0.0, EPSILON, 0.0)).r, texture(sampler3D(sdf_cascades[i], linear_sampler), uvw + vec3(0.0, 0.0, EPSILON)).r - texture(sampler3D(sdf_cascades[i], linear_sampler), uvw - vec3(0.0, 0.0, EPSILON)).r)); vec3 hit_light = texture(sampler3D(light_cascades[i], linear_sampler), uvw).rgb; vec4 aniso0 = texture(sampler3D(aniso0_cascades[i], linear_sampler), uvw); vec3 hit_aniso0 = aniso0.rgb; vec3 hit_aniso1 = vec3(aniso0.a, texture(sampler3D(aniso1_cascades[i], linear_sampler), uvw).rg); hit_light *= (dot(max(vec3(0.0), (hit_normal * hit_aniso0)), vec3(1.0)) + dot(max(vec3(0.0), (-hit_normal * hit_aniso1)), vec3(1.0))); light = hit_light; break; } #endif imageStore(screen_buffer, screen_pos, vec4(linear_to_srgb(light), 1.0)); }