#define M_PI 3.14159265359 layout(push_constant, std430) uniform Params { uint face_id; uint sample_count; float roughness; bool use_direct_write; float face_size; } params; vec3 texelCoordToVec(vec2 uv, uint faceID) { mat3 faceUvVectors[6]; // -x faceUvVectors[1][0] = vec3(0.0, 0.0, 1.0); // u -> +z faceUvVectors[1][1] = vec3(0.0, -1.0, 0.0); // v -> -y faceUvVectors[1][2] = vec3(-1.0, 0.0, 0.0); // -x face // +x faceUvVectors[0][0] = vec3(0.0, 0.0, -1.0); // u -> -z faceUvVectors[0][1] = vec3(0.0, -1.0, 0.0); // v -> -y faceUvVectors[0][2] = vec3(1.0, 0.0, 0.0); // +x face // -y faceUvVectors[3][0] = vec3(1.0, 0.0, 0.0); // u -> +x faceUvVectors[3][1] = vec3(0.0, 0.0, -1.0); // v -> -z faceUvVectors[3][2] = vec3(0.0, -1.0, 0.0); // -y face // +y faceUvVectors[2][0] = vec3(1.0, 0.0, 0.0); // u -> +x faceUvVectors[2][1] = vec3(0.0, 0.0, 1.0); // v -> +z faceUvVectors[2][2] = vec3(0.0, 1.0, 0.0); // +y face // -z faceUvVectors[5][0] = vec3(-1.0, 0.0, 0.0); // u -> -x faceUvVectors[5][1] = vec3(0.0, -1.0, 0.0); // v -> -y faceUvVectors[5][2] = vec3(0.0, 0.0, -1.0); // -z face // +z faceUvVectors[4][0] = vec3(1.0, 0.0, 0.0); // u -> +x faceUvVectors[4][1] = vec3(0.0, -1.0, 0.0); // v -> -y faceUvVectors[4][2] = vec3(0.0, 0.0, 1.0); // +z face // out = u * s_faceUv[0] + v * s_faceUv[1] + s_faceUv[2]. vec3 result = (faceUvVectors[faceID][0] * uv.x) + (faceUvVectors[faceID][1] * uv.y) + faceUvVectors[faceID][2]; return normalize(result); } vec3 ImportanceSampleGGX(vec2 Xi, float Roughness, vec3 N) { float a = Roughness * Roughness; // DISNEY'S ROUGHNESS [see Burley'12 siggraph] // Compute distribution direction float Phi = 2.0 * M_PI * Xi.x; float CosTheta = sqrt((1.0 - Xi.y) / (1.0 + (a * a - 1.0) * Xi.y)); float SinTheta = sqrt(1.0 - CosTheta * CosTheta); // Convert to spherical direction vec3 H; H.x = SinTheta * cos(Phi); H.y = SinTheta * sin(Phi); H.z = CosTheta; vec3 UpVector = abs(N.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(1.0, 0.0, 0.0); vec3 TangentX = normalize(cross(UpVector, N)); vec3 TangentY = cross(N, TangentX); // Tangent to world space return TangentX * H.x + TangentY * H.y + N * H.z; } // https://graphicrants.blogspot.com.au/2013/08/specular-brdf-reference.html float GGX(float NdotV, float a) { float k = a / 2.0; return NdotV / (NdotV * (1.0 - k) + k); } // https://graphicrants.blogspot.com.au/2013/08/specular-brdf-reference.html float G_Smith(float a, float nDotV, float nDotL) { return GGX(nDotL, a * a) * GGX(nDotV, a * a); } float radicalInverse_VdC(uint bits) { bits = (bits << 16u) | (bits >> 16u); bits = ((bits & 0x55555555u) << 1u) | ((bits & 0xAAAAAAAAu) >> 1u); bits = ((bits & 0x33333333u) << 2u) | ((bits & 0xCCCCCCCCu) >> 2u); bits = ((bits & 0x0F0F0F0Fu) << 4u) | ((bits & 0xF0F0F0F0u) >> 4u); bits = ((bits & 0x00FF00FFu) << 8u) | ((bits & 0xFF00FF00u) >> 8u); return float(bits) * 2.3283064365386963e-10; // / 0x100000000 } vec2 Hammersley(uint i, uint N) { return vec2(float(i) / float(N), radicalInverse_VdC(i)); }