/*************************************************************************/
/*  renderer_scene_render_rd.cpp                                         */
/*************************************************************************/
/*                       This file is part of:                           */
/*                           GODOT ENGINE                                */
/*                      https://godotengine.org                          */
/*************************************************************************/
/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur.                 */
/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md).   */
/*                                                                       */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the       */
/* "Software"), to deal in the Software without restriction, including   */
/* without limitation the rights to use, copy, modify, merge, publish,   */
/* distribute, sublicense, and/or sell copies of the Software, and to    */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions:                                             */
/*                                                                       */
/* The above copyright notice and this permission notice shall be        */
/* included in all copies or substantial portions of the Software.       */
/*                                                                       */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,       */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF    */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY  */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,  */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE     */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                */
/*************************************************************************/

#include "renderer_scene_render_rd.h"

#include "core/config/project_settings.h"
#include "core/os/os.h"
#include "renderer_compositor_rd.h"
#include "servers/rendering/renderer_rd/environment/fog.h"
#include "servers/rendering/renderer_rd/storage_rd/material_storage.h"
#include "servers/rendering/renderer_rd/storage_rd/texture_storage.h"
#include "servers/rendering/rendering_server_default.h"
#include "servers/rendering/storage/camera_attributes_storage.h"

void get_vogel_disk(float *r_kernel, int p_sample_count) {
	const float golden_angle = 2.4;

	for (int i = 0; i < p_sample_count; i++) {
		float r = Math::sqrt(float(i) + 0.5) / Math::sqrt(float(p_sample_count));
		float theta = float(i) * golden_angle;

		r_kernel[i * 4] = Math::cos(theta) * r;
		r_kernel[i * 4 + 1] = Math::sin(theta) * r;
	}
}

void RendererSceneRenderRD::sdfgi_update(const Ref<RenderSceneBuffers> &p_render_buffers, RID p_environment, const Vector3 &p_world_position) {
	Ref<RenderSceneBuffersRD> rb = p_render_buffers;
	ERR_FAIL_COND(rb.is_null());
	Ref<RendererRD::GI::SDFGI> sdfgi;
	if (rb->has_custom_data(RB_SCOPE_SDFGI)) {
		sdfgi = rb->get_custom_data(RB_SCOPE_SDFGI);
	}

	bool needs_sdfgi = p_environment.is_valid() && environment_get_sdfgi_enabled(p_environment);

	if (!needs_sdfgi) {
		if (sdfgi.is_valid()) {
			// delete it
			sdfgi.unref();
			rb->set_custom_data(RB_SCOPE_SDFGI, sdfgi);
		}
		return;
	}

	static const uint32_t history_frames_to_converge[RS::ENV_SDFGI_CONVERGE_MAX] = { 5, 10, 15, 20, 25, 30 };
	uint32_t requested_history_size = history_frames_to_converge[gi.sdfgi_frames_to_converge];

	if (sdfgi.is_valid() && (sdfgi->num_cascades != environment_get_sdfgi_cascades(p_environment) || sdfgi->min_cell_size != environment_get_sdfgi_min_cell_size(p_environment) || requested_history_size != sdfgi->history_size || sdfgi->uses_occlusion != environment_get_sdfgi_use_occlusion(p_environment) || sdfgi->y_scale_mode != environment_get_sdfgi_y_scale(p_environment))) {
		//configuration changed, erase
		sdfgi.unref();
		rb->set_custom_data(RB_SCOPE_SDFGI, sdfgi);
	}

	if (sdfgi.is_null()) {
		// re-create
		sdfgi = gi.create_sdfgi(p_environment, p_world_position, requested_history_size);
		rb->set_custom_data(RB_SCOPE_SDFGI, sdfgi);
	} else {
		//check for updates
		sdfgi->update(p_environment, p_world_position);
	}
}

int RendererSceneRenderRD::sdfgi_get_pending_region_count(const Ref<RenderSceneBuffers> &p_render_buffers) const {
	Ref<RenderSceneBuffersRD> rb = p_render_buffers;
	ERR_FAIL_COND_V(rb.is_null(), 0);

	if (!rb->has_custom_data(RB_SCOPE_SDFGI)) {
		return 0;
	}
	Ref<RendererRD::GI::SDFGI> sdfgi = rb->get_custom_data(RB_SCOPE_SDFGI);

	int dirty_count = 0;
	for (uint32_t i = 0; i < sdfgi->cascades.size(); i++) {
		const RendererRD::GI::SDFGI::Cascade &c = sdfgi->cascades[i];

		if (c.dirty_regions == RendererRD::GI::SDFGI::Cascade::DIRTY_ALL) {
			dirty_count++;
		} else {
			for (int j = 0; j < 3; j++) {
				if (c.dirty_regions[j] != 0) {
					dirty_count++;
				}
			}
		}
	}

	return dirty_count;
}

AABB RendererSceneRenderRD::sdfgi_get_pending_region_bounds(const Ref<RenderSceneBuffers> &p_render_buffers, int p_region) const {
	AABB bounds;
	Vector3i from;
	Vector3i size;

	Ref<RenderSceneBuffersRD> rb = p_render_buffers;
	ERR_FAIL_COND_V(rb.is_null(), AABB());
	Ref<RendererRD::GI::SDFGI> sdfgi = rb->get_custom_data(RB_SCOPE_SDFGI);
	ERR_FAIL_COND_V(sdfgi.is_null(), AABB());

	int c = sdfgi->get_pending_region_data(p_region, from, size, bounds);
	ERR_FAIL_COND_V(c == -1, AABB());
	return bounds;
}

uint32_t RendererSceneRenderRD::sdfgi_get_pending_region_cascade(const Ref<RenderSceneBuffers> &p_render_buffers, int p_region) const {
	AABB bounds;
	Vector3i from;
	Vector3i size;

	Ref<RenderSceneBuffersRD> rb = p_render_buffers;
	ERR_FAIL_COND_V(rb.is_null(), -1);
	Ref<RendererRD::GI::SDFGI> sdfgi = rb->get_custom_data(RB_SCOPE_SDFGI);
	ERR_FAIL_COND_V(sdfgi.is_null(), -1);

	return sdfgi->get_pending_region_data(p_region, from, size, bounds);
}

RID RendererSceneRenderRD::sky_allocate() {
	return sky.allocate_sky_rid();
}
void RendererSceneRenderRD::sky_initialize(RID p_rid) {
	sky.initialize_sky_rid(p_rid);
}

void RendererSceneRenderRD::sky_set_radiance_size(RID p_sky, int p_radiance_size) {
	sky.sky_set_radiance_size(p_sky, p_radiance_size);
}

void RendererSceneRenderRD::sky_set_mode(RID p_sky, RS::SkyMode p_mode) {
	sky.sky_set_mode(p_sky, p_mode);
}

void RendererSceneRenderRD::sky_set_material(RID p_sky, RID p_material) {
	sky.sky_set_material(p_sky, p_material);
}

Ref<Image> RendererSceneRenderRD::sky_bake_panorama(RID p_sky, float p_energy, bool p_bake_irradiance, const Size2i &p_size) {
	return sky.sky_bake_panorama(p_sky, p_energy, p_bake_irradiance, p_size);
}

void RendererSceneRenderRD::environment_glow_set_use_bicubic_upscale(bool p_enable) {
	glow_bicubic_upscale = p_enable;
}

void RendererSceneRenderRD::environment_glow_set_use_high_quality(bool p_enable) {
	glow_high_quality = p_enable;
}

void RendererSceneRenderRD::environment_set_volumetric_fog_volume_size(int p_size, int p_depth) {
	volumetric_fog_size = p_size;
	volumetric_fog_depth = p_depth;
}

void RendererSceneRenderRD::environment_set_volumetric_fog_filter_active(bool p_enable) {
	volumetric_fog_filter_active = p_enable;
}

void RendererSceneRenderRD::environment_set_sdfgi_ray_count(RS::EnvironmentSDFGIRayCount p_ray_count) {
	gi.sdfgi_ray_count = p_ray_count;
}

void RendererSceneRenderRD::environment_set_sdfgi_frames_to_converge(RS::EnvironmentSDFGIFramesToConverge p_frames) {
	gi.sdfgi_frames_to_converge = p_frames;
}
void RendererSceneRenderRD::environment_set_sdfgi_frames_to_update_light(RS::EnvironmentSDFGIFramesToUpdateLight p_update) {
	gi.sdfgi_frames_to_update_light = p_update;
}

void RendererSceneRenderRD::environment_set_ssr_roughness_quality(RS::EnvironmentSSRRoughnessQuality p_quality) {
	ssr_roughness_quality = p_quality;
}

RS::EnvironmentSSRRoughnessQuality RendererSceneRenderRD::environment_get_ssr_roughness_quality() const {
	return ssr_roughness_quality;
}

void RendererSceneRenderRD::environment_set_ssao_quality(RS::EnvironmentSSAOQuality p_quality, bool p_half_size, float p_adaptive_target, int p_blur_passes, float p_fadeout_from, float p_fadeout_to) {
	ssao_quality = p_quality;
	ssao_half_size = p_half_size;
	ssao_adaptive_target = p_adaptive_target;
	ssao_blur_passes = p_blur_passes;
	ssao_fadeout_from = p_fadeout_from;
	ssao_fadeout_to = p_fadeout_to;
}

void RendererSceneRenderRD::environment_set_ssil_quality(RS::EnvironmentSSILQuality p_quality, bool p_half_size, float p_adaptive_target, int p_blur_passes, float p_fadeout_from, float p_fadeout_to) {
	ssil_quality = p_quality;
	ssil_half_size = p_half_size;
	ssil_adaptive_target = p_adaptive_target;
	ssil_blur_passes = p_blur_passes;
	ssil_fadeout_from = p_fadeout_from;
	ssil_fadeout_to = p_fadeout_to;
}

Ref<Image> RendererSceneRenderRD::environment_bake_panorama(RID p_env, bool p_bake_irradiance, const Size2i &p_size) {
	ERR_FAIL_COND_V(p_env.is_null(), Ref<Image>());

	RS::EnvironmentBG environment_background = environment_get_background(p_env);

	if (environment_background == RS::ENV_BG_CAMERA_FEED || environment_background == RS::ENV_BG_CANVAS || environment_background == RS::ENV_BG_KEEP) {
		return Ref<Image>(); //nothing to bake
	}

	RS::EnvironmentAmbientSource ambient_source = environment_get_ambient_source(p_env);

	bool use_ambient_light = false;
	bool use_cube_map = false;
	if (ambient_source == RS::ENV_AMBIENT_SOURCE_BG && (environment_background == RS::ENV_BG_CLEAR_COLOR || environment_background == RS::ENV_BG_COLOR)) {
		use_ambient_light = true;
	} else {
		use_cube_map = (ambient_source == RS::ENV_AMBIENT_SOURCE_BG && environment_background == RS::ENV_BG_SKY) || ambient_source == RS::ENV_AMBIENT_SOURCE_SKY;
		use_ambient_light = use_cube_map || ambient_source == RS::ENV_AMBIENT_SOURCE_COLOR;
	}
	use_cube_map = use_cube_map || (environment_background == RS::ENV_BG_SKY && environment_get_sky(p_env).is_valid());

	Color ambient_color;
	float ambient_color_sky_mix = 0.0;
	if (use_ambient_light) {
		ambient_color_sky_mix = environment_get_ambient_sky_contribution(p_env);
		const float ambient_energy = environment_get_ambient_light_energy(p_env);
		ambient_color = environment_get_ambient_light(p_env);
		ambient_color = ambient_color.srgb_to_linear();
		ambient_color.r *= ambient_energy;
		ambient_color.g *= ambient_energy;
		ambient_color.b *= ambient_energy;
	}

	if (use_cube_map) {
		Ref<Image> panorama = sky_bake_panorama(environment_get_sky(p_env), environment_get_bg_energy_multiplier(p_env), p_bake_irradiance, p_size);
		if (use_ambient_light) {
			for (int x = 0; x < p_size.width; x++) {
				for (int y = 0; y < p_size.height; y++) {
					panorama->set_pixel(x, y, ambient_color.lerp(panorama->get_pixel(x, y), ambient_color_sky_mix));
				}
			}
		}
		return panorama;
	} else {
		const float bg_energy_multiplier = environment_get_bg_energy_multiplier(p_env);
		Color panorama_color = ((environment_background == RS::ENV_BG_CLEAR_COLOR) ? RSG::texture_storage->get_default_clear_color() : environment_get_bg_color(p_env));
		panorama_color = panorama_color.srgb_to_linear();
		panorama_color.r *= bg_energy_multiplier;
		panorama_color.g *= bg_energy_multiplier;
		panorama_color.b *= bg_energy_multiplier;

		if (use_ambient_light) {
			panorama_color = ambient_color.lerp(panorama_color, ambient_color_sky_mix);
		}

		Ref<Image> panorama;
		panorama.instantiate();
		panorama->create(p_size.width, p_size.height, false, Image::FORMAT_RGBAF);
		panorama->fill(panorama_color);
		return panorama;
	}
}

////////////////////////////////////////////////////////////

RID RendererSceneRenderRD::fog_volume_instance_create(RID p_fog_volume) {
	return RendererRD::Fog::get_singleton()->fog_volume_instance_create(p_fog_volume);
}

void RendererSceneRenderRD::fog_volume_instance_set_transform(RID p_fog_volume_instance, const Transform3D &p_transform) {
	RendererRD::Fog::FogVolumeInstance *fvi = RendererRD::Fog::get_singleton()->get_fog_volume_instance(p_fog_volume_instance);
	ERR_FAIL_COND(!fvi);
	fvi->transform = p_transform;
}
void RendererSceneRenderRD::fog_volume_instance_set_active(RID p_fog_volume_instance, bool p_active) {
	RendererRD::Fog::FogVolumeInstance *fvi = RendererRD::Fog::get_singleton()->get_fog_volume_instance(p_fog_volume_instance);
	ERR_FAIL_COND(!fvi);
	fvi->active = p_active;
}

RID RendererSceneRenderRD::fog_volume_instance_get_volume(RID p_fog_volume_instance) const {
	RendererRD::Fog::FogVolumeInstance *fvi = RendererRD::Fog::get_singleton()->get_fog_volume_instance(p_fog_volume_instance);
	ERR_FAIL_COND_V(!fvi, RID());
	return fvi->volume;
}

Vector3 RendererSceneRenderRD::fog_volume_instance_get_position(RID p_fog_volume_instance) const {
	RendererRD::Fog::FogVolumeInstance *fvi = RendererRD::Fog::get_singleton()->get_fog_volume_instance(p_fog_volume_instance);
	ERR_FAIL_COND_V(!fvi, Vector3());

	return fvi->transform.get_origin();
}

////////////////////////////////////////////////////////////

RID RendererSceneRenderRD::reflection_atlas_create() {
	ReflectionAtlas ra;
	ra.count = GLOBAL_GET("rendering/reflections/reflection_atlas/reflection_count");
	ra.size = GLOBAL_GET("rendering/reflections/reflection_atlas/reflection_size");

	if (is_clustered_enabled()) {
		ra.cluster_builder = memnew(ClusterBuilderRD);
		ra.cluster_builder->set_shared(&cluster_builder_shared);
		ra.cluster_builder->setup(Size2i(ra.size, ra.size), max_cluster_elements, RID(), RID(), RID());
	} else {
		ra.cluster_builder = nullptr;
	}

	return reflection_atlas_owner.make_rid(ra);
}

void RendererSceneRenderRD::reflection_atlas_set_size(RID p_ref_atlas, int p_reflection_size, int p_reflection_count) {
	ReflectionAtlas *ra = reflection_atlas_owner.get_or_null(p_ref_atlas);
	ERR_FAIL_COND(!ra);

	if (ra->size == p_reflection_size && ra->count == p_reflection_count) {
		return; //no changes
	}

	if (ra->cluster_builder) {
		// only if we're using our cluster
		ra->cluster_builder->setup(Size2i(ra->size, ra->size), max_cluster_elements, RID(), RID(), RID());
	}

	ra->size = p_reflection_size;
	ra->count = p_reflection_count;

	if (ra->reflection.is_valid()) {
		//clear and invalidate everything
		RD::get_singleton()->free(ra->reflection);
		ra->reflection = RID();
		RD::get_singleton()->free(ra->depth_buffer);
		ra->depth_buffer = RID();
		for (int i = 0; i < ra->reflections.size(); i++) {
			ra->reflections.write[i].data.clear_reflection_data();
			if (ra->reflections[i].owner.is_null()) {
				continue;
			}
			reflection_probe_release_atlas_index(ra->reflections[i].owner);
			//rp->atlasindex clear
		}

		ra->reflections.clear();
	}
}

int RendererSceneRenderRD::reflection_atlas_get_size(RID p_ref_atlas) const {
	ReflectionAtlas *ra = reflection_atlas_owner.get_or_null(p_ref_atlas);
	ERR_FAIL_COND_V(!ra, 0);

	return ra->size;
}

////////////////////////
RID RendererSceneRenderRD::reflection_probe_instance_create(RID p_probe) {
	ReflectionProbeInstance rpi;
	rpi.probe = p_probe;
	rpi.forward_id = _allocate_forward_id(FORWARD_ID_TYPE_REFLECTION_PROBE);

	return reflection_probe_instance_owner.make_rid(rpi);
}

void RendererSceneRenderRD::reflection_probe_instance_set_transform(RID p_instance, const Transform3D &p_transform) {
	ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance);
	ERR_FAIL_COND(!rpi);

	rpi->transform = p_transform;
	rpi->dirty = true;
}

void RendererSceneRenderRD::reflection_probe_release_atlas_index(RID p_instance) {
	ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance);
	ERR_FAIL_COND(!rpi);

	if (rpi->atlas.is_null()) {
		return; //nothing to release
	}
	ReflectionAtlas *atlas = reflection_atlas_owner.get_or_null(rpi->atlas);
	ERR_FAIL_COND(!atlas);
	ERR_FAIL_INDEX(rpi->atlas_index, atlas->reflections.size());
	atlas->reflections.write[rpi->atlas_index].owner = RID();
	rpi->atlas_index = -1;
	rpi->atlas = RID();
}

bool RendererSceneRenderRD::reflection_probe_instance_needs_redraw(RID p_instance) {
	ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance);
	ERR_FAIL_COND_V(!rpi, false);

	if (rpi->rendering) {
		return false;
	}

	if (rpi->dirty) {
		return true;
	}

	if (RSG::light_storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS) {
		return true;
	}

	return rpi->atlas_index == -1;
}

bool RendererSceneRenderRD::reflection_probe_instance_has_reflection(RID p_instance) {
	ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance);
	ERR_FAIL_COND_V(!rpi, false);

	return rpi->atlas.is_valid();
}

bool RendererSceneRenderRD::reflection_probe_instance_begin_render(RID p_instance, RID p_reflection_atlas) {
	ReflectionAtlas *atlas = reflection_atlas_owner.get_or_null(p_reflection_atlas);

	ERR_FAIL_COND_V(!atlas, false);

	ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance);
	ERR_FAIL_COND_V(!rpi, false);

	RD::get_singleton()->draw_command_begin_label("Reflection probe render");

	if (RSG::light_storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS && atlas->reflection.is_valid() && atlas->size != 256) {
		WARN_PRINT("ReflectionProbes set to UPDATE_ALWAYS must have an atlas size of 256. Please update the atlas size in the ProjectSettings.");
		reflection_atlas_set_size(p_reflection_atlas, 256, atlas->count);
	}

	if (RSG::light_storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS && atlas->reflection.is_valid() && atlas->reflections[0].data.layers[0].mipmaps.size() != 8) {
		// Invalidate reflection atlas, need to regenerate
		RD::get_singleton()->free(atlas->reflection);
		atlas->reflection = RID();

		for (int i = 0; i < atlas->reflections.size(); i++) {
			if (atlas->reflections[i].owner.is_null()) {
				continue;
			}
			reflection_probe_release_atlas_index(atlas->reflections[i].owner);
		}

		atlas->reflections.clear();
	}

	if (atlas->reflection.is_null()) {
		int mipmaps = MIN(sky.roughness_layers, Image::get_image_required_mipmaps(atlas->size, atlas->size, Image::FORMAT_RGBAH) + 1);
		mipmaps = RSG::light_storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS ? 8 : mipmaps; // always use 8 mipmaps with real time filtering
		{
			//reflection atlas was unused, create:
			RD::TextureFormat tf;
			tf.array_layers = 6 * atlas->count;
			tf.format = _render_buffers_get_color_format();
			tf.texture_type = RD::TEXTURE_TYPE_CUBE_ARRAY;
			tf.mipmaps = mipmaps;
			tf.width = atlas->size;
			tf.height = atlas->size;
			tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT | (_render_buffers_can_be_storage() ? RD::TEXTURE_USAGE_STORAGE_BIT : 0);

			atlas->reflection = RD::get_singleton()->texture_create(tf, RD::TextureView());
		}
		{
			RD::TextureFormat tf;
			tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32;
			tf.width = atlas->size;
			tf.height = atlas->size;
			tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT;
			atlas->depth_buffer = RD::get_singleton()->texture_create(tf, RD::TextureView());
		}
		atlas->reflections.resize(atlas->count);
		for (int i = 0; i < atlas->count; i++) {
			atlas->reflections.write[i].data.update_reflection_data(atlas->size, mipmaps, false, atlas->reflection, i * 6, RSG::light_storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS, sky.roughness_layers, _render_buffers_get_color_format());
			for (int j = 0; j < 6; j++) {
				atlas->reflections.write[i].fbs[j] = reflection_probe_create_framebuffer(atlas->reflections.write[i].data.layers[0].mipmaps[0].views[j], atlas->depth_buffer);
			}
		}

		Vector<RID> fb;
		fb.push_back(atlas->depth_buffer);
		atlas->depth_fb = RD::get_singleton()->framebuffer_create(fb);
	}

	if (rpi->atlas_index == -1) {
		for (int i = 0; i < atlas->reflections.size(); i++) {
			if (atlas->reflections[i].owner.is_null()) {
				rpi->atlas_index = i;
				break;
			}
		}
		//find the one used last
		if (rpi->atlas_index == -1) {
			//everything is in use, find the one least used via LRU
			uint64_t pass_min = 0;

			for (int i = 0; i < atlas->reflections.size(); i++) {
				ReflectionProbeInstance *rpi2 = reflection_probe_instance_owner.get_or_null(atlas->reflections[i].owner);
				if (rpi2->last_pass < pass_min) {
					pass_min = rpi2->last_pass;
					rpi->atlas_index = i;
				}
			}
		}
	}

	if (rpi->atlas_index != -1) { // should we fail if this is still -1 ?
		atlas->reflections.write[rpi->atlas_index].owner = p_instance;
	}

	rpi->atlas = p_reflection_atlas;
	rpi->rendering = true;
	rpi->dirty = false;
	rpi->processing_layer = 1;
	rpi->processing_side = 0;

	RD::get_singleton()->draw_command_end_label();

	return true;
}

RID RendererSceneRenderRD::reflection_probe_create_framebuffer(RID p_color, RID p_depth) {
	Vector<RID> fb;
	fb.push_back(p_color);
	fb.push_back(p_depth);
	return RD::get_singleton()->framebuffer_create(fb);
}

bool RendererSceneRenderRD::reflection_probe_instance_postprocess_step(RID p_instance) {
	ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance);
	ERR_FAIL_COND_V(!rpi, false);
	ERR_FAIL_COND_V(!rpi->rendering, false);
	ERR_FAIL_COND_V(rpi->atlas.is_null(), false);

	ReflectionAtlas *atlas = reflection_atlas_owner.get_or_null(rpi->atlas);
	if (!atlas || rpi->atlas_index == -1) {
		//does not belong to an atlas anymore, cancel (was removed from atlas or atlas changed while rendering)
		rpi->rendering = false;
		return false;
	}

	if (RSG::light_storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS) {
		// Using real time reflections, all roughness is done in one step
		atlas->reflections.write[rpi->atlas_index].data.create_reflection_fast_filter(false);
		rpi->rendering = false;
		rpi->processing_side = 0;
		rpi->processing_layer = 1;
		return true;
	}

	if (rpi->processing_layer > 1) {
		atlas->reflections.write[rpi->atlas_index].data.create_reflection_importance_sample(false, 10, rpi->processing_layer, sky.sky_ggx_samples_quality);
		rpi->processing_layer++;
		if (rpi->processing_layer == atlas->reflections[rpi->atlas_index].data.layers[0].mipmaps.size()) {
			rpi->rendering = false;
			rpi->processing_side = 0;
			rpi->processing_layer = 1;
			return true;
		}
		return false;

	} else {
		atlas->reflections.write[rpi->atlas_index].data.create_reflection_importance_sample(false, rpi->processing_side, rpi->processing_layer, sky.sky_ggx_samples_quality);
	}

	rpi->processing_side++;
	if (rpi->processing_side == 6) {
		rpi->processing_side = 0;
		rpi->processing_layer++;
	}

	return false;
}

uint32_t RendererSceneRenderRD::reflection_probe_instance_get_resolution(RID p_instance) {
	ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance);
	ERR_FAIL_COND_V(!rpi, 0);

	ReflectionAtlas *atlas = reflection_atlas_owner.get_or_null(rpi->atlas);
	ERR_FAIL_COND_V(!atlas, 0);
	return atlas->size;
}

RID RendererSceneRenderRD::reflection_probe_instance_get_framebuffer(RID p_instance, int p_index) {
	ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance);
	ERR_FAIL_COND_V(!rpi, RID());
	ERR_FAIL_INDEX_V(p_index, 6, RID());

	ReflectionAtlas *atlas = reflection_atlas_owner.get_or_null(rpi->atlas);
	ERR_FAIL_COND_V(!atlas, RID());
	return atlas->reflections[rpi->atlas_index].fbs[p_index];
}

RID RendererSceneRenderRD::reflection_probe_instance_get_depth_framebuffer(RID p_instance, int p_index) {
	ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance);
	ERR_FAIL_COND_V(!rpi, RID());
	ERR_FAIL_INDEX_V(p_index, 6, RID());

	ReflectionAtlas *atlas = reflection_atlas_owner.get_or_null(rpi->atlas);
	ERR_FAIL_COND_V(!atlas, RID());
	return atlas->depth_fb;
}

///////////////////////////////////////////////////////////

RID RendererSceneRenderRD::shadow_atlas_create() {
	return shadow_atlas_owner.make_rid(ShadowAtlas());
}

void RendererSceneRenderRD::_update_shadow_atlas(ShadowAtlas *shadow_atlas) {
	if (shadow_atlas->size > 0 && shadow_atlas->depth.is_null()) {
		RD::TextureFormat tf;
		tf.format = shadow_atlas->use_16_bits ? RD::DATA_FORMAT_D16_UNORM : RD::DATA_FORMAT_D32_SFLOAT;
		tf.width = shadow_atlas->size;
		tf.height = shadow_atlas->size;
		tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;

		shadow_atlas->depth = RD::get_singleton()->texture_create(tf, RD::TextureView());
		Vector<RID> fb_tex;
		fb_tex.push_back(shadow_atlas->depth);
		shadow_atlas->fb = RD::get_singleton()->framebuffer_create(fb_tex);
	}
}

void RendererSceneRenderRD::shadow_atlas_set_size(RID p_atlas, int p_size, bool p_16_bits) {
	ShadowAtlas *shadow_atlas = shadow_atlas_owner.get_or_null(p_atlas);
	ERR_FAIL_COND(!shadow_atlas);
	ERR_FAIL_COND(p_size < 0);
	p_size = next_power_of_2(p_size);

	if (p_size == shadow_atlas->size && p_16_bits == shadow_atlas->use_16_bits) {
		return;
	}

	// erasing atlas
	if (shadow_atlas->depth.is_valid()) {
		RD::get_singleton()->free(shadow_atlas->depth);
		shadow_atlas->depth = RID();
	}
	for (int i = 0; i < 4; i++) {
		//clear subdivisions
		shadow_atlas->quadrants[i].shadows.clear();
		shadow_atlas->quadrants[i].shadows.resize(1 << shadow_atlas->quadrants[i].subdivision);
	}

	//erase shadow atlas reference from lights
	for (const KeyValue<RID, uint32_t> &E : shadow_atlas->shadow_owners) {
		LightInstance *li = light_instance_owner.get_or_null(E.key);
		ERR_CONTINUE(!li);
		li->shadow_atlases.erase(p_atlas);
	}

	//clear owners
	shadow_atlas->shadow_owners.clear();

	shadow_atlas->size = p_size;
	shadow_atlas->use_16_bits = p_16_bits;
}

void RendererSceneRenderRD::shadow_atlas_set_quadrant_subdivision(RID p_atlas, int p_quadrant, int p_subdivision) {
	ShadowAtlas *shadow_atlas = shadow_atlas_owner.get_or_null(p_atlas);
	ERR_FAIL_COND(!shadow_atlas);
	ERR_FAIL_INDEX(p_quadrant, 4);
	ERR_FAIL_INDEX(p_subdivision, 16384);

	uint32_t subdiv = next_power_of_2(p_subdivision);
	if (subdiv & 0xaaaaaaaa) { //sqrt(subdiv) must be integer
		subdiv <<= 1;
	}

	subdiv = int(Math::sqrt((float)subdiv));

	//obtain the number that will be x*x

	if (shadow_atlas->quadrants[p_quadrant].subdivision == subdiv) {
		return;
	}

	//erase all data from quadrant
	for (int i = 0; i < shadow_atlas->quadrants[p_quadrant].shadows.size(); i++) {
		if (shadow_atlas->quadrants[p_quadrant].shadows[i].owner.is_valid()) {
			shadow_atlas->shadow_owners.erase(shadow_atlas->quadrants[p_quadrant].shadows[i].owner);
			LightInstance *li = light_instance_owner.get_or_null(shadow_atlas->quadrants[p_quadrant].shadows[i].owner);
			ERR_CONTINUE(!li);
			li->shadow_atlases.erase(p_atlas);
		}
	}

	shadow_atlas->quadrants[p_quadrant].shadows.clear();
	shadow_atlas->quadrants[p_quadrant].shadows.resize(subdiv * subdiv);
	shadow_atlas->quadrants[p_quadrant].subdivision = subdiv;

	//cache the smallest subdiv (for faster allocation in light update)

	shadow_atlas->smallest_subdiv = 1 << 30;

	for (int i = 0; i < 4; i++) {
		if (shadow_atlas->quadrants[i].subdivision) {
			shadow_atlas->smallest_subdiv = MIN(shadow_atlas->smallest_subdiv, shadow_atlas->quadrants[i].subdivision);
		}
	}

	if (shadow_atlas->smallest_subdiv == 1 << 30) {
		shadow_atlas->smallest_subdiv = 0;
	}

	//resort the size orders, simple bublesort for 4 elements..

	int swaps = 0;
	do {
		swaps = 0;

		for (int i = 0; i < 3; i++) {
			if (shadow_atlas->quadrants[shadow_atlas->size_order[i]].subdivision < shadow_atlas->quadrants[shadow_atlas->size_order[i + 1]].subdivision) {
				SWAP(shadow_atlas->size_order[i], shadow_atlas->size_order[i + 1]);
				swaps++;
			}
		}
	} while (swaps > 0);
}

bool RendererSceneRenderRD::_shadow_atlas_find_shadow(ShadowAtlas *shadow_atlas, int *p_in_quadrants, int p_quadrant_count, int p_current_subdiv, uint64_t p_tick, int &r_quadrant, int &r_shadow) {
	for (int i = p_quadrant_count - 1; i >= 0; i--) {
		int qidx = p_in_quadrants[i];

		if (shadow_atlas->quadrants[qidx].subdivision == (uint32_t)p_current_subdiv) {
			return false;
		}

		//look for an empty space
		int sc = shadow_atlas->quadrants[qidx].shadows.size();
		const ShadowAtlas::Quadrant::Shadow *sarr = shadow_atlas->quadrants[qidx].shadows.ptr();

		int found_free_idx = -1; //found a free one
		int found_used_idx = -1; //found existing one, must steal it
		uint64_t min_pass = 0; // pass of the existing one, try to use the least recently used one (LRU fashion)

		for (int j = 0; j < sc; j++) {
			if (!sarr[j].owner.is_valid()) {
				found_free_idx = j;
				break;
			}

			LightInstance *sli = light_instance_owner.get_or_null(sarr[j].owner);
			ERR_CONTINUE(!sli);

			if (sli->last_scene_pass != scene_pass) {
				//was just allocated, don't kill it so soon, wait a bit..
				if (p_tick - sarr[j].alloc_tick < shadow_atlas_realloc_tolerance_msec) {
					continue;
				}

				if (found_used_idx == -1 || sli->last_scene_pass < min_pass) {
					found_used_idx = j;
					min_pass = sli->last_scene_pass;
				}
			}
		}

		if (found_free_idx == -1 && found_used_idx == -1) {
			continue; //nothing found
		}

		if (found_free_idx == -1 && found_used_idx != -1) {
			found_free_idx = found_used_idx;
		}

		r_quadrant = qidx;
		r_shadow = found_free_idx;

		return true;
	}

	return false;
}

bool RendererSceneRenderRD::_shadow_atlas_find_omni_shadows(ShadowAtlas *shadow_atlas, int *p_in_quadrants, int p_quadrant_count, int p_current_subdiv, uint64_t p_tick, int &r_quadrant, int &r_shadow) {
	for (int i = p_quadrant_count - 1; i >= 0; i--) {
		int qidx = p_in_quadrants[i];

		if (shadow_atlas->quadrants[qidx].subdivision == (uint32_t)p_current_subdiv) {
			return false;
		}

		//look for an empty space
		int sc = shadow_atlas->quadrants[qidx].shadows.size();
		const ShadowAtlas::Quadrant::Shadow *sarr = shadow_atlas->quadrants[qidx].shadows.ptr();

		int found_idx = -1;
		uint64_t min_pass = 0; // sum of currently selected spots, try to get the least recently used pair

		for (int j = 0; j < sc - 1; j++) {
			uint64_t pass = 0;

			if (sarr[j].owner.is_valid()) {
				LightInstance *sli = light_instance_owner.get_or_null(sarr[j].owner);
				ERR_CONTINUE(!sli);

				if (sli->last_scene_pass == scene_pass) {
					continue;
				}

				//was just allocated, don't kill it so soon, wait a bit..
				if (p_tick - sarr[j].alloc_tick < shadow_atlas_realloc_tolerance_msec) {
					continue;
				}
				pass += sli->last_scene_pass;
			}

			if (sarr[j + 1].owner.is_valid()) {
				LightInstance *sli = light_instance_owner.get_or_null(sarr[j + 1].owner);
				ERR_CONTINUE(!sli);

				if (sli->last_scene_pass == scene_pass) {
					continue;
				}

				//was just allocated, don't kill it so soon, wait a bit..
				if (p_tick - sarr[j + 1].alloc_tick < shadow_atlas_realloc_tolerance_msec) {
					continue;
				}
				pass += sli->last_scene_pass;
			}

			if (found_idx == -1 || pass < min_pass) {
				found_idx = j;
				min_pass = pass;

				// we found two empty spots, no need to check the rest
				if (pass == 0) {
					break;
				}
			}
		}

		if (found_idx == -1) {
			continue; //nothing found
		}

		r_quadrant = qidx;
		r_shadow = found_idx;

		return true;
	}

	return false;
}

bool RendererSceneRenderRD::shadow_atlas_update_light(RID p_atlas, RID p_light_instance, float p_coverage, uint64_t p_light_version) {
	ShadowAtlas *shadow_atlas = shadow_atlas_owner.get_or_null(p_atlas);
	ERR_FAIL_COND_V(!shadow_atlas, false);

	LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
	ERR_FAIL_COND_V(!li, false);

	if (shadow_atlas->size == 0 || shadow_atlas->smallest_subdiv == 0) {
		return false;
	}

	uint32_t quad_size = shadow_atlas->size >> 1;
	int desired_fit = MIN(quad_size / shadow_atlas->smallest_subdiv, next_power_of_2(quad_size * p_coverage));

	int valid_quadrants[4];
	int valid_quadrant_count = 0;
	int best_size = -1; //best size found
	int best_subdiv = -1; //subdiv for the best size

	//find the quadrants this fits into, and the best possible size it can fit into
	for (int i = 0; i < 4; i++) {
		int q = shadow_atlas->size_order[i];
		int sd = shadow_atlas->quadrants[q].subdivision;
		if (sd == 0) {
			continue; //unused
		}

		int max_fit = quad_size / sd;

		if (best_size != -1 && max_fit > best_size) {
			break; //too large
		}

		valid_quadrants[valid_quadrant_count++] = q;
		best_subdiv = sd;

		if (max_fit >= desired_fit) {
			best_size = max_fit;
		}
	}

	ERR_FAIL_COND_V(valid_quadrant_count == 0, false);

	uint64_t tick = OS::get_singleton()->get_ticks_msec();

	uint32_t old_key = ShadowAtlas::SHADOW_INVALID;
	uint32_t old_quadrant = ShadowAtlas::SHADOW_INVALID;
	uint32_t old_shadow = ShadowAtlas::SHADOW_INVALID;
	int old_subdivision = -1;

	bool should_realloc = false;
	bool should_redraw = false;

	if (shadow_atlas->shadow_owners.has(p_light_instance)) {
		old_key = shadow_atlas->shadow_owners[p_light_instance];
		old_quadrant = (old_key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3;
		old_shadow = old_key & ShadowAtlas::SHADOW_INDEX_MASK;

		should_realloc = shadow_atlas->quadrants[old_quadrant].subdivision != (uint32_t)best_subdiv && (shadow_atlas->quadrants[old_quadrant].shadows[old_shadow].alloc_tick - tick > shadow_atlas_realloc_tolerance_msec);
		should_redraw = shadow_atlas->quadrants[old_quadrant].shadows[old_shadow].version != p_light_version;

		if (!should_realloc) {
			shadow_atlas->quadrants[old_quadrant].shadows.write[old_shadow].version = p_light_version;
			//already existing, see if it should redraw or it's just OK
			return should_redraw;
		}

		old_subdivision = shadow_atlas->quadrants[old_quadrant].subdivision;
	}

	bool is_omni = li->light_type == RS::LIGHT_OMNI;
	bool found_shadow = false;
	int new_quadrant = -1;
	int new_shadow = -1;

	if (is_omni) {
		found_shadow = _shadow_atlas_find_omni_shadows(shadow_atlas, valid_quadrants, valid_quadrant_count, old_subdivision, tick, new_quadrant, new_shadow);
	} else {
		found_shadow = _shadow_atlas_find_shadow(shadow_atlas, valid_quadrants, valid_quadrant_count, old_subdivision, tick, new_quadrant, new_shadow);
	}

	if (found_shadow) {
		if (old_quadrant != ShadowAtlas::SHADOW_INVALID) {
			shadow_atlas->quadrants[old_quadrant].shadows.write[old_shadow].version = 0;
			shadow_atlas->quadrants[old_quadrant].shadows.write[old_shadow].owner = RID();

			if (old_key & ShadowAtlas::OMNI_LIGHT_FLAG) {
				shadow_atlas->quadrants[old_quadrant].shadows.write[old_shadow + 1].version = 0;
				shadow_atlas->quadrants[old_quadrant].shadows.write[old_shadow + 1].owner = RID();
			}
		}

		uint32_t new_key = new_quadrant << ShadowAtlas::QUADRANT_SHIFT;
		new_key |= new_shadow;

		ShadowAtlas::Quadrant::Shadow *sh = &shadow_atlas->quadrants[new_quadrant].shadows.write[new_shadow];
		_shadow_atlas_invalidate_shadow(sh, p_atlas, shadow_atlas, new_quadrant, new_shadow);

		sh->owner = p_light_instance;
		sh->alloc_tick = tick;
		sh->version = p_light_version;

		if (is_omni) {
			new_key |= ShadowAtlas::OMNI_LIGHT_FLAG;

			int new_omni_shadow = new_shadow + 1;
			ShadowAtlas::Quadrant::Shadow *extra_sh = &shadow_atlas->quadrants[new_quadrant].shadows.write[new_omni_shadow];
			_shadow_atlas_invalidate_shadow(extra_sh, p_atlas, shadow_atlas, new_quadrant, new_omni_shadow);

			extra_sh->owner = p_light_instance;
			extra_sh->alloc_tick = tick;
			extra_sh->version = p_light_version;
		}

		li->shadow_atlases.insert(p_atlas);

		//update it in map
		shadow_atlas->shadow_owners[p_light_instance] = new_key;
		//make it dirty, as it should redraw anyway
		return true;
	}

	return should_redraw;
}

void RendererSceneRenderRD::_shadow_atlas_invalidate_shadow(RendererSceneRenderRD::ShadowAtlas::Quadrant::Shadow *p_shadow, RID p_atlas, RendererSceneRenderRD::ShadowAtlas *p_shadow_atlas, uint32_t p_quadrant, uint32_t p_shadow_idx) {
	if (p_shadow->owner.is_valid()) {
		LightInstance *sli = light_instance_owner.get_or_null(p_shadow->owner);
		uint32_t old_key = p_shadow_atlas->shadow_owners[p_shadow->owner];

		if (old_key & ShadowAtlas::OMNI_LIGHT_FLAG) {
			uint32_t s = old_key & ShadowAtlas::SHADOW_INDEX_MASK;
			uint32_t omni_shadow_idx = p_shadow_idx + (s == (uint32_t)p_shadow_idx ? 1 : -1);
			RendererSceneRenderRD::ShadowAtlas::Quadrant::Shadow *omni_shadow = &p_shadow_atlas->quadrants[p_quadrant].shadows.write[omni_shadow_idx];
			omni_shadow->version = 0;
			omni_shadow->owner = RID();
		}

		p_shadow_atlas->shadow_owners.erase(p_shadow->owner);
		p_shadow->version = 0;
		p_shadow->owner = RID();
		sli->shadow_atlases.erase(p_atlas);
	}
}

void RendererSceneRenderRD::_update_directional_shadow_atlas() {
	if (directional_shadow.depth.is_null() && directional_shadow.size > 0) {
		RD::TextureFormat tf;
		tf.format = directional_shadow.use_16_bits ? RD::DATA_FORMAT_D16_UNORM : RD::DATA_FORMAT_D32_SFLOAT;
		tf.width = directional_shadow.size;
		tf.height = directional_shadow.size;
		tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;

		directional_shadow.depth = RD::get_singleton()->texture_create(tf, RD::TextureView());
		Vector<RID> fb_tex;
		fb_tex.push_back(directional_shadow.depth);
		directional_shadow.fb = RD::get_singleton()->framebuffer_create(fb_tex);
	}
}
void RendererSceneRenderRD::directional_shadow_atlas_set_size(int p_size, bool p_16_bits) {
	p_size = nearest_power_of_2_templated(p_size);

	if (directional_shadow.size == p_size && directional_shadow.use_16_bits == p_16_bits) {
		return;
	}

	directional_shadow.size = p_size;
	directional_shadow.use_16_bits = p_16_bits;

	if (directional_shadow.depth.is_valid()) {
		RD::get_singleton()->free(directional_shadow.depth);
		directional_shadow.depth = RID();
		_base_uniforms_changed();
	}
}

void RendererSceneRenderRD::set_directional_shadow_count(int p_count) {
	directional_shadow.light_count = p_count;
	directional_shadow.current_light = 0;
}

static Rect2i _get_directional_shadow_rect(int p_size, int p_shadow_count, int p_shadow_index) {
	int split_h = 1;
	int split_v = 1;

	while (split_h * split_v < p_shadow_count) {
		if (split_h == split_v) {
			split_h <<= 1;
		} else {
			split_v <<= 1;
		}
	}

	Rect2i rect(0, 0, p_size, p_size);
	rect.size.width /= split_h;
	rect.size.height /= split_v;

	rect.position.x = rect.size.width * (p_shadow_index % split_h);
	rect.position.y = rect.size.height * (p_shadow_index / split_h);

	return rect;
}

int RendererSceneRenderRD::get_directional_light_shadow_size(RID p_light_intance) {
	ERR_FAIL_COND_V(directional_shadow.light_count == 0, 0);

	Rect2i r = _get_directional_shadow_rect(directional_shadow.size, directional_shadow.light_count, 0);

	LightInstance *light_instance = light_instance_owner.get_or_null(p_light_intance);
	ERR_FAIL_COND_V(!light_instance, 0);

	switch (RSG::light_storage->light_directional_get_shadow_mode(light_instance->light)) {
		case RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL:
			break; //none
		case RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS:
			r.size.height /= 2;
			break;
		case RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS:
			r.size /= 2;
			break;
	}

	return MAX(r.size.width, r.size.height);
}

//////////////////////////////////////////////////

RID RendererSceneRenderRD::light_instance_create(RID p_light) {
	RID li = light_instance_owner.make_rid(LightInstance());

	LightInstance *light_instance = light_instance_owner.get_or_null(li);

	light_instance->self = li;
	light_instance->light = p_light;
	light_instance->light_type = RSG::light_storage->light_get_type(p_light);
	if (light_instance->light_type != RS::LIGHT_DIRECTIONAL) {
		light_instance->forward_id = _allocate_forward_id(light_instance->light_type == RS::LIGHT_OMNI ? FORWARD_ID_TYPE_OMNI_LIGHT : FORWARD_ID_TYPE_SPOT_LIGHT);
	}

	return li;
}

void RendererSceneRenderRD::light_instance_set_transform(RID p_light_instance, const Transform3D &p_transform) {
	LightInstance *light_instance = light_instance_owner.get_or_null(p_light_instance);
	ERR_FAIL_COND(!light_instance);

	light_instance->transform = p_transform;
}

void RendererSceneRenderRD::light_instance_set_aabb(RID p_light_instance, const AABB &p_aabb) {
	LightInstance *light_instance = light_instance_owner.get_or_null(p_light_instance);
	ERR_FAIL_COND(!light_instance);

	light_instance->aabb = p_aabb;
}

void RendererSceneRenderRD::light_instance_set_shadow_transform(RID p_light_instance, const Projection &p_projection, const Transform3D &p_transform, float p_far, float p_split, int p_pass, float p_shadow_texel_size, float p_bias_scale, float p_range_begin, const Vector2 &p_uv_scale) {
	LightInstance *light_instance = light_instance_owner.get_or_null(p_light_instance);
	ERR_FAIL_COND(!light_instance);

	ERR_FAIL_INDEX(p_pass, 6);

	light_instance->shadow_transform[p_pass].camera = p_projection;
	light_instance->shadow_transform[p_pass].transform = p_transform;
	light_instance->shadow_transform[p_pass].farplane = p_far;
	light_instance->shadow_transform[p_pass].split = p_split;
	light_instance->shadow_transform[p_pass].bias_scale = p_bias_scale;
	light_instance->shadow_transform[p_pass].range_begin = p_range_begin;
	light_instance->shadow_transform[p_pass].shadow_texel_size = p_shadow_texel_size;
	light_instance->shadow_transform[p_pass].uv_scale = p_uv_scale;
}

void RendererSceneRenderRD::light_instance_mark_visible(RID p_light_instance) {
	LightInstance *light_instance = light_instance_owner.get_or_null(p_light_instance);
	ERR_FAIL_COND(!light_instance);

	light_instance->last_scene_pass = scene_pass;
}

RendererSceneRenderRD::ShadowCubemap *RendererSceneRenderRD::_get_shadow_cubemap(int p_size) {
	if (!shadow_cubemaps.has(p_size)) {
		ShadowCubemap sc;
		{
			RD::TextureFormat tf;
			tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32;
			tf.width = p_size;
			tf.height = p_size;
			tf.texture_type = RD::TEXTURE_TYPE_CUBE;
			tf.array_layers = 6;
			tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT;
			sc.cubemap = RD::get_singleton()->texture_create(tf, RD::TextureView());
		}

		for (int i = 0; i < 6; i++) {
			RID side_texture = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), sc.cubemap, i, 0);
			Vector<RID> fbtex;
			fbtex.push_back(side_texture);
			sc.side_fb[i] = RD::get_singleton()->framebuffer_create(fbtex);
		}

		shadow_cubemaps[p_size] = sc;
	}

	return &shadow_cubemaps[p_size];
}

//////////////////////////

RID RendererSceneRenderRD::decal_instance_create(RID p_decal) {
	DecalInstance di;
	di.decal = p_decal;
	di.forward_id = _allocate_forward_id(FORWARD_ID_TYPE_DECAL);
	return decal_instance_owner.make_rid(di);
}

void RendererSceneRenderRD::decal_instance_set_transform(RID p_decal, const Transform3D &p_transform) {
	DecalInstance *di = decal_instance_owner.get_or_null(p_decal);
	ERR_FAIL_COND(!di);
	di->transform = p_transform;
}

/////////////////////////////////

RID RendererSceneRenderRD::lightmap_instance_create(RID p_lightmap) {
	LightmapInstance li;
	li.lightmap = p_lightmap;
	return lightmap_instance_owner.make_rid(li);
}
void RendererSceneRenderRD::lightmap_instance_set_transform(RID p_lightmap, const Transform3D &p_transform) {
	LightmapInstance *li = lightmap_instance_owner.get_or_null(p_lightmap);
	ERR_FAIL_COND(!li);
	li->transform = p_transform;
}

/////////////////////////////////

RID RendererSceneRenderRD::voxel_gi_instance_create(RID p_base) {
	return gi.voxel_gi_instance_create(p_base);
}

void RendererSceneRenderRD::voxel_gi_instance_set_transform_to_data(RID p_probe, const Transform3D &p_xform) {
	gi.voxel_gi_instance_set_transform_to_data(p_probe, p_xform);
}

bool RendererSceneRenderRD::voxel_gi_needs_update(RID p_probe) const {
	if (!is_dynamic_gi_supported()) {
		return false;
	}

	return gi.voxel_gi_needs_update(p_probe);
}

void RendererSceneRenderRD::voxel_gi_update(RID p_probe, bool p_update_light_instances, const Vector<RID> &p_light_instances, const PagedArray<RenderGeometryInstance *> &p_dynamic_objects) {
	if (!is_dynamic_gi_supported()) {
		return;
	}

	gi.voxel_gi_update(p_probe, p_update_light_instances, p_light_instances, p_dynamic_objects, this);
}

void RendererSceneRenderRD::_debug_sdfgi_probes(Ref<RenderSceneBuffersRD> p_render_buffers, RID p_framebuffer, const uint32_t p_view_count, const Projection *p_camera_with_transforms, bool p_will_continue_color, bool p_will_continue_depth) {
	ERR_FAIL_COND(p_render_buffers.is_null());

	if (!p_render_buffers->has_custom_data(RB_SCOPE_SDFGI)) {
		return; //nothing to debug
	}

	Ref<RendererRD::GI::SDFGI> sdfgi = p_render_buffers->get_custom_data(RB_SCOPE_SDFGI);

	sdfgi->debug_probes(p_framebuffer, p_view_count, p_camera_with_transforms, p_will_continue_color, p_will_continue_depth);
}

////////////////////////////////
Ref<RenderSceneBuffers> RendererSceneRenderRD::render_buffers_create() {
	Ref<RenderSceneBuffersRD> rb;
	rb.instantiate();

	rb->set_can_be_storage(_render_buffers_can_be_storage());
	rb->set_max_cluster_elements(max_cluster_elements);
	rb->set_base_data_format(_render_buffers_get_color_format());
	if (ss_effects) {
		rb->set_sseffects(ss_effects);
	}
	if (vrs) {
		rb->set_vrs(vrs);
	}

	setup_render_buffer_data(rb);

	return rb;
}

void RendererSceneRenderRD::_allocate_luminance_textures(Ref<RenderSceneBuffersRD> rb) {
	ERR_FAIL_COND(!rb->luminance.current.is_null());

	Size2i internal_size = rb->get_internal_size();
	int w = internal_size.x;
	int h = internal_size.y;

	while (true) {
		w = MAX(w / 8, 1);
		h = MAX(h / 8, 1);

		RD::TextureFormat tf;
		tf.format = RD::DATA_FORMAT_R32_SFLOAT;
		tf.width = w;
		tf.height = h;

		bool final = w == 1 && h == 1;

		if (_render_buffers_can_be_storage()) {
			tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT;
			if (final) {
				tf.usage_bits |= RD::TEXTURE_USAGE_SAMPLING_BIT;
			}
		} else {
			tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT;
		}

		RID texture = RD::get_singleton()->texture_create(tf, RD::TextureView());

		rb->luminance.reduce.push_back(texture);
		if (!_render_buffers_can_be_storage()) {
			Vector<RID> fb;
			fb.push_back(texture);

			rb->luminance.fb.push_back(RD::get_singleton()->framebuffer_create(fb));
		}

		if (final) {
			rb->luminance.current = RD::get_singleton()->texture_create(tf, RD::TextureView());

			if (!_render_buffers_can_be_storage()) {
				Vector<RID> fb;
				fb.push_back(rb->luminance.current);

				rb->luminance.current_fb = RD::get_singleton()->framebuffer_create(fb);
			}
			break;
		}
	}
}

void RendererSceneRenderRD::_process_sss(Ref<RenderSceneBuffersRD> p_render_buffers, const Projection &p_camera) {
	ERR_FAIL_COND(p_render_buffers.is_null());

	Size2i internal_size = p_render_buffers->get_internal_size();
	bool can_use_effects = internal_size.x >= 8 && internal_size.y >= 8;

	if (!can_use_effects) {
		//just copy
		return;
	}

	p_render_buffers->allocate_blur_textures();

	for (uint32_t v = 0; v < p_render_buffers->get_view_count(); v++) {
		RID internal_texture = p_render_buffers->get_internal_texture(v);
		RID depth_texture = p_render_buffers->get_depth_texture(v);
		ss_effects->sub_surface_scattering(p_render_buffers, internal_texture, depth_texture, p_camera, internal_size, sss_scale, sss_depth_scale, sss_quality);
	}
}

void RendererSceneRenderRD::_process_ssr(Ref<RenderSceneBuffersRD> p_render_buffers, RID p_dest_framebuffer, const RID *p_normal_slices, RID p_specular_buffer, const RID *p_metallic_slices, RID p_environment, const Projection *p_projections, const Vector3 *p_eye_offsets, bool p_use_additive) {
	ERR_FAIL_NULL(ss_effects);
	ERR_FAIL_COND(p_render_buffers.is_null());

	Size2i internal_size = p_render_buffers->get_internal_size();
	bool can_use_effects = internal_size.x >= 8 && internal_size.y >= 8;
	uint32_t view_count = p_render_buffers->get_view_count();

	if (!can_use_effects) {
		//just copy
		copy_effects->merge_specular(p_dest_framebuffer, p_specular_buffer, p_use_additive ? RID() : p_render_buffers->get_internal_texture(), RID(), view_count);
		return;
	}

	ERR_FAIL_COND(p_environment.is_null());
	ERR_FAIL_COND(!environment_get_ssr_enabled(p_environment));

	Size2i half_size = Size2i(internal_size.x / 2, internal_size.y / 2);
	if (p_render_buffers->ssr.output.is_null()) {
		ss_effects->ssr_allocate_buffers(p_render_buffers->ssr, _render_buffers_get_color_format(), ssr_roughness_quality, half_size, view_count);
	}
	RID texture_slices[RendererSceneRender::MAX_RENDER_VIEWS];
	RID depth_slices[RendererSceneRender::MAX_RENDER_VIEWS];
	for (uint32_t v = 0; v < view_count; v++) {
		texture_slices[v] = p_render_buffers->get_internal_texture(v);
		depth_slices[v] = p_render_buffers->get_depth_texture(v);
	}
	ss_effects->screen_space_reflection(p_render_buffers->ssr, texture_slices, p_normal_slices, ssr_roughness_quality, p_metallic_slices, depth_slices, half_size, environment_get_ssr_max_steps(p_environment), environment_get_ssr_fade_in(p_environment), environment_get_ssr_fade_out(p_environment), environment_get_ssr_depth_tolerance(p_environment), view_count, p_projections, p_eye_offsets);
	copy_effects->merge_specular(p_dest_framebuffer, p_specular_buffer, p_use_additive ? RID() : p_render_buffers->get_internal_texture(), p_render_buffers->ssr.output, view_count);
}

void RendererSceneRenderRD::_process_ssao(Ref<RenderSceneBuffersRD> p_render_buffers, RID p_environment, RID p_normal_buffer, const Projection &p_projection) {
	ERR_FAIL_NULL(ss_effects);
	ERR_FAIL_COND(p_render_buffers.is_null());
	ERR_FAIL_COND(p_environment.is_null());

	RENDER_TIMESTAMP("Process SSAO");

	RendererRD::SSEffects::SSAOSettings settings;
	settings.radius = environment_get_ssao_radius(p_environment);
	settings.intensity = environment_get_ssao_intensity(p_environment);
	settings.power = environment_get_ssao_power(p_environment);
	settings.detail = environment_get_ssao_detail(p_environment);
	settings.horizon = environment_get_ssao_horizon(p_environment);
	settings.sharpness = environment_get_ssao_sharpness(p_environment);

	settings.quality = ssao_quality;
	settings.half_size = ssao_half_size;
	settings.adaptive_target = ssao_adaptive_target;
	settings.blur_passes = ssao_blur_passes;
	settings.fadeout_from = ssao_fadeout_from;
	settings.fadeout_to = ssao_fadeout_to;
	settings.full_screen_size = p_render_buffers->get_internal_size();

	ss_effects->ssao_allocate_buffers(p_render_buffers->ss_effects.ssao, settings, p_render_buffers->ss_effects.linear_depth);
	ss_effects->generate_ssao(p_render_buffers->ss_effects.ssao, p_normal_buffer, p_projection, settings);
}

void RendererSceneRenderRD::_process_ssil(Ref<RenderSceneBuffersRD> p_render_buffers, RID p_environment, RID p_normal_buffer, const Projection &p_projection, const Transform3D &p_transform) {
	ERR_FAIL_NULL(ss_effects);
	ERR_FAIL_COND(p_render_buffers.is_null());
	ERR_FAIL_COND(p_environment.is_null());

	RENDER_TIMESTAMP("Process SSIL");

	RendererRD::SSEffects::SSILSettings settings;
	settings.radius = environment_get_ssil_radius(p_environment);
	settings.intensity = environment_get_ssil_intensity(p_environment);
	settings.sharpness = environment_get_ssil_sharpness(p_environment);
	settings.normal_rejection = environment_get_ssil_normal_rejection(p_environment);

	settings.quality = ssil_quality;
	settings.half_size = ssil_half_size;
	settings.adaptive_target = ssil_adaptive_target;
	settings.blur_passes = ssil_blur_passes;
	settings.fadeout_from = ssil_fadeout_from;
	settings.fadeout_to = ssil_fadeout_to;
	settings.full_screen_size = p_render_buffers->get_internal_size();

	Projection correction;
	correction.set_depth_correction(true);
	Projection projection = correction * p_projection;
	Transform3D transform = p_transform;
	transform.set_origin(Vector3(0.0, 0.0, 0.0));
	Projection last_frame_projection = p_render_buffers->ss_effects.last_frame_projection * Projection(p_render_buffers->ss_effects.last_frame_transform.affine_inverse()) * Projection(transform) * projection.inverse();

	ss_effects->ssil_allocate_buffers(p_render_buffers->ss_effects.ssil, settings, p_render_buffers->ss_effects.linear_depth);
	ss_effects->screen_space_indirect_lighting(p_render_buffers->ss_effects.ssil, p_normal_buffer, p_projection, last_frame_projection, settings);
	p_render_buffers->ss_effects.last_frame_projection = projection;
	p_render_buffers->ss_effects.last_frame_transform = transform;
}

void RendererSceneRenderRD::_copy_framebuffer_to_ssil(Ref<RenderSceneBuffersRD> p_render_buffers) {
	ERR_FAIL_COND(p_render_buffers.is_null());

	if (p_render_buffers->ss_effects.ssil.last_frame.is_valid()) {
		Size2i size = p_render_buffers->get_internal_size();
		RID texture = p_render_buffers->get_internal_texture();
		copy_effects->copy_to_rect(texture, p_render_buffers->ss_effects.ssil.last_frame, Rect2i(0, 0, size.x, size.y));

		int width = size.x;
		int height = size.y;
		for (int i = 0; i < p_render_buffers->ss_effects.ssil.last_frame_slices.size() - 1; i++) {
			width = MAX(1, width >> 1);
			height = MAX(1, height >> 1);
			copy_effects->make_mipmap(p_render_buffers->ss_effects.ssil.last_frame_slices[i], p_render_buffers->ss_effects.ssil.last_frame_slices[i + 1], Size2i(width, height));
		}
	}
}

void RendererSceneRenderRD::_render_buffers_copy_screen_texture(const RenderDataRD *p_render_data) {
	Ref<RenderSceneBuffersRD> rb = p_render_data->render_buffers;
	ERR_FAIL_COND(rb.is_null());

	RD::get_singleton()->draw_command_begin_label("Copy screen texture");

	rb->allocate_blur_textures();

	bool can_use_storage = _render_buffers_can_be_storage();
	Size2i size = rb->get_internal_size();

	for (uint32_t v = 0; v < rb->get_view_count(); v++) {
		RID texture = rb->get_internal_texture(v);
		int mipmaps = int(rb->get_texture_format(RB_SCOPE_BUFFERS, RB_TEX_BLUR_0).mipmaps);
		RID dest = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BLUR_0, v, 0);

		if (can_use_storage) {
			copy_effects->copy_to_rect(texture, dest, Rect2i(0, 0, size.x, size.y));
		} else {
			RID fb = FramebufferCacheRD::get_singleton()->get_cache(dest);
			copy_effects->copy_to_fb_rect(texture, fb, Rect2i(0, 0, size.x, size.y));
		}

		for (int i = 1; i < mipmaps; i++) {
			RID source = dest;
			dest = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BLUR_0, v, i);
			Size2i msize = rb->get_texture_slice_size(RB_SCOPE_BUFFERS, RB_TEX_BLUR_0, v, i);

			if (can_use_storage) {
				copy_effects->make_mipmap(source, dest, msize);
			} else {
				copy_effects->make_mipmap_raster(source, dest, msize);
			}
		}
	}

	RD::get_singleton()->draw_command_end_label();
}

void RendererSceneRenderRD::_render_buffers_copy_depth_texture(const RenderDataRD *p_render_data) {
	Ref<RenderSceneBuffersRD> rb = p_render_data->render_buffers;
	ERR_FAIL_COND(rb.is_null());

	RD::get_singleton()->draw_command_begin_label("Copy depth texture");

	// note, this only creates our back depth texture if we haven't already created it.
	uint32_t usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT;
	usage_bits |= RD::TEXTURE_USAGE_CAN_COPY_TO_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
	usage_bits |= RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT; // set this as color attachment because we're copying data into it, it's not actually used as a depth buffer

	rb->create_texture(RB_SCOPE_BUFFERS, RB_TEX_BACK_DEPTH, RD::DATA_FORMAT_R32_SFLOAT, usage_bits, RD::TEXTURE_SAMPLES_1);

	bool can_use_storage = _render_buffers_can_be_storage();
	Size2i size = rb->get_internal_size();
	for (uint32_t v = 0; v < p_render_data->scene_data->view_count; v++) {
		RID depth_texture = rb->get_depth_texture(v);
		RID depth_back_texture = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BACK_DEPTH, v, 0);

		if (can_use_storage) {
			copy_effects->copy_to_rect(depth_texture, depth_back_texture, Rect2i(0, 0, size.x, size.y));
		} else {
			RID depth_back_fb = FramebufferCacheRD::get_singleton()->get_cache(depth_back_texture);
			copy_effects->copy_to_fb_rect(depth_texture, depth_back_fb, Rect2i(0, 0, size.x, size.y));
		}
	}

	RD::get_singleton()->draw_command_end_label();
}

void RendererSceneRenderRD::_render_buffers_post_process_and_tonemap(const RenderDataRD *p_render_data) {
	RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton();

	Ref<RenderSceneBuffersRD> rb = p_render_data->render_buffers;
	ERR_FAIL_COND(rb.is_null());

	// Glow, auto exposure and DoF (if enabled).

	Size2i internal_size = rb->get_internal_size();
	Size2i target_size = rb->get_target_size();

	bool can_use_effects = target_size.x >= 8 && target_size.y >= 8; // FIXME I think this should check internal size, we do all our post processing at this size...
	bool can_use_storage = _render_buffers_can_be_storage();

	RID render_target = rb->get_render_target();
	RID internal_texture = rb->get_internal_texture();

	if (can_use_effects && RSG::camera_attributes->camera_attributes_uses_dof(p_render_data->camera_attributes)) {
		RENDER_TIMESTAMP("Depth of Field");
		RD::get_singleton()->draw_command_begin_label("DOF");

		rb->allocate_blur_textures();

		RendererRD::BokehDOF::BokehBuffers buffers;

		// Textures we use
		buffers.base_texture_size = rb->get_internal_size();
		buffers.secondary_texture = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BLUR_0, 0, 0);
		buffers.half_texture[0] = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1, 0, 0);
		buffers.half_texture[1] = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BLUR_0, 0, 1);

		if (can_use_storage) {
			for (uint32_t i = 0; i < rb->get_view_count(); i++) {
				buffers.base_texture = rb->get_internal_texture(i);
				buffers.depth_texture = rb->get_depth_texture(i);

				// In stereo p_render_data->z_near and p_render_data->z_far can be offset for our combined frustrum
				float z_near = p_render_data->scene_data->view_projection[i].get_z_near();
				float z_far = p_render_data->scene_data->view_projection[i].get_z_far();
				bokeh_dof->bokeh_dof_compute(buffers, p_render_data->camera_attributes, z_near, z_far, p_render_data->scene_data->cam_orthogonal);
			};
		} else {
			// Set framebuffers.
			buffers.secondary_fb = rb->weight_buffers[1].fb;
			buffers.half_fb[0] = rb->weight_buffers[2].fb;
			buffers.half_fb[1] = rb->weight_buffers[3].fb;
			buffers.weight_texture[0] = rb->weight_buffers[0].weight;
			buffers.weight_texture[1] = rb->weight_buffers[1].weight;
			buffers.weight_texture[2] = rb->weight_buffers[2].weight;
			buffers.weight_texture[3] = rb->weight_buffers[3].weight;

			// Set weight buffers.
			buffers.base_weight_fb = rb->weight_buffers[0].fb;

			for (uint32_t i = 0; i < rb->get_view_count(); i++) {
				buffers.base_texture = rb->get_internal_texture(i);
				buffers.depth_texture = rb->get_depth_texture(i);
				buffers.base_fb = FramebufferCacheRD::get_singleton()->get_cache(buffers.base_texture); // TODO move this into bokeh_dof_raster, we can do this internally

				// In stereo p_render_data->z_near and p_render_data->z_far can be offset for our combined frustrum
				float z_near = p_render_data->scene_data->view_projection[i].get_z_near();
				float z_far = p_render_data->scene_data->view_projection[i].get_z_far();
				bokeh_dof->bokeh_dof_raster(buffers, p_render_data->camera_attributes, z_near, z_far, p_render_data->scene_data->cam_orthogonal);
			}
		}
		RD::get_singleton()->draw_command_end_label();
	}

	float auto_exposure_scale = 1.0;

	if (can_use_effects && RSG::camera_attributes->camera_attributes_uses_auto_exposure(p_render_data->camera_attributes)) {
		RENDER_TIMESTAMP("Auto exposure");

		RD::get_singleton()->draw_command_begin_label("Auto exposure");
		if (rb->luminance.current.is_null()) {
			_allocate_luminance_textures(rb);
		}
		uint64_t auto_exposure_version = RSG::camera_attributes->camera_attributes_get_auto_exposure_version(p_render_data->camera_attributes);
		bool set_immediate = auto_exposure_version != rb->get_auto_exposure_version();
		rb->set_auto_exposure_version(auto_exposure_version);

		double step = RSG::camera_attributes->camera_attributes_get_auto_exposure_adjust_speed(p_render_data->camera_attributes) * time_step;
		float auto_exposure_min_sensitivity = RSG::camera_attributes->camera_attributes_get_auto_exposure_min_sensitivity(p_render_data->camera_attributes);
		float auto_exposure_max_sensitivity = RSG::camera_attributes->camera_attributes_get_auto_exposure_max_sensitivity(p_render_data->camera_attributes);
		if (can_use_storage) {
			RendererCompositorRD::singleton->get_effects()->luminance_reduction(internal_texture, internal_size, rb->luminance.reduce, rb->luminance.current, auto_exposure_min_sensitivity, auto_exposure_max_sensitivity, step, set_immediate);
		} else {
			RendererCompositorRD::singleton->get_effects()->luminance_reduction_raster(internal_texture, internal_size, rb->luminance.reduce, rb->luminance.fb, rb->luminance.current, auto_exposure_min_sensitivity, auto_exposure_max_sensitivity, step, set_immediate);
		}
		// Swap final reduce with prev luminance.
		SWAP(rb->luminance.current, rb->luminance.reduce.write[rb->luminance.reduce.size() - 1]);
		if (!can_use_storage) {
			SWAP(rb->luminance.current_fb, rb->luminance.fb.write[rb->luminance.fb.size() - 1]);
		}

		auto_exposure_scale = RSG::camera_attributes->camera_attributes_get_auto_exposure_scale(p_render_data->camera_attributes);

		RenderingServerDefault::redraw_request(); // Redraw all the time if auto exposure rendering is on.
		RD::get_singleton()->draw_command_end_label();
	}

	int max_glow_level = -1;

	if (can_use_effects && p_render_data->environment.is_valid() && environment_get_glow_enabled(p_render_data->environment)) {
		RENDER_TIMESTAMP("Glow");
		RD::get_singleton()->draw_command_begin_label("Gaussian Glow");

		rb->allocate_blur_textures();

		for (int i = 0; i < RS::MAX_GLOW_LEVELS; i++) {
			if (environment_get_glow_levels(p_render_data->environment)[i] > 0.0) {
				int mipmaps = int(rb->get_texture_format(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1).mipmaps);
				if (i >= mipmaps) {
					max_glow_level = mipmaps - 1;
				} else {
					max_glow_level = i;
				}
			}
		}

		float luminance_multiplier = _render_buffers_get_luminance_multiplier();
		for (uint32_t l = 0; l < rb->get_view_count(); l++) {
			for (int i = 0; i < (max_glow_level + 1); i++) {
				Size2i vp_size = rb->get_texture_slice_size(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1, l, i);

				if (i == 0) {
					RID luminance_texture;
					if (RSG::camera_attributes->camera_attributes_uses_auto_exposure(p_render_data->camera_attributes) && rb->luminance.current.is_valid()) {
						luminance_texture = rb->luminance.current;
					}
					RID source = rb->get_internal_texture(l);
					RID dest = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1, l, i);
					if (can_use_storage) {
						copy_effects->gaussian_glow(source, dest, vp_size, environment_get_glow_strength(p_render_data->environment), glow_high_quality, true, environment_get_glow_hdr_luminance_cap(p_render_data->environment), environment_get_exposure(p_render_data->environment), environment_get_glow_bloom(p_render_data->environment), environment_get_glow_hdr_bleed_threshold(p_render_data->environment), environment_get_glow_hdr_bleed_scale(p_render_data->environment), luminance_texture, auto_exposure_scale);
					} else {
						RID half = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_HALF_BLUR, 0, i); // we can reuse this for each view
						copy_effects->gaussian_glow_raster(source, half, dest, luminance_multiplier, vp_size, environment_get_glow_strength(p_render_data->environment), glow_high_quality, true, environment_get_glow_hdr_luminance_cap(p_render_data->environment), environment_get_exposure(p_render_data->environment), environment_get_glow_bloom(p_render_data->environment), environment_get_glow_hdr_bleed_threshold(p_render_data->environment), environment_get_glow_hdr_bleed_scale(p_render_data->environment), luminance_texture, auto_exposure_scale);
					}
				} else {
					RID source = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1, l, i - 1);
					RID dest = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1, l, i);

					if (can_use_storage) {
						copy_effects->gaussian_glow(source, dest, vp_size, environment_get_glow_strength(p_render_data->environment), glow_high_quality);
					} else {
						RID half = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_HALF_BLUR, 0, i); // we can reuse this for each view
						copy_effects->gaussian_glow_raster(source, half, dest, luminance_multiplier, vp_size, environment_get_glow_strength(p_render_data->environment), glow_high_quality);
					}
				}
			}
		}

		RD::get_singleton()->draw_command_end_label();
	}

	{
		RENDER_TIMESTAMP("Tonemap");
		RD::get_singleton()->draw_command_begin_label("Tonemap");

		RendererRD::ToneMapper::TonemapSettings tonemap;

		if (can_use_effects && RSG::camera_attributes->camera_attributes_uses_auto_exposure(p_render_data->camera_attributes) && rb->luminance.current.is_valid()) {
			tonemap.use_auto_exposure = true;
			tonemap.exposure_texture = rb->luminance.current;
			tonemap.auto_exposure_scale = auto_exposure_scale;
		} else {
			tonemap.exposure_texture = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_WHITE);
		}

		if (can_use_effects && p_render_data->environment.is_valid() && environment_get_glow_enabled(p_render_data->environment)) {
			tonemap.use_glow = true;
			tonemap.glow_mode = RendererRD::ToneMapper::TonemapSettings::GlowMode(environment_get_glow_blend_mode(p_render_data->environment));
			tonemap.glow_intensity = environment_get_glow_blend_mode(p_render_data->environment) == RS::ENV_GLOW_BLEND_MODE_MIX ? environment_get_glow_mix(p_render_data->environment) : environment_get_glow_intensity(p_render_data->environment);
			for (int i = 0; i < RS::MAX_GLOW_LEVELS; i++) {
				tonemap.glow_levels[i] = environment_get_glow_levels(p_render_data->environment)[i];
			}

			Size2i msize = rb->get_texture_slice_size(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1, 0, 0);
			tonemap.glow_texture_size.x = msize.width;
			tonemap.glow_texture_size.y = msize.height;
			tonemap.glow_use_bicubic_upscale = glow_bicubic_upscale;
			tonemap.glow_texture = rb->get_texture(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1);
			if (environment_get_glow_map(p_render_data->environment).is_valid()) {
				tonemap.glow_map_strength = environment_get_glow_map_strength(p_render_data->environment);
				tonemap.glow_map = texture_storage->texture_get_rd_texture(environment_get_glow_map(p_render_data->environment));
			} else {
				tonemap.glow_map_strength = 0.0f;
				tonemap.glow_map = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_WHITE);
			}

		} else {
			tonemap.glow_texture = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_BLACK);
			tonemap.glow_map = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_WHITE);
		}

		if (rb->get_screen_space_aa() == RS::VIEWPORT_SCREEN_SPACE_AA_FXAA) {
			tonemap.use_fxaa = true;
		}

		tonemap.use_debanding = rb->get_use_debanding();
		tonemap.texture_size = Vector2i(rb->get_internal_size().x, rb->get_internal_size().y);

		if (p_render_data->environment.is_valid()) {
			tonemap.tonemap_mode = environment_get_tone_mapper(p_render_data->environment);
			tonemap.white = environment_get_white(p_render_data->environment);
			tonemap.exposure = environment_get_exposure(p_render_data->environment);
		}

		tonemap.use_color_correction = false;
		tonemap.use_1d_color_correction = false;
		tonemap.color_correction_texture = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE);

		if (can_use_effects && p_render_data->environment.is_valid()) {
			tonemap.use_bcs = environment_get_adjustments_enabled(p_render_data->environment);
			tonemap.brightness = environment_get_adjustments_brightness(p_render_data->environment);
			tonemap.contrast = environment_get_adjustments_contrast(p_render_data->environment);
			tonemap.saturation = environment_get_adjustments_saturation(p_render_data->environment);
			if (environment_get_adjustments_enabled(p_render_data->environment) && environment_get_color_correction(p_render_data->environment).is_valid()) {
				tonemap.use_color_correction = true;
				tonemap.use_1d_color_correction = environment_get_use_1d_color_correction(p_render_data->environment);
				tonemap.color_correction_texture = texture_storage->texture_get_rd_texture(environment_get_color_correction(p_render_data->environment));
			}
		}

		tonemap.luminance_multiplier = _render_buffers_get_luminance_multiplier();
		tonemap.view_count = rb->get_view_count();

		RID dest_fb;
		if (fsr && can_use_effects && (internal_size.x != target_size.x || internal_size.y != target_size.y)) {
			// If we use FSR to upscale we need to write our result into an intermediate buffer.
			// Note that this is cached so we only create the texture the first time.
			RID dest_texture = rb->create_texture(SNAME("Tonemapper"), SNAME("destination"), _render_buffers_get_color_format(), RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT);
			dest_fb = FramebufferCacheRD::get_singleton()->get_cache(dest_texture);
		} else {
			// If we do a bilinear upscale we just render into our render target and our shader will upscale automatically.
			// Target size in this case is lying as we never get our real target size communicated.
			// Bit nasty but...
			dest_fb = texture_storage->render_target_get_rd_framebuffer(render_target);
		}

		tone_mapper->tonemapper(internal_texture, dest_fb, tonemap);

		RD::get_singleton()->draw_command_end_label();
	}

	if (fsr && can_use_effects && (internal_size.x != target_size.x || internal_size.y != target_size.y)) {
		// TODO Investigate? Does this work? We never write into our render target and we've already done so up above in our tonemapper.
		// I think FSR should either work before our tonemapper or as an alternative of our tonemapper.

		RD::get_singleton()->draw_command_begin_label("FSR 1.0 Upscale");

		for (uint32_t v = 0; v < rb->get_view_count(); v++) {
			RID source_texture = rb->get_texture_slice(SNAME("Tonemapper"), SNAME("destination"), v, 0);
			RID dest_texture = texture_storage->render_target_get_rd_texture_slice(render_target, v);

			fsr->fsr_upscale(rb, source_texture, dest_texture);
		}

		RD::get_singleton()->draw_command_end_label();
	}

	texture_storage->render_target_disable_clear_request(render_target);
}

void RendererSceneRenderRD::_post_process_subpass(RID p_source_texture, RID p_framebuffer, const RenderDataRD *p_render_data) {
	RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton();
	RD::get_singleton()->draw_command_begin_label("Post Process Subpass");

	Ref<RenderSceneBuffersRD> rb = p_render_data->render_buffers;
	ERR_FAIL_COND(rb.is_null());

	// FIXME: Our input it our internal_texture, shouldn't this be using internal_size ??
	// Seeing we don't support FSR in our mobile renderer right now target_size = internal_size...
	Size2i target_size = rb->get_target_size();
	bool can_use_effects = target_size.x >= 8 && target_size.y >= 8;

	RD::DrawListID draw_list = RD::get_singleton()->draw_list_switch_to_next_pass();

	RendererRD::ToneMapper::TonemapSettings tonemap;

	if (p_render_data->environment.is_valid()) {
		tonemap.tonemap_mode = environment_get_tone_mapper(p_render_data->environment);
		tonemap.exposure = environment_get_exposure(p_render_data->environment);
		tonemap.white = environment_get_white(p_render_data->environment);
	}

	// We don't support glow or auto exposure here, if they are needed, don't use subpasses!
	// The problem is that we need to use the result so far and process them before we can
	// apply this to our results.
	if (can_use_effects && p_render_data->environment.is_valid() && environment_get_glow_enabled(p_render_data->environment)) {
		ERR_FAIL_MSG("Glow is not supported when using subpasses.");
	}

	if (can_use_effects && RSG::camera_attributes->camera_attributes_uses_auto_exposure(p_render_data->camera_attributes)) {
		ERR_FAIL_MSG("Auto Exposure is not supported when using subpasses.");
	}

	tonemap.use_glow = false;
	tonemap.glow_texture = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_BLACK);
	tonemap.glow_map = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_WHITE);
	tonemap.use_auto_exposure = false;
	tonemap.exposure_texture = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_WHITE);

	tonemap.use_color_correction = false;
	tonemap.use_1d_color_correction = false;
	tonemap.color_correction_texture = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE);

	if (can_use_effects && p_render_data->environment.is_valid()) {
		tonemap.use_bcs = environment_get_adjustments_enabled(p_render_data->environment);
		tonemap.brightness = environment_get_adjustments_brightness(p_render_data->environment);
		tonemap.contrast = environment_get_adjustments_contrast(p_render_data->environment);
		tonemap.saturation = environment_get_adjustments_saturation(p_render_data->environment);
		if (environment_get_adjustments_enabled(p_render_data->environment) && environment_get_color_correction(p_render_data->environment).is_valid()) {
			tonemap.use_color_correction = true;
			tonemap.use_1d_color_correction = environment_get_use_1d_color_correction(p_render_data->environment);
			tonemap.color_correction_texture = texture_storage->texture_get_rd_texture(environment_get_color_correction(p_render_data->environment));
		}
	}

	tonemap.use_debanding = rb->get_use_debanding();
	tonemap.texture_size = Vector2i(target_size.x, target_size.y);

	tonemap.luminance_multiplier = _render_buffers_get_luminance_multiplier();
	tonemap.view_count = rb->get_view_count();

	tone_mapper->tonemapper(draw_list, p_source_texture, RD::get_singleton()->framebuffer_get_format(p_framebuffer), tonemap);

	RD::get_singleton()->draw_command_end_label();
}

void RendererSceneRenderRD::_disable_clear_request(const RenderDataRD *p_render_data) {
	ERR_FAIL_COND(p_render_data->render_buffers.is_null());

	RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton();
	texture_storage->render_target_disable_clear_request(p_render_data->render_buffers->get_render_target());
}

void RendererSceneRenderRD::_render_buffers_debug_draw(Ref<RenderSceneBuffersRD> p_render_buffers, RID p_shadow_atlas, RID p_occlusion_buffer) {
	RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton();

	ERR_FAIL_COND(p_render_buffers.is_null());

	RID render_target = p_render_buffers->get_render_target();

	if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SHADOW_ATLAS) {
		if (p_shadow_atlas.is_valid()) {
			RID shadow_atlas_texture = shadow_atlas_get_texture(p_shadow_atlas);

			if (shadow_atlas_texture.is_null()) {
				shadow_atlas_texture = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_BLACK);
			}

			Size2 rtsize = texture_storage->render_target_get_size(render_target);
			copy_effects->copy_to_fb_rect(shadow_atlas_texture, texture_storage->render_target_get_rd_framebuffer(render_target), Rect2i(Vector2(), rtsize / 2), false, true);
		}
	}

	if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_DIRECTIONAL_SHADOW_ATLAS) {
		if (directional_shadow_get_texture().is_valid()) {
			RID shadow_atlas_texture = directional_shadow_get_texture();
			Size2 rtsize = texture_storage->render_target_get_size(render_target);

			copy_effects->copy_to_fb_rect(shadow_atlas_texture, texture_storage->render_target_get_rd_framebuffer(render_target), Rect2i(Vector2(), rtsize / 2), false, true);
		}
	}

	if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_DECAL_ATLAS) {
		RID decal_atlas = RendererRD::TextureStorage::get_singleton()->decal_atlas_get_texture();

		if (decal_atlas.is_valid()) {
			Size2 rtsize = texture_storage->render_target_get_size(render_target);

			copy_effects->copy_to_fb_rect(decal_atlas, texture_storage->render_target_get_rd_framebuffer(render_target), Rect2i(Vector2(), rtsize / 2), false, false, true);
		}
	}

	if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SCENE_LUMINANCE) {
		if (p_render_buffers->luminance.current.is_valid()) {
			Size2 rtsize = texture_storage->render_target_get_size(render_target);

			copy_effects->copy_to_fb_rect(p_render_buffers->luminance.current, texture_storage->render_target_get_rd_framebuffer(render_target), Rect2(Vector2(), rtsize / 8), false, true);
		}
	}

	if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SSAO && p_render_buffers->ss_effects.ssao.ao_final.is_valid()) {
		Size2 rtsize = texture_storage->render_target_get_size(render_target);
		copy_effects->copy_to_fb_rect(p_render_buffers->ss_effects.ssao.ao_final, texture_storage->render_target_get_rd_framebuffer(render_target), Rect2(Vector2(), rtsize), false, true);
	}

	if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SSIL && p_render_buffers->ss_effects.ssil.ssil_final.is_valid()) {
		Size2 rtsize = texture_storage->render_target_get_size(render_target);
		copy_effects->copy_to_fb_rect(p_render_buffers->ss_effects.ssil.ssil_final, texture_storage->render_target_get_rd_framebuffer(render_target), Rect2(Vector2(), rtsize), false, false);
	}

	if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_NORMAL_BUFFER && _render_buffers_get_normal_texture(p_render_buffers).is_valid()) {
		Size2 rtsize = texture_storage->render_target_get_size(render_target);
		copy_effects->copy_to_fb_rect(_render_buffers_get_normal_texture(p_render_buffers), texture_storage->render_target_get_rd_framebuffer(render_target), Rect2(Vector2(), rtsize), false, false);
	}

	if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_GI_BUFFER && p_render_buffers->has_texture(RB_SCOPE_GI, RB_TEX_AMBIENT)) {
		Size2 rtsize = texture_storage->render_target_get_size(render_target);
		RID ambient_texture = p_render_buffers->get_texture(RB_SCOPE_GI, RB_TEX_AMBIENT);
		RID reflection_texture = p_render_buffers->get_texture(RB_SCOPE_GI, RB_TEX_REFLECTION);
		copy_effects->copy_to_fb_rect(ambient_texture, texture_storage->render_target_get_rd_framebuffer(render_target), Rect2(Vector2(), rtsize), false, false, false, true, reflection_texture, p_render_buffers->get_view_count() > 1);
	}

	if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_OCCLUDERS) {
		if (p_occlusion_buffer.is_valid()) {
			Size2 rtsize = texture_storage->render_target_get_size(render_target);
			copy_effects->copy_to_fb_rect(texture_storage->texture_get_rd_texture(p_occlusion_buffer), texture_storage->render_target_get_rd_framebuffer(render_target), Rect2i(Vector2(), rtsize), true, false);
		}
	}

	if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_MOTION_VECTORS && _render_buffers_get_velocity_texture(p_render_buffers).is_valid()) {
		Size2 rtsize = texture_storage->render_target_get_size(render_target);
		copy_effects->copy_to_fb_rect(_render_buffers_get_velocity_texture(p_render_buffers), texture_storage->render_target_get_rd_framebuffer(render_target), Rect2(Vector2(), rtsize), false, false);
	}
}

RID RendererSceneRenderRD::render_buffers_get_default_voxel_gi_buffer() {
	return gi.default_voxel_gi_buffer;
}

float RendererSceneRenderRD::_render_buffers_get_luminance_multiplier() {
	return 1.0;
}

RD::DataFormat RendererSceneRenderRD::_render_buffers_get_color_format() {
	return RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
}

bool RendererSceneRenderRD::_render_buffers_can_be_storage() {
	return true;
}

void RendererSceneRenderRD::gi_set_use_half_resolution(bool p_enable) {
	gi.half_resolution = p_enable;
}

void RendererSceneRenderRD::sub_surface_scattering_set_quality(RS::SubSurfaceScatteringQuality p_quality) {
	sss_quality = p_quality;
}

RS::SubSurfaceScatteringQuality RendererSceneRenderRD::sub_surface_scattering_get_quality() const {
	return sss_quality;
}

void RendererSceneRenderRD::sub_surface_scattering_set_scale(float p_scale, float p_depth_scale) {
	sss_scale = p_scale;
	sss_depth_scale = p_depth_scale;
}

void RendererSceneRenderRD::positional_soft_shadow_filter_set_quality(RS::ShadowQuality p_quality) {
	ERR_FAIL_INDEX_MSG(p_quality, RS::SHADOW_QUALITY_MAX, "Shadow quality too high, please see RenderingServer's ShadowQuality enum");

	if (shadows_quality != p_quality) {
		shadows_quality = p_quality;

		switch (shadows_quality) {
			case RS::SHADOW_QUALITY_HARD: {
				penumbra_shadow_samples = 4;
				soft_shadow_samples = 0;
				shadows_quality_radius = 1.0;
			} break;
			case RS::SHADOW_QUALITY_SOFT_VERY_LOW: {
				penumbra_shadow_samples = 4;
				soft_shadow_samples = 1;
				shadows_quality_radius = 1.5;
			} break;
			case RS::SHADOW_QUALITY_SOFT_LOW: {
				penumbra_shadow_samples = 8;
				soft_shadow_samples = 4;
				shadows_quality_radius = 2.0;
			} break;
			case RS::SHADOW_QUALITY_SOFT_MEDIUM: {
				penumbra_shadow_samples = 12;
				soft_shadow_samples = 8;
				shadows_quality_radius = 2.0;
			} break;
			case RS::SHADOW_QUALITY_SOFT_HIGH: {
				penumbra_shadow_samples = 24;
				soft_shadow_samples = 16;
				shadows_quality_radius = 3.0;
			} break;
			case RS::SHADOW_QUALITY_SOFT_ULTRA: {
				penumbra_shadow_samples = 32;
				soft_shadow_samples = 32;
				shadows_quality_radius = 4.0;
			} break;
			case RS::SHADOW_QUALITY_MAX:
				break;
		}
		get_vogel_disk(penumbra_shadow_kernel, penumbra_shadow_samples);
		get_vogel_disk(soft_shadow_kernel, soft_shadow_samples);
	}

	_update_shader_quality_settings();
}

void RendererSceneRenderRD::directional_soft_shadow_filter_set_quality(RS::ShadowQuality p_quality) {
	ERR_FAIL_INDEX_MSG(p_quality, RS::SHADOW_QUALITY_MAX, "Shadow quality too high, please see RenderingServer's ShadowQuality enum");

	if (directional_shadow_quality != p_quality) {
		directional_shadow_quality = p_quality;

		switch (directional_shadow_quality) {
			case RS::SHADOW_QUALITY_HARD: {
				directional_penumbra_shadow_samples = 4;
				directional_soft_shadow_samples = 0;
				directional_shadow_quality_radius = 1.0;
			} break;
			case RS::SHADOW_QUALITY_SOFT_VERY_LOW: {
				directional_penumbra_shadow_samples = 4;
				directional_soft_shadow_samples = 1;
				directional_shadow_quality_radius = 1.5;
			} break;
			case RS::SHADOW_QUALITY_SOFT_LOW: {
				directional_penumbra_shadow_samples = 8;
				directional_soft_shadow_samples = 4;
				directional_shadow_quality_radius = 2.0;
			} break;
			case RS::SHADOW_QUALITY_SOFT_MEDIUM: {
				directional_penumbra_shadow_samples = 12;
				directional_soft_shadow_samples = 8;
				directional_shadow_quality_radius = 2.0;
			} break;
			case RS::SHADOW_QUALITY_SOFT_HIGH: {
				directional_penumbra_shadow_samples = 24;
				directional_soft_shadow_samples = 16;
				directional_shadow_quality_radius = 3.0;
			} break;
			case RS::SHADOW_QUALITY_SOFT_ULTRA: {
				directional_penumbra_shadow_samples = 32;
				directional_soft_shadow_samples = 32;
				directional_shadow_quality_radius = 4.0;
			} break;
			case RS::SHADOW_QUALITY_MAX:
				break;
		}
		get_vogel_disk(directional_penumbra_shadow_kernel, directional_penumbra_shadow_samples);
		get_vogel_disk(directional_soft_shadow_kernel, directional_soft_shadow_samples);
	}

	_update_shader_quality_settings();
}

void RendererSceneRenderRD::decals_set_filter(RenderingServer::DecalFilter p_filter) {
	if (decals_filter == p_filter) {
		return;
	}
	decals_filter = p_filter;
	_update_shader_quality_settings();
}
void RendererSceneRenderRD::light_projectors_set_filter(RenderingServer::LightProjectorFilter p_filter) {
	if (light_projectors_filter == p_filter) {
		return;
	}
	light_projectors_filter = p_filter;
	_update_shader_quality_settings();
}

int RendererSceneRenderRD::get_roughness_layers() const {
	return sky.roughness_layers;
}

bool RendererSceneRenderRD::is_using_radiance_cubemap_array() const {
	return sky.sky_use_cubemap_array;
}

void RendererSceneRenderRD::_setup_reflections(RenderDataRD *p_render_data, const PagedArray<RID> &p_reflections, const Transform3D &p_camera_inverse_transform, RID p_environment) {
	RendererRD::LightStorage *light_storage = RendererRD::LightStorage::get_singleton();
	cluster.reflection_count = 0;

	for (uint32_t i = 0; i < (uint32_t)p_reflections.size(); i++) {
		if (cluster.reflection_count == cluster.max_reflections) {
			break;
		}

		ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_reflections[i]);
		if (!rpi) {
			continue;
		}

		cluster.reflection_sort[cluster.reflection_count].instance = rpi;
		cluster.reflection_sort[cluster.reflection_count].depth = -p_camera_inverse_transform.xform(rpi->transform.origin).z;
		cluster.reflection_count++;
	}

	if (cluster.reflection_count > 0) {
		SortArray<Cluster::InstanceSort<ReflectionProbeInstance>> sort_array;
		sort_array.sort(cluster.reflection_sort, cluster.reflection_count);
	}

	bool using_forward_ids = _uses_forward_ids();
	for (uint32_t i = 0; i < cluster.reflection_count; i++) {
		ReflectionProbeInstance *rpi = cluster.reflection_sort[i].instance;

		if (using_forward_ids) {
			_map_forward_id(FORWARD_ID_TYPE_REFLECTION_PROBE, rpi->forward_id, i);
		}

		RID base_probe = rpi->probe;

		Cluster::ReflectionData &reflection_ubo = cluster.reflections[i];

		Vector3 extents = light_storage->reflection_probe_get_extents(base_probe);

		rpi->cull_mask = light_storage->reflection_probe_get_cull_mask(base_probe);

		reflection_ubo.box_extents[0] = extents.x;
		reflection_ubo.box_extents[1] = extents.y;
		reflection_ubo.box_extents[2] = extents.z;
		reflection_ubo.index = rpi->atlas_index;

		Vector3 origin_offset = light_storage->reflection_probe_get_origin_offset(base_probe);

		reflection_ubo.box_offset[0] = origin_offset.x;
		reflection_ubo.box_offset[1] = origin_offset.y;
		reflection_ubo.box_offset[2] = origin_offset.z;
		reflection_ubo.mask = light_storage->reflection_probe_get_cull_mask(base_probe);

		reflection_ubo.intensity = light_storage->reflection_probe_get_intensity(base_probe);
		reflection_ubo.ambient_mode = light_storage->reflection_probe_get_ambient_mode(base_probe);

		reflection_ubo.exterior = !light_storage->reflection_probe_is_interior(base_probe);
		reflection_ubo.box_project = light_storage->reflection_probe_is_box_projection(base_probe);
		reflection_ubo.exposure_normalization = 1.0;

		if (p_render_data->camera_attributes.is_valid()) {
			float exposure = RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_render_data->camera_attributes);
			reflection_ubo.exposure_normalization = exposure / light_storage->reflection_probe_get_baked_exposure(base_probe);
		}

		Color ambient_linear = light_storage->reflection_probe_get_ambient_color(base_probe).srgb_to_linear();
		float interior_ambient_energy = light_storage->reflection_probe_get_ambient_color_energy(base_probe);
		reflection_ubo.ambient[0] = ambient_linear.r * interior_ambient_energy;
		reflection_ubo.ambient[1] = ambient_linear.g * interior_ambient_energy;
		reflection_ubo.ambient[2] = ambient_linear.b * interior_ambient_energy;

		Transform3D transform = rpi->transform;
		Transform3D proj = (p_camera_inverse_transform * transform).inverse();
		RendererRD::MaterialStorage::store_transform(proj, reflection_ubo.local_matrix);

		if (current_cluster_builder != nullptr) {
			current_cluster_builder->add_box(ClusterBuilderRD::BOX_TYPE_REFLECTION_PROBE, transform, extents);
		}

		rpi->last_pass = RSG::rasterizer->get_frame_number();
	}

	if (cluster.reflection_count) {
		RD::get_singleton()->buffer_update(cluster.reflection_buffer, 0, cluster.reflection_count * sizeof(Cluster::ReflectionData), cluster.reflections, RD::BARRIER_MASK_RASTER | RD::BARRIER_MASK_COMPUTE);
	}
}

void RendererSceneRenderRD::_setup_lights(RenderDataRD *p_render_data, const PagedArray<RID> &p_lights, const Transform3D &p_camera_transform, RID p_shadow_atlas, bool p_using_shadows, uint32_t &r_directional_light_count, uint32_t &r_positional_light_count, bool &r_directional_light_soft_shadows) {
	RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton();
	RendererRD::LightStorage *light_storage = RendererRD::LightStorage::get_singleton();

	Transform3D inverse_transform = p_camera_transform.affine_inverse();

	r_directional_light_count = 0;
	r_positional_light_count = 0;

	Plane camera_plane(-p_camera_transform.basis.get_column(Vector3::AXIS_Z).normalized(), p_camera_transform.origin);

	cluster.omni_light_count = 0;
	cluster.spot_light_count = 0;

	r_directional_light_soft_shadows = false;

	for (int i = 0; i < (int)p_lights.size(); i++) {
		LightInstance *li = light_instance_owner.get_or_null(p_lights[i]);
		if (!li) {
			continue;
		}
		RID base = li->light;

		ERR_CONTINUE(base.is_null());

		RS::LightType type = light_storage->light_get_type(base);
		switch (type) {
			case RS::LIGHT_DIRECTIONAL: {
				if (r_directional_light_count >= cluster.max_directional_lights || light_storage->light_directional_get_sky_mode(base) == RS::LIGHT_DIRECTIONAL_SKY_MODE_SKY_ONLY) {
					continue;
				}

				Cluster::DirectionalLightData &light_data = cluster.directional_lights[r_directional_light_count];

				Transform3D light_transform = li->transform;

				Vector3 direction = inverse_transform.basis.xform(light_transform.basis.xform(Vector3(0, 0, 1))).normalized();

				light_data.direction[0] = direction.x;
				light_data.direction[1] = direction.y;
				light_data.direction[2] = direction.z;

				float sign = light_storage->light_is_negative(base) ? -1 : 1;

				light_data.energy = sign * light_storage->light_get_param(base, RS::LIGHT_PARAM_ENERGY);

				if (is_using_physical_light_units()) {
					light_data.energy *= light_storage->light_get_param(base, RS::LIGHT_PARAM_INTENSITY);
				} else {
					light_data.energy *= Math_PI;
				}

				if (p_render_data->camera_attributes.is_valid()) {
					light_data.energy *= RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_render_data->camera_attributes);
				}

				Color linear_col = light_storage->light_get_color(base).srgb_to_linear();
				light_data.color[0] = linear_col.r;
				light_data.color[1] = linear_col.g;
				light_data.color[2] = linear_col.b;

				light_data.specular = light_storage->light_get_param(base, RS::LIGHT_PARAM_SPECULAR);
				light_data.volumetric_fog_energy = light_storage->light_get_param(base, RS::LIGHT_PARAM_VOLUMETRIC_FOG_ENERGY);
				light_data.mask = light_storage->light_get_cull_mask(base);

				float size = light_storage->light_get_param(base, RS::LIGHT_PARAM_SIZE);

				light_data.size = 1.0 - Math::cos(Math::deg_to_rad(size)); //angle to cosine offset

				if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_PSSM_SPLITS) {
					WARN_PRINT_ONCE("The DirectionalLight3D PSSM splits debug draw mode is not reimplemented yet.");
				}

				light_data.shadow_opacity = (p_using_shadows && light_storage->light_has_shadow(base))
						? light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_OPACITY)
						: 0.0;

				float angular_diameter = light_storage->light_get_param(base, RS::LIGHT_PARAM_SIZE);
				if (angular_diameter > 0.0) {
					// I know tan(0) is 0, but let's not risk it with numerical precision.
					// technically this will keep expanding until reaching the sun, but all we care
					// is expand until we reach the radius of the near plane (there can't be more occluders than that)
					angular_diameter = Math::tan(Math::deg_to_rad(angular_diameter));
					if (light_storage->light_has_shadow(base) && light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BLUR) > 0.0) {
						// Only enable PCSS-like soft shadows if blurring is enabled.
						// Otherwise, performance would decrease with no visual difference.
						r_directional_light_soft_shadows = true;
					}
				} else {
					angular_diameter = 0.0;
				}

				if (light_data.shadow_opacity > 0.001) {
					RS::LightDirectionalShadowMode smode = light_storage->light_directional_get_shadow_mode(base);

					int limit = smode == RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL ? 0 : (smode == RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS ? 1 : 3);
					light_data.blend_splits = (smode != RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL) && light_storage->light_directional_get_blend_splits(base);
					for (int j = 0; j < 4; j++) {
						Rect2 atlas_rect = li->shadow_transform[j].atlas_rect;
						Projection matrix = li->shadow_transform[j].camera;
						float split = li->shadow_transform[MIN(limit, j)].split;

						Projection bias;
						bias.set_light_bias();
						Projection rectm;
						rectm.set_light_atlas_rect(atlas_rect);

						Transform3D modelview = (inverse_transform * li->shadow_transform[j].transform).inverse();

						Projection shadow_mtx = rectm * bias * matrix * modelview;
						light_data.shadow_split_offsets[j] = split;
						float bias_scale = li->shadow_transform[j].bias_scale;
						light_data.shadow_bias[j] = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BIAS) / 100.0 * bias_scale;
						light_data.shadow_normal_bias[j] = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS) * li->shadow_transform[j].shadow_texel_size;
						light_data.shadow_transmittance_bias[j] = light_storage->light_get_transmittance_bias(base) * bias_scale;
						light_data.shadow_z_range[j] = li->shadow_transform[j].farplane;
						light_data.shadow_range_begin[j] = li->shadow_transform[j].range_begin;
						RendererRD::MaterialStorage::store_camera(shadow_mtx, light_data.shadow_matrices[j]);

						Vector2 uv_scale = li->shadow_transform[j].uv_scale;
						uv_scale *= atlas_rect.size; //adapt to atlas size
						switch (j) {
							case 0: {
								light_data.uv_scale1[0] = uv_scale.x;
								light_data.uv_scale1[1] = uv_scale.y;
							} break;
							case 1: {
								light_data.uv_scale2[0] = uv_scale.x;
								light_data.uv_scale2[1] = uv_scale.y;
							} break;
							case 2: {
								light_data.uv_scale3[0] = uv_scale.x;
								light_data.uv_scale3[1] = uv_scale.y;
							} break;
							case 3: {
								light_data.uv_scale4[0] = uv_scale.x;
								light_data.uv_scale4[1] = uv_scale.y;
							} break;
						}
					}

					float fade_start = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_FADE_START);
					light_data.fade_from = -light_data.shadow_split_offsets[3] * MIN(fade_start, 0.999); //using 1.0 would break smoothstep
					light_data.fade_to = -light_data.shadow_split_offsets[3];

					light_data.soft_shadow_scale = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BLUR);
					light_data.softshadow_angle = angular_diameter;
					light_data.bake_mode = light_storage->light_get_bake_mode(base);

					if (angular_diameter <= 0.0) {
						light_data.soft_shadow_scale *= directional_shadow_quality_radius_get(); // Only use quality radius for PCF
					}
				}

				r_directional_light_count++;
			} break;
			case RS::LIGHT_OMNI: {
				if (cluster.omni_light_count >= cluster.max_lights) {
					continue;
				}

				const real_t distance = camera_plane.distance_to(li->transform.origin);

				if (light_storage->light_is_distance_fade_enabled(li->light)) {
					const float fade_begin = light_storage->light_get_distance_fade_begin(li->light);
					const float fade_length = light_storage->light_get_distance_fade_length(li->light);

					if (distance > fade_begin) {
						if (distance > fade_begin + fade_length) {
							// Out of range, don't draw this light to improve performance.
							continue;
						}
					}
				}

				cluster.omni_light_sort[cluster.omni_light_count].instance = li;
				cluster.omni_light_sort[cluster.omni_light_count].depth = distance;
				cluster.omni_light_count++;
			} break;
			case RS::LIGHT_SPOT: {
				if (cluster.spot_light_count >= cluster.max_lights) {
					continue;
				}

				const real_t distance = camera_plane.distance_to(li->transform.origin);

				if (light_storage->light_is_distance_fade_enabled(li->light)) {
					const float fade_begin = light_storage->light_get_distance_fade_begin(li->light);
					const float fade_length = light_storage->light_get_distance_fade_length(li->light);

					if (distance > fade_begin) {
						if (distance > fade_begin + fade_length) {
							// Out of range, don't draw this light to improve performance.
							continue;
						}
					}
				}

				cluster.spot_light_sort[cluster.spot_light_count].instance = li;
				cluster.spot_light_sort[cluster.spot_light_count].depth = distance;
				cluster.spot_light_count++;
			} break;
		}

		li->last_pass = RSG::rasterizer->get_frame_number();
	}

	if (cluster.omni_light_count) {
		SortArray<Cluster::InstanceSort<LightInstance>> sorter;
		sorter.sort(cluster.omni_light_sort, cluster.omni_light_count);
	}

	if (cluster.spot_light_count) {
		SortArray<Cluster::InstanceSort<LightInstance>> sorter;
		sorter.sort(cluster.spot_light_sort, cluster.spot_light_count);
	}

	ShadowAtlas *shadow_atlas = nullptr;

	if (p_shadow_atlas.is_valid() && p_using_shadows) {
		shadow_atlas = shadow_atlas_owner.get_or_null(p_shadow_atlas);
	}

	bool using_forward_ids = _uses_forward_ids();

	for (uint32_t i = 0; i < (cluster.omni_light_count + cluster.spot_light_count); i++) {
		uint32_t index = (i < cluster.omni_light_count) ? i : i - (cluster.omni_light_count);
		Cluster::LightData &light_data = (i < cluster.omni_light_count) ? cluster.omni_lights[index] : cluster.spot_lights[index];
		RS::LightType type = (i < cluster.omni_light_count) ? RS::LIGHT_OMNI : RS::LIGHT_SPOT;
		LightInstance *li = (i < cluster.omni_light_count) ? cluster.omni_light_sort[index].instance : cluster.spot_light_sort[index].instance;
		RID base = li->light;

		if (using_forward_ids) {
			_map_forward_id(type == RS::LIGHT_OMNI ? FORWARD_ID_TYPE_OMNI_LIGHT : FORWARD_ID_TYPE_SPOT_LIGHT, li->forward_id, index);
		}

		Transform3D light_transform = li->transform;

		float sign = light_storage->light_is_negative(base) ? -1 : 1;
		Color linear_col = light_storage->light_get_color(base).srgb_to_linear();

		light_data.attenuation = light_storage->light_get_param(base, RS::LIGHT_PARAM_ATTENUATION);

		// Reuse fade begin, fade length and distance for shadow LOD determination later.
		float fade_begin = 0.0;
		float fade_shadow = 0.0;
		float fade_length = 0.0;
		real_t distance = 0.0;

		float fade = 1.0;
		float shadow_opacity_fade = 1.0;
		if (light_storage->light_is_distance_fade_enabled(li->light)) {
			fade_begin = light_storage->light_get_distance_fade_begin(li->light);
			fade_shadow = light_storage->light_get_distance_fade_shadow(li->light);
			fade_length = light_storage->light_get_distance_fade_length(li->light);
			distance = camera_plane.distance_to(li->transform.origin);

			// Use `smoothstep()` to make opacity changes more gradual and less noticeable to the player.
			if (distance > fade_begin) {
				fade = Math::smoothstep(0.0f, 1.0f, 1.0f - float(distance - fade_begin) / fade_length);
			}

			if (distance > fade_shadow) {
				shadow_opacity_fade = Math::smoothstep(0.0f, 1.0f, 1.0f - float(distance - fade_shadow) / fade_length);
			}
		}

		float energy = sign * light_storage->light_get_param(base, RS::LIGHT_PARAM_ENERGY) * fade;

		if (is_using_physical_light_units()) {
			energy *= light_storage->light_get_param(base, RS::LIGHT_PARAM_INTENSITY);

			// Convert from Luminous Power to Luminous Intensity
			if (type == RS::LIGHT_OMNI) {
				energy *= 1.0 / (Math_PI * 4.0);
			} else {
				// Spot Lights are not physically accurate, Luminous Intensity should change in relation to the cone angle.
				// We make this assumption to keep them easy to control.
				energy *= 1.0 / Math_PI;
			}
		} else {
			energy *= Math_PI;
		}

		if (p_render_data->camera_attributes.is_valid()) {
			energy *= RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_render_data->camera_attributes);
		}

		light_data.color[0] = linear_col.r * energy;
		light_data.color[1] = linear_col.g * energy;
		light_data.color[2] = linear_col.b * energy;
		light_data.specular_amount = light_storage->light_get_param(base, RS::LIGHT_PARAM_SPECULAR) * 2.0;
		light_data.volumetric_fog_energy = light_storage->light_get_param(base, RS::LIGHT_PARAM_VOLUMETRIC_FOG_ENERGY);
		light_data.bake_mode = light_storage->light_get_bake_mode(base);

		float radius = MAX(0.001, light_storage->light_get_param(base, RS::LIGHT_PARAM_RANGE));
		light_data.inv_radius = 1.0 / radius;

		Vector3 pos = inverse_transform.xform(light_transform.origin);

		light_data.position[0] = pos.x;
		light_data.position[1] = pos.y;
		light_data.position[2] = pos.z;

		Vector3 direction = inverse_transform.basis.xform(light_transform.basis.xform(Vector3(0, 0, -1))).normalized();

		light_data.direction[0] = direction.x;
		light_data.direction[1] = direction.y;
		light_data.direction[2] = direction.z;

		float size = light_storage->light_get_param(base, RS::LIGHT_PARAM_SIZE);

		light_data.size = size;

		light_data.inv_spot_attenuation = 1.0f / light_storage->light_get_param(base, RS::LIGHT_PARAM_SPOT_ATTENUATION);
		float spot_angle = light_storage->light_get_param(base, RS::LIGHT_PARAM_SPOT_ANGLE);
		light_data.cos_spot_angle = Math::cos(Math::deg_to_rad(spot_angle));

		light_data.mask = light_storage->light_get_cull_mask(base);

		light_data.atlas_rect[0] = 0;
		light_data.atlas_rect[1] = 0;
		light_data.atlas_rect[2] = 0;
		light_data.atlas_rect[3] = 0;

		RID projector = light_storage->light_get_projector(base);

		if (projector.is_valid()) {
			Rect2 rect = texture_storage->decal_atlas_get_texture_rect(projector);

			if (type == RS::LIGHT_SPOT) {
				light_data.projector_rect[0] = rect.position.x;
				light_data.projector_rect[1] = rect.position.y + rect.size.height; //flip because shadow is flipped
				light_data.projector_rect[2] = rect.size.width;
				light_data.projector_rect[3] = -rect.size.height;
			} else {
				light_data.projector_rect[0] = rect.position.x;
				light_data.projector_rect[1] = rect.position.y;
				light_data.projector_rect[2] = rect.size.width;
				light_data.projector_rect[3] = rect.size.height * 0.5; //used by dp, so needs to be half
			}
		} else {
			light_data.projector_rect[0] = 0;
			light_data.projector_rect[1] = 0;
			light_data.projector_rect[2] = 0;
			light_data.projector_rect[3] = 0;
		}

		const bool needs_shadow =
				shadow_atlas &&
				shadow_atlas->shadow_owners.has(li->self) &&
				p_using_shadows &&
				light_storage->light_has_shadow(base);

		bool in_shadow_range = true;
		if (needs_shadow && light_storage->light_is_distance_fade_enabled(li->light)) {
			if (distance > light_storage->light_get_distance_fade_shadow(li->light) + light_storage->light_get_distance_fade_length(li->light)) {
				// Out of range, don't draw shadows to improve performance.
				in_shadow_range = false;
			}
		}

		if (needs_shadow && in_shadow_range) {
			// fill in the shadow information

			light_data.shadow_opacity = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_OPACITY) * shadow_opacity_fade;

			float shadow_texel_size = light_instance_get_shadow_texel_size(li->self, p_shadow_atlas);
			light_data.shadow_normal_bias = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS) * shadow_texel_size * 10.0;

			if (type == RS::LIGHT_SPOT) {
				light_data.shadow_bias = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BIAS) / 100.0;
			} else { //omni
				light_data.shadow_bias = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BIAS);
			}

			light_data.transmittance_bias = light_storage->light_get_transmittance_bias(base);

			Vector2i omni_offset;
			Rect2 rect = light_instance_get_shadow_atlas_rect(li->self, p_shadow_atlas, omni_offset);

			light_data.atlas_rect[0] = rect.position.x;
			light_data.atlas_rect[1] = rect.position.y;
			light_data.atlas_rect[2] = rect.size.width;
			light_data.atlas_rect[3] = rect.size.height;

			light_data.soft_shadow_scale = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BLUR);

			if (type == RS::LIGHT_OMNI) {
				Transform3D proj = (inverse_transform * light_transform).inverse();

				RendererRD::MaterialStorage::store_transform(proj, light_data.shadow_matrix);

				if (size > 0.0 && light_data.soft_shadow_scale > 0.0) {
					// Only enable PCSS-like soft shadows if blurring is enabled.
					// Otherwise, performance would decrease with no visual difference.
					light_data.soft_shadow_size = size;
				} else {
					light_data.soft_shadow_size = 0.0;
					light_data.soft_shadow_scale *= shadows_quality_radius_get(); // Only use quality radius for PCF
				}

				light_data.direction[0] = omni_offset.x * float(rect.size.width);
				light_data.direction[1] = omni_offset.y * float(rect.size.height);
			} else if (type == RS::LIGHT_SPOT) {
				Transform3D modelview = (inverse_transform * light_transform).inverse();
				Projection bias;
				bias.set_light_bias();

				Projection shadow_mtx = bias * li->shadow_transform[0].camera * modelview;
				RendererRD::MaterialStorage::store_camera(shadow_mtx, light_data.shadow_matrix);

				if (size > 0.0 && light_data.soft_shadow_scale > 0.0) {
					// Only enable PCSS-like soft shadows if blurring is enabled.
					// Otherwise, performance would decrease with no visual difference.
					Projection cm = li->shadow_transform[0].camera;
					float half_np = cm.get_z_near() * Math::tan(Math::deg_to_rad(spot_angle));
					light_data.soft_shadow_size = (size * 0.5 / radius) / (half_np / cm.get_z_near()) * rect.size.width;
				} else {
					light_data.soft_shadow_size = 0.0;
					light_data.soft_shadow_scale *= shadows_quality_radius_get(); // Only use quality radius for PCF
				}
			}
		} else {
			light_data.shadow_opacity = 0.0;
		}

		li->cull_mask = light_storage->light_get_cull_mask(base);

		if (current_cluster_builder != nullptr) {
			current_cluster_builder->add_light(type == RS::LIGHT_SPOT ? ClusterBuilderRD::LIGHT_TYPE_SPOT : ClusterBuilderRD::LIGHT_TYPE_OMNI, light_transform, radius, spot_angle);
		}

		r_positional_light_count++;
	}

	//update without barriers
	if (cluster.omni_light_count) {
		RD::get_singleton()->buffer_update(cluster.omni_light_buffer, 0, sizeof(Cluster::LightData) * cluster.omni_light_count, cluster.omni_lights, RD::BARRIER_MASK_RASTER | RD::BARRIER_MASK_COMPUTE);
	}

	if (cluster.spot_light_count) {
		RD::get_singleton()->buffer_update(cluster.spot_light_buffer, 0, sizeof(Cluster::LightData) * cluster.spot_light_count, cluster.spot_lights, RD::BARRIER_MASK_RASTER | RD::BARRIER_MASK_COMPUTE);
	}

	if (r_directional_light_count) {
		RD::get_singleton()->buffer_update(cluster.directional_light_buffer, 0, sizeof(Cluster::DirectionalLightData) * r_directional_light_count, cluster.directional_lights, RD::BARRIER_MASK_RASTER | RD::BARRIER_MASK_COMPUTE);
	}
}

void RendererSceneRenderRD::_setup_decals(const PagedArray<RID> &p_decals, const Transform3D &p_camera_inverse_xform) {
	RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton();

	Transform3D uv_xform;
	uv_xform.basis.scale(Vector3(2.0, 1.0, 2.0));
	uv_xform.origin = Vector3(-1.0, 0.0, -1.0);

	uint32_t decal_count = p_decals.size();

	cluster.decal_count = 0;

	for (uint32_t i = 0; i < decal_count; i++) {
		if (cluster.decal_count == cluster.max_decals) {
			break;
		}

		DecalInstance *di = decal_instance_owner.get_or_null(p_decals[i]);
		if (!di) {
			continue;
		}
		RID decal = di->decal;

		Transform3D xform = di->transform;

		real_t distance = -p_camera_inverse_xform.xform(xform.origin).z;

		if (texture_storage->decal_is_distance_fade_enabled(decal)) {
			float fade_begin = texture_storage->decal_get_distance_fade_begin(decal);
			float fade_length = texture_storage->decal_get_distance_fade_length(decal);

			if (distance > fade_begin) {
				if (distance > fade_begin + fade_length) {
					continue; // do not use this decal, its invisible
				}
			}
		}

		cluster.decal_sort[cluster.decal_count].instance = di;
		cluster.decal_sort[cluster.decal_count].depth = distance;
		cluster.decal_count++;
	}

	if (cluster.decal_count > 0) {
		SortArray<Cluster::InstanceSort<DecalInstance>> sort_array;
		sort_array.sort(cluster.decal_sort, cluster.decal_count);
	}

	bool using_forward_ids = _uses_forward_ids();
	for (uint32_t i = 0; i < cluster.decal_count; i++) {
		DecalInstance *di = cluster.decal_sort[i].instance;
		RID decal = di->decal;

		if (using_forward_ids) {
			_map_forward_id(FORWARD_ID_TYPE_DECAL, di->forward_id, i);
		}

		di->cull_mask = texture_storage->decal_get_cull_mask(decal);

		Transform3D xform = di->transform;
		float fade = 1.0;

		if (texture_storage->decal_is_distance_fade_enabled(decal)) {
			const real_t distance = -p_camera_inverse_xform.xform(xform.origin).z;
			const float fade_begin = texture_storage->decal_get_distance_fade_begin(decal);
			const float fade_length = texture_storage->decal_get_distance_fade_length(decal);

			if (distance > fade_begin) {
				// Use `smoothstep()` to make opacity changes more gradual and less noticeable to the player.
				fade = Math::smoothstep(0.0f, 1.0f, 1.0f - float(distance - fade_begin) / fade_length);
			}
		}

		Cluster::DecalData &dd = cluster.decals[i];

		Vector3 decal_extents = texture_storage->decal_get_extents(decal);

		Transform3D scale_xform;
		scale_xform.basis.scale(decal_extents);
		Transform3D to_decal_xform = (p_camera_inverse_xform * di->transform * scale_xform * uv_xform).affine_inverse();
		RendererRD::MaterialStorage::store_transform(to_decal_xform, dd.xform);

		Vector3 normal = xform.basis.get_column(Vector3::AXIS_Y).normalized();
		normal = p_camera_inverse_xform.basis.xform(normal); //camera is normalized, so fine

		dd.normal[0] = normal.x;
		dd.normal[1] = normal.y;
		dd.normal[2] = normal.z;
		dd.normal_fade = texture_storage->decal_get_normal_fade(decal);

		RID albedo_tex = texture_storage->decal_get_texture(decal, RS::DECAL_TEXTURE_ALBEDO);
		RID emission_tex = texture_storage->decal_get_texture(decal, RS::DECAL_TEXTURE_EMISSION);
		if (albedo_tex.is_valid()) {
			Rect2 rect = texture_storage->decal_atlas_get_texture_rect(albedo_tex);
			dd.albedo_rect[0] = rect.position.x;
			dd.albedo_rect[1] = rect.position.y;
			dd.albedo_rect[2] = rect.size.x;
			dd.albedo_rect[3] = rect.size.y;
		} else {
			if (!emission_tex.is_valid()) {
				continue; //no albedo, no emission, no decal.
			}
			dd.albedo_rect[0] = 0;
			dd.albedo_rect[1] = 0;
			dd.albedo_rect[2] = 0;
			dd.albedo_rect[3] = 0;
		}

		RID normal_tex = texture_storage->decal_get_texture(decal, RS::DECAL_TEXTURE_NORMAL);

		if (normal_tex.is_valid()) {
			Rect2 rect = texture_storage->decal_atlas_get_texture_rect(normal_tex);
			dd.normal_rect[0] = rect.position.x;
			dd.normal_rect[1] = rect.position.y;
			dd.normal_rect[2] = rect.size.x;
			dd.normal_rect[3] = rect.size.y;

			Basis normal_xform = p_camera_inverse_xform.basis * xform.basis.orthonormalized();
			RendererRD::MaterialStorage::store_basis_3x4(normal_xform, dd.normal_xform);
		} else {
			dd.normal_rect[0] = 0;
			dd.normal_rect[1] = 0;
			dd.normal_rect[2] = 0;
			dd.normal_rect[3] = 0;
		}

		RID orm_tex = texture_storage->decal_get_texture(decal, RS::DECAL_TEXTURE_ORM);
		if (orm_tex.is_valid()) {
			Rect2 rect = texture_storage->decal_atlas_get_texture_rect(orm_tex);
			dd.orm_rect[0] = rect.position.x;
			dd.orm_rect[1] = rect.position.y;
			dd.orm_rect[2] = rect.size.x;
			dd.orm_rect[3] = rect.size.y;
		} else {
			dd.orm_rect[0] = 0;
			dd.orm_rect[1] = 0;
			dd.orm_rect[2] = 0;
			dd.orm_rect[3] = 0;
		}

		if (emission_tex.is_valid()) {
			Rect2 rect = texture_storage->decal_atlas_get_texture_rect(emission_tex);
			dd.emission_rect[0] = rect.position.x;
			dd.emission_rect[1] = rect.position.y;
			dd.emission_rect[2] = rect.size.x;
			dd.emission_rect[3] = rect.size.y;
		} else {
			dd.emission_rect[0] = 0;
			dd.emission_rect[1] = 0;
			dd.emission_rect[2] = 0;
			dd.emission_rect[3] = 0;
		}

		Color modulate = texture_storage->decal_get_modulate(decal);
		dd.modulate[0] = modulate.r;
		dd.modulate[1] = modulate.g;
		dd.modulate[2] = modulate.b;
		dd.modulate[3] = modulate.a * fade;
		dd.emission_energy = texture_storage->decal_get_emission_energy(decal) * fade;
		dd.albedo_mix = texture_storage->decal_get_albedo_mix(decal);
		dd.mask = texture_storage->decal_get_cull_mask(decal);
		dd.upper_fade = texture_storage->decal_get_upper_fade(decal);
		dd.lower_fade = texture_storage->decal_get_lower_fade(decal);

		if (current_cluster_builder != nullptr) {
			current_cluster_builder->add_box(ClusterBuilderRD::BOX_TYPE_DECAL, xform, decal_extents);
		}
	}

	if (cluster.decal_count > 0) {
		RD::get_singleton()->buffer_update(cluster.decal_buffer, 0, sizeof(Cluster::DecalData) * cluster.decal_count, cluster.decals, RD::BARRIER_MASK_RASTER | RD::BARRIER_MASK_COMPUTE);
	}
}

////////////////////////////////////////////////////////////////////////////////
// FOG SHADER

void RendererSceneRenderRD::_update_volumetric_fog(Ref<RenderSceneBuffersRD> p_render_buffers, RID p_environment, const Projection &p_cam_projection, const Transform3D &p_cam_transform, const Transform3D &p_prev_cam_inv_transform, RID p_shadow_atlas, int p_directional_light_count, bool p_use_directional_shadows, int p_positional_light_count, int p_voxel_gi_count, const PagedArray<RID> &p_fog_volumes) {
	ERR_FAIL_COND(!is_clustered_enabled()); // can't use volumetric fog without clustered
	ERR_FAIL_COND(p_render_buffers.is_null());

	// These should be available for our clustered renderer, at some point _update_volumetric_fog should be called by the renderer implemetentation itself
	ERR_FAIL_COND(!p_render_buffers->has_custom_data(RB_SCOPE_GI));
	Ref<RendererRD::GI::RenderBuffersGI> rbgi = p_render_buffers->get_custom_data(RB_SCOPE_GI);

	Ref<RendererRD::GI::SDFGI> sdfgi;
	if (p_render_buffers->has_custom_data(RB_SCOPE_SDFGI)) {
		sdfgi = p_render_buffers->get_custom_data(RB_SCOPE_SDFGI);
	}

	Size2i size = p_render_buffers->get_internal_size();
	float ratio = float(size.x) / float((size.x + size.y) / 2);
	uint32_t target_width = uint32_t(float(volumetric_fog_size) * ratio);
	uint32_t target_height = uint32_t(float(volumetric_fog_size) / ratio);

	if (p_render_buffers->has_custom_data(RB_SCOPE_FOG)) {
		Ref<RendererRD::Fog::VolumetricFog> fog = p_render_buffers->get_custom_data(RB_SCOPE_FOG);
		//validate
		if (p_environment.is_null() || !environment_get_volumetric_fog_enabled(p_environment) || fog->width != target_width || fog->height != target_height || fog->depth != volumetric_fog_depth) {
			p_render_buffers->set_custom_data(RB_SCOPE_FOG, Ref<RenderBufferCustomDataRD>());
		}
	}

	if (p_environment.is_null() || !environment_get_volumetric_fog_enabled(p_environment)) {
		//no reason to enable or update, bye
		return;
	}

	if (p_environment.is_valid() && environment_get_volumetric_fog_enabled(p_environment) && !p_render_buffers->has_custom_data(RB_SCOPE_FOG)) {
		//required volumetric fog but not existing, create
		Ref<RendererRD::Fog::VolumetricFog> fog;

		fog.instantiate();
		fog->init(Vector3i(target_width, target_height, volumetric_fog_depth), sky.sky_shader.default_shader_rd);

		p_render_buffers->set_custom_data(RB_SCOPE_FOG, fog);
	}

	if (p_render_buffers->has_custom_data(RB_SCOPE_FOG)) {
		Ref<RendererRD::Fog::VolumetricFog> fog = p_render_buffers->get_custom_data(RB_SCOPE_FOG);

		RendererRD::Fog::VolumetricFogSettings settings;
		settings.rb_size = size;
		settings.time = time;
		settings.is_using_radiance_cubemap_array = is_using_radiance_cubemap_array();
		settings.max_cluster_elements = max_cluster_elements;
		settings.volumetric_fog_filter_active = volumetric_fog_filter_active;

		settings.shadow_sampler = shadow_sampler;
		ShadowAtlas *shadow_atlas = shadow_atlas_owner.get_or_null(p_shadow_atlas);
		settings.shadow_atlas_depth = shadow_atlas ? shadow_atlas->depth : RID();
		settings.voxel_gi_buffer = rbgi->get_voxel_gi_buffer();
		settings.omni_light_buffer = get_omni_light_buffer();
		settings.spot_light_buffer = get_spot_light_buffer();
		settings.directional_shadow_depth = directional_shadow.depth;
		settings.directional_light_buffer = get_directional_light_buffer();

		settings.vfog = fog;
		settings.cluster_builder = p_render_buffers->cluster_builder;
		settings.rbgi = rbgi;
		settings.sdfgi = sdfgi;
		settings.env = p_environment;
		settings.sky = &sky;
		settings.gi = &gi;

		RendererRD::Fog::get_singleton()->volumetric_fog_update(settings, p_cam_projection, p_cam_transform, p_prev_cam_inv_transform, p_shadow_atlas, p_directional_light_count, p_use_directional_shadows, p_positional_light_count, p_voxel_gi_count, p_fog_volumes);
	}
}

bool RendererSceneRenderRD::_needs_post_prepass_render(RenderDataRD *p_render_data, bool p_use_gi) {
	if (p_render_data->render_buffers.is_valid()) {
		if (p_render_data->render_buffers->has_custom_data(RB_SCOPE_SDFGI)) {
			return true;
		}
	}
	return false;
}

void RendererSceneRenderRD::_post_prepass_render(RenderDataRD *p_render_data, bool p_use_gi) {
	if (p_render_data->render_buffers.is_valid() && p_use_gi) {
		if (!p_render_data->render_buffers->has_custom_data(RB_SCOPE_SDFGI)) {
			return;
		}

		Ref<RendererRD::GI::SDFGI> sdfgi = p_render_data->render_buffers->get_custom_data(RB_SCOPE_SDFGI);
		sdfgi->update_probes(p_render_data->environment, sky.sky_owner.get_or_null(environment_get_sky(p_render_data->environment)));
	}
}

void RendererSceneRenderRD::_pre_resolve_render(RenderDataRD *p_render_data, bool p_use_gi) {
	if (p_render_data->render_buffers.is_valid()) {
		if (p_use_gi) {
			RD::get_singleton()->compute_list_end();
		}
	}
}

void RendererSceneRenderRD::_pre_opaque_render(RenderDataRD *p_render_data, bool p_use_ssao, bool p_use_ssil, bool p_use_gi, const RID *p_normal_roughness_slices, RID p_voxel_gi_buffer) {
	// Render shadows while GI is rendering, due to how barriers are handled, this should happen at the same time
	RendererRD::LightStorage *light_storage = RendererRD::LightStorage::get_singleton();

	if (p_render_data->render_buffers.is_valid() && p_use_gi && p_render_data->render_buffers->has_custom_data(RB_SCOPE_SDFGI)) {
		Ref<RendererRD::GI::SDFGI> sdfgi = p_render_data->render_buffers->get_custom_data(RB_SCOPE_SDFGI);
		sdfgi->store_probes();
	}

	render_state.cube_shadows.clear();
	render_state.shadows.clear();
	render_state.directional_shadows.clear();

	Plane camera_plane(-p_render_data->scene_data->cam_transform.basis.get_column(Vector3::AXIS_Z), p_render_data->scene_data->cam_transform.origin);
	float lod_distance_multiplier = p_render_data->scene_data->cam_projection.get_lod_multiplier();
	{
		for (int i = 0; i < render_state.render_shadow_count; i++) {
			LightInstance *li = light_instance_owner.get_or_null(render_state.render_shadows[i].light);

			if (light_storage->light_get_type(li->light) == RS::LIGHT_DIRECTIONAL) {
				render_state.directional_shadows.push_back(i);
			} else if (light_storage->light_get_type(li->light) == RS::LIGHT_OMNI && light_storage->light_omni_get_shadow_mode(li->light) == RS::LIGHT_OMNI_SHADOW_CUBE) {
				render_state.cube_shadows.push_back(i);
			} else {
				render_state.shadows.push_back(i);
			}
		}

		//cube shadows are rendered in their own way
		for (uint32_t i = 0; i < render_state.cube_shadows.size(); i++) {
			_render_shadow_pass(render_state.render_shadows[render_state.cube_shadows[i]].light, p_render_data->shadow_atlas, render_state.render_shadows[render_state.cube_shadows[i]].pass, render_state.render_shadows[render_state.cube_shadows[i]].instances, camera_plane, lod_distance_multiplier, p_render_data->scene_data->screen_mesh_lod_threshold, true, true, true, p_render_data->render_info);
		}

		if (render_state.directional_shadows.size()) {
			//open the pass for directional shadows
			_update_directional_shadow_atlas();
			RD::get_singleton()->draw_list_begin(directional_shadow.fb, RD::INITIAL_ACTION_DROP, RD::FINAL_ACTION_DISCARD, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_CONTINUE);
			RD::get_singleton()->draw_list_end();
		}
	}

	// Render GI

	bool render_shadows = render_state.directional_shadows.size() || render_state.shadows.size();
	bool render_gi = p_render_data->render_buffers.is_valid() && p_use_gi;

	if (render_shadows && render_gi) {
		RENDER_TIMESTAMP("Render GI + Render Shadows (Parallel)");
	} else if (render_shadows) {
		RENDER_TIMESTAMP("Render Shadows");
	} else if (render_gi) {
		RENDER_TIMESTAMP("Render GI");
	}

	//prepare shadow rendering
	if (render_shadows) {
		_render_shadow_begin();

		//render directional shadows
		for (uint32_t i = 0; i < render_state.directional_shadows.size(); i++) {
			_render_shadow_pass(render_state.render_shadows[render_state.directional_shadows[i]].light, p_render_data->shadow_atlas, render_state.render_shadows[render_state.directional_shadows[i]].pass, render_state.render_shadows[render_state.directional_shadows[i]].instances, camera_plane, lod_distance_multiplier, p_render_data->scene_data->screen_mesh_lod_threshold, false, i == render_state.directional_shadows.size() - 1, false, p_render_data->render_info);
		}
		//render positional shadows
		for (uint32_t i = 0; i < render_state.shadows.size(); i++) {
			_render_shadow_pass(render_state.render_shadows[render_state.shadows[i]].light, p_render_data->shadow_atlas, render_state.render_shadows[render_state.shadows[i]].pass, render_state.render_shadows[render_state.shadows[i]].instances, camera_plane, lod_distance_multiplier, p_render_data->scene_data->screen_mesh_lod_threshold, i == 0, i == render_state.shadows.size() - 1, true, p_render_data->render_info);
		}

		_render_shadow_process();
	}

	//start GI
	if (render_gi) {
		gi.process_gi(p_render_data->render_buffers, p_normal_roughness_slices, p_voxel_gi_buffer, p_render_data->environment, p_render_data->scene_data->view_count, p_render_data->scene_data->view_projection, p_render_data->scene_data->view_eye_offset, p_render_data->scene_data->cam_transform, *p_render_data->voxel_gi_instances);
	}

	//Do shadow rendering (in parallel with GI)
	if (render_shadows) {
		_render_shadow_end(RD::BARRIER_MASK_NO_BARRIER);
	}

	if (render_gi) {
		RD::get_singleton()->compute_list_end(RD::BARRIER_MASK_NO_BARRIER); //use a later barrier
	}

	if (p_render_data->render_buffers.is_valid() && ss_effects) {
		if (p_use_ssao || p_use_ssil) {
			Ref<RenderSceneBuffersRD> rb = p_render_data->render_buffers;
			ERR_FAIL_COND(rb.is_null());
			Size2i size = rb->get_internal_size();

			bool invalidate_uniform_set = false;
			if (rb->ss_effects.linear_depth.is_null()) {
				RD::TextureFormat tf;
				tf.format = RD::DATA_FORMAT_R16_SFLOAT;
				tf.texture_type = RD::TEXTURE_TYPE_2D_ARRAY;
				tf.width = (size.x + 1) / 2;
				tf.height = (size.y + 1) / 2;
				tf.mipmaps = 5;
				tf.array_layers = 4;
				tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
				rb->ss_effects.linear_depth = RD::get_singleton()->texture_create(tf, RD::TextureView());
				RD::get_singleton()->set_resource_name(rb->ss_effects.linear_depth, "SS Effects Depth");
				for (uint32_t i = 0; i < tf.mipmaps; i++) {
					RID slice = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rb->ss_effects.linear_depth, 0, i, 1, RD::TEXTURE_SLICE_2D_ARRAY);
					rb->ss_effects.linear_depth_slices.push_back(slice);
					RD::get_singleton()->set_resource_name(slice, "SS Effects Depth Mip " + itos(i) + " ");
				}
				invalidate_uniform_set = true;
			}

			RID depth_texture = rb->get_depth_texture();
			ss_effects->downsample_depth(depth_texture, rb->ss_effects.linear_depth_slices, ssao_quality, ssil_quality, invalidate_uniform_set, ssao_half_size, ssil_half_size, size, p_render_data->scene_data->cam_projection);
		}

		if (p_use_ssao) {
			// TODO make these proper stereo
			_process_ssao(p_render_data->render_buffers, p_render_data->environment, p_normal_roughness_slices[0], p_render_data->scene_data->cam_projection);
		}

		if (p_use_ssil) {
			// TODO make these proper stereo
			_process_ssil(p_render_data->render_buffers, p_render_data->environment, p_normal_roughness_slices[0], p_render_data->scene_data->cam_projection, p_render_data->scene_data->cam_transform);
		}
	}

	//full barrier here, we need raster, transfer and compute and it depends from the previous work
	RD::get_singleton()->barrier(RD::BARRIER_MASK_ALL, RD::BARRIER_MASK_ALL);

	if (current_cluster_builder) {
		current_cluster_builder->begin(p_render_data->scene_data->cam_transform, p_render_data->scene_data->cam_projection, !p_render_data->reflection_probe.is_valid());
	}

	bool using_shadows = true;

	if (p_render_data->reflection_probe.is_valid()) {
		if (!RSG::light_storage->reflection_probe_renders_shadows(reflection_probe_instance_get_probe(p_render_data->reflection_probe))) {
			using_shadows = false;
		}
	} else {
		//do not render reflections when rendering a reflection probe
		_setup_reflections(p_render_data, *p_render_data->reflection_probes, p_render_data->scene_data->cam_transform.affine_inverse(), p_render_data->environment);
	}

	uint32_t directional_light_count = 0;
	uint32_t positional_light_count = 0;
	_setup_lights(p_render_data, *p_render_data->lights, p_render_data->scene_data->cam_transform, p_render_data->shadow_atlas, using_shadows, directional_light_count, positional_light_count, p_render_data->directional_light_soft_shadows);
	_setup_decals(*p_render_data->decals, p_render_data->scene_data->cam_transform.affine_inverse());

	p_render_data->directional_light_count = directional_light_count;

	if (current_cluster_builder) {
		current_cluster_builder->bake_cluster();
	}

	if (p_render_data->render_buffers.is_valid()) {
		bool directional_shadows = false;
		for (uint32_t i = 0; i < directional_light_count; i++) {
			if (cluster.directional_lights[i].shadow_opacity > 0.001) {
				directional_shadows = true;
				break;
			}
		}
		if (is_volumetric_supported()) {
			_update_volumetric_fog(p_render_data->render_buffers, p_render_data->environment, p_render_data->scene_data->cam_projection, p_render_data->scene_data->cam_transform, p_render_data->scene_data->prev_cam_transform.affine_inverse(), p_render_data->shadow_atlas, directional_light_count, directional_shadows, positional_light_count, render_state.voxel_gi_count, *p_render_data->fog_volumes);
		}
	}
}

void RendererSceneRenderRD::render_scene(const Ref<RenderSceneBuffers> &p_render_buffers, const CameraData *p_camera_data, const CameraData *p_prev_camera_data, const PagedArray<RenderGeometryInstance *> &p_instances, const PagedArray<RID> &p_lights, const PagedArray<RID> &p_reflection_probes, const PagedArray<RID> &p_voxel_gi_instances, const PagedArray<RID> &p_decals, const PagedArray<RID> &p_lightmaps, const PagedArray<RID> &p_fog_volumes, RID p_environment, RID p_camera_attributes, RID p_shadow_atlas, RID p_occluder_debug_tex, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass, float p_screen_mesh_lod_threshold, const RenderShadowData *p_render_shadows, int p_render_shadow_count, const RenderSDFGIData *p_render_sdfgi_regions, int p_render_sdfgi_region_count, const RenderSDFGIUpdateData *p_sdfgi_update_data, RenderingMethod::RenderInfo *r_render_info) {
	RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton();

	// getting this here now so we can direct call a bunch of things more easily
	Ref<RenderSceneBuffersRD> rb;
	if (p_render_buffers.is_valid()) {
		rb = p_render_buffers; // cast it...
		ERR_FAIL_COND(rb.is_null());
	}

	// setup scene data
	RenderSceneDataRD scene_data;
	{
		// Our first camera is used by default
		scene_data.cam_transform = p_camera_data->main_transform;
		scene_data.cam_projection = p_camera_data->main_projection;
		scene_data.cam_orthogonal = p_camera_data->is_orthogonal;
		scene_data.taa_jitter = p_camera_data->taa_jitter;

		scene_data.view_count = p_camera_data->view_count;
		for (uint32_t v = 0; v < p_camera_data->view_count; v++) {
			scene_data.view_eye_offset[v] = p_camera_data->view_offset[v].origin;
			scene_data.view_projection[v] = p_camera_data->view_projection[v];
		}

		scene_data.prev_cam_transform = p_prev_camera_data->main_transform;
		scene_data.prev_cam_projection = p_prev_camera_data->main_projection;
		scene_data.prev_taa_jitter = p_prev_camera_data->taa_jitter;

		for (uint32_t v = 0; v < p_camera_data->view_count; v++) {
			scene_data.prev_view_projection[v] = p_prev_camera_data->view_projection[v];
		}

		scene_data.z_near = p_camera_data->main_projection.get_z_near();
		scene_data.z_far = p_camera_data->main_projection.get_z_far();

		// this should be the same for all cameras..
		scene_data.lod_distance_multiplier = p_camera_data->main_projection.get_lod_multiplier();
		scene_data.lod_camera_plane = Plane(-p_camera_data->main_transform.basis.get_column(Vector3::AXIS_Z), p_camera_data->main_transform.get_origin());

		if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_DISABLE_LOD) {
			scene_data.screen_mesh_lod_threshold = 0.0;
		} else {
			scene_data.screen_mesh_lod_threshold = p_screen_mesh_lod_threshold;
		}

		if (p_shadow_atlas.is_valid()) {
			Vector2 sas = shadow_atlas_get_size(p_shadow_atlas);
			scene_data.shadow_atlas_pixel_size.x = 1.0 / sas.x;
			scene_data.shadow_atlas_pixel_size.y = 1.0 / sas.y;
		}
		{
			Vector2 dss = directional_shadow_get_size();
			scene_data.directional_shadow_pixel_size.x = 1.0 / dss.x;
			scene_data.directional_shadow_pixel_size.y = 1.0 / dss.y;
		}

		scene_data.time = time;
		scene_data.time_step = time_step;
	}

	//assign render data
	RenderDataRD render_data;
	{
		render_data.render_buffers = rb;
		render_data.scene_data = &scene_data;

		render_data.instances = &p_instances;
		render_data.lights = &p_lights;
		render_data.reflection_probes = &p_reflection_probes;
		render_data.voxel_gi_instances = &p_voxel_gi_instances;
		render_data.decals = &p_decals;
		render_data.lightmaps = &p_lightmaps;
		render_data.fog_volumes = &p_fog_volumes;
		render_data.environment = p_environment;
		render_data.camera_attributes = p_camera_attributes;
		render_data.shadow_atlas = p_shadow_atlas;
		render_data.reflection_atlas = p_reflection_atlas;
		render_data.reflection_probe = p_reflection_probe;
		render_data.reflection_probe_pass = p_reflection_probe_pass;

		render_state.render_shadows = p_render_shadows;
		render_state.render_shadow_count = p_render_shadow_count;
		render_state.render_sdfgi_regions = p_render_sdfgi_regions;
		render_state.render_sdfgi_region_count = p_render_sdfgi_region_count;
		render_state.sdfgi_update_data = p_sdfgi_update_data;
		render_data.render_info = r_render_info;
	}

	PagedArray<RID> empty;

	if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_UNSHADED) {
		render_data.lights = &empty;
		render_data.reflection_probes = &empty;
		render_data.voxel_gi_instances = &empty;
	}

	// sdfgi first
	if (rb.is_valid() && rb->has_custom_data(RB_SCOPE_SDFGI)) {
		Ref<RendererRD::GI::SDFGI> sdfgi = rb->get_custom_data(RB_SCOPE_SDFGI);
		float exposure_normalization = 1.0;

		if (p_camera_attributes.is_valid()) {
			exposure_normalization = RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_camera_attributes);
		}
		for (int i = 0; i < render_state.render_sdfgi_region_count; i++) {
			sdfgi->render_region(rb, render_state.render_sdfgi_regions[i].region, render_state.render_sdfgi_regions[i].instances, this, exposure_normalization);
		}
		if (render_state.sdfgi_update_data->update_static) {
			sdfgi->render_static_lights(&render_data, rb, render_state.sdfgi_update_data->static_cascade_count, p_sdfgi_update_data->static_cascade_indices, render_state.sdfgi_update_data->static_positional_lights, this);
		}
	}

	Color clear_color;
	if (p_render_buffers.is_valid()) {
		clear_color = texture_storage->render_target_get_clear_request_color(rb->get_render_target());
	} else {
		clear_color = RSG::texture_storage->get_default_clear_color();
	}

	//assign render indices to voxel_gi_instances
	if (is_dynamic_gi_supported()) {
		for (uint32_t i = 0; i < (uint32_t)p_voxel_gi_instances.size(); i++) {
			gi.voxel_gi_instance_set_render_index(p_voxel_gi_instances[i], i);
		}
	}

	if (rb.is_valid()) {
		// render_data.render_buffers == p_render_buffers so we can use our already retrieved rb
		current_cluster_builder = rb->cluster_builder;
	} else if (reflection_probe_instance_owner.owns(render_data.reflection_probe)) {
		ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(render_data.reflection_probe);
		ReflectionAtlas *ra = reflection_atlas_owner.get_or_null(rpi->atlas);
		if (!ra) {
			ERR_PRINT("reflection probe has no reflection atlas! Bug?");
			current_cluster_builder = nullptr;
		} else {
			current_cluster_builder = ra->cluster_builder;
		}
		if (p_camera_attributes.is_valid()) {
			RendererRD::LightStorage::get_singleton()->reflection_probe_set_baked_exposure(rpi->probe, RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_camera_attributes));
		}
	} else {
		ERR_PRINT("No render buffer nor reflection atlas, bug"); //should never happen, will crash
		current_cluster_builder = nullptr;
	}

	render_state.voxel_gi_count = 0;

	if (rb.is_valid() && is_dynamic_gi_supported()) {
		if (rb->has_custom_data(RB_SCOPE_SDFGI)) {
			Ref<RendererRD::GI::SDFGI> sdfgi = rb->get_custom_data(RB_SCOPE_SDFGI);
			if (sdfgi.is_valid()) {
				sdfgi->update_cascades();
				sdfgi->pre_process_gi(scene_data.cam_transform, &render_data, this);
				sdfgi->update_light();
			}
		}

		gi.setup_voxel_gi_instances(&render_data, render_data.render_buffers, scene_data.cam_transform, *render_data.voxel_gi_instances, render_state.voxel_gi_count, this);
	}

	render_state.depth_prepass_used = false;
	//calls _pre_opaque_render between depth pre-pass and opaque pass
	if (current_cluster_builder != nullptr) {
		render_data.cluster_buffer = current_cluster_builder->get_cluster_buffer();
		render_data.cluster_size = current_cluster_builder->get_cluster_size();
		render_data.cluster_max_elements = current_cluster_builder->get_max_cluster_elements();
	}

	if (rb.is_valid() && vrs) {
		RS::ViewportVRSMode vrs_mode = texture_storage->render_target_get_vrs_mode(rb->get_render_target());
		if (vrs_mode != RS::VIEWPORT_VRS_DISABLED) {
			RID vrs_texture = rb->get_texture(RB_SCOPE_VRS, RB_TEXTURE);

			// We use get_cache_multipass instead of get_cache_multiview because the default behavior is for
			// our vrs_texture to be used as the VRS attachment. In this particular case we're writing to it
			// so it needs to be set as our color attachment

			Vector<RID> textures;
			textures.push_back(vrs_texture);

			Vector<RD::FramebufferPass> passes;
			RD::FramebufferPass pass;
			pass.color_attachments.push_back(0);
			passes.push_back(pass);

			RID vrs_fb = FramebufferCacheRD::get_singleton()->get_cache_multipass(textures, passes, rb->get_view_count());

			vrs->update_vrs_texture(vrs_fb, rb->get_render_target());
		}
	}

	_render_scene(&render_data, clear_color);

	if (rb.is_valid()) {
		_render_buffers_debug_draw(rb, p_shadow_atlas, p_occluder_debug_tex);

		if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SDFGI && rb->has_custom_data(RB_SCOPE_SDFGI)) {
			Ref<RendererRD::GI::SDFGI> sdfgi = rb->get_custom_data(RB_SCOPE_SDFGI);
			Vector<RID> view_rids;

			// SDFGI renders at internal resolution, need to check if our debug correctly supports outputting upscaled.
			Size2i size = rb->get_internal_size();
			RID source_texture = rb->get_internal_texture();
			for (uint32_t v = 0; v < rb->get_view_count(); v++) {
				view_rids.push_back(rb->get_internal_texture(v));
			}

			sdfgi->debug_draw(scene_data.view_count, scene_data.view_projection, scene_data.cam_transform, size.x, size.y, rb->get_render_target(), source_texture, view_rids);
		}
	}
}

void RendererSceneRenderRD::_debug_draw_cluster(Ref<RenderSceneBuffersRD> p_render_buffers) {
	if (p_render_buffers.is_valid() && current_cluster_builder != nullptr) {
		RS::ViewportDebugDraw dd = get_debug_draw_mode();

		if (dd == RS::VIEWPORT_DEBUG_DRAW_CLUSTER_OMNI_LIGHTS || dd == RS::VIEWPORT_DEBUG_DRAW_CLUSTER_SPOT_LIGHTS || dd == RS::VIEWPORT_DEBUG_DRAW_CLUSTER_DECALS || dd == RS::VIEWPORT_DEBUG_DRAW_CLUSTER_REFLECTION_PROBES) {
			ClusterBuilderRD::ElementType elem_type = ClusterBuilderRD::ELEMENT_TYPE_MAX;
			switch (dd) {
				case RS::VIEWPORT_DEBUG_DRAW_CLUSTER_OMNI_LIGHTS:
					elem_type = ClusterBuilderRD::ELEMENT_TYPE_OMNI_LIGHT;
					break;
				case RS::VIEWPORT_DEBUG_DRAW_CLUSTER_SPOT_LIGHTS:
					elem_type = ClusterBuilderRD::ELEMENT_TYPE_SPOT_LIGHT;
					break;
				case RS::VIEWPORT_DEBUG_DRAW_CLUSTER_DECALS:
					elem_type = ClusterBuilderRD::ELEMENT_TYPE_DECAL;
					break;
				case RS::VIEWPORT_DEBUG_DRAW_CLUSTER_REFLECTION_PROBES:
					elem_type = ClusterBuilderRD::ELEMENT_TYPE_REFLECTION_PROBE;
					break;
				default: {
				}
			}
			current_cluster_builder->debug(elem_type);
		}
	}
}

void RendererSceneRenderRD::_render_shadow_pass(RID p_light, RID p_shadow_atlas, int p_pass, const PagedArray<RenderGeometryInstance *> &p_instances, const Plane &p_camera_plane, float p_lod_distance_multiplier, float p_screen_mesh_lod_threshold, bool p_open_pass, bool p_close_pass, bool p_clear_region, RenderingMethod::RenderInfo *p_render_info) {
	LightInstance *light_instance = light_instance_owner.get_or_null(p_light);
	ERR_FAIL_COND(!light_instance);

	Rect2i atlas_rect;
	uint32_t atlas_size = 1;
	RID atlas_fb;

	bool using_dual_paraboloid = false;
	bool using_dual_paraboloid_flip = false;
	Vector2i dual_paraboloid_offset;
	RID render_fb;
	RID render_texture;
	float zfar;

	bool use_pancake = false;
	bool render_cubemap = false;
	bool finalize_cubemap = false;

	bool flip_y = false;

	Projection light_projection;
	Transform3D light_transform;

	if (RSG::light_storage->light_get_type(light_instance->light) == RS::LIGHT_DIRECTIONAL) {
		//set pssm stuff
		if (light_instance->last_scene_shadow_pass != scene_pass) {
			light_instance->directional_rect = _get_directional_shadow_rect(directional_shadow.size, directional_shadow.light_count, directional_shadow.current_light);
			directional_shadow.current_light++;
			light_instance->last_scene_shadow_pass = scene_pass;
		}

		use_pancake = RSG::light_storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_SHADOW_PANCAKE_SIZE) > 0;
		light_projection = light_instance->shadow_transform[p_pass].camera;
		light_transform = light_instance->shadow_transform[p_pass].transform;

		atlas_rect = light_instance->directional_rect;

		if (RSG::light_storage->light_directional_get_shadow_mode(light_instance->light) == RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS) {
			atlas_rect.size.width /= 2;
			atlas_rect.size.height /= 2;

			if (p_pass == 1) {
				atlas_rect.position.x += atlas_rect.size.width;
			} else if (p_pass == 2) {
				atlas_rect.position.y += atlas_rect.size.height;
			} else if (p_pass == 3) {
				atlas_rect.position += atlas_rect.size;
			}
		} else if (RSG::light_storage->light_directional_get_shadow_mode(light_instance->light) == RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS) {
			atlas_rect.size.height /= 2;

			if (p_pass == 0) {
			} else {
				atlas_rect.position.y += atlas_rect.size.height;
			}
		}

		light_instance->shadow_transform[p_pass].atlas_rect = atlas_rect;

		light_instance->shadow_transform[p_pass].atlas_rect.position /= directional_shadow.size;
		light_instance->shadow_transform[p_pass].atlas_rect.size /= directional_shadow.size;

		zfar = RSG::light_storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_RANGE);

		render_fb = directional_shadow.fb;
		render_texture = RID();
		flip_y = true;

	} else {
		//set from shadow atlas

		ShadowAtlas *shadow_atlas = shadow_atlas_owner.get_or_null(p_shadow_atlas);
		ERR_FAIL_COND(!shadow_atlas);
		ERR_FAIL_COND(!shadow_atlas->shadow_owners.has(p_light));

		_update_shadow_atlas(shadow_atlas);

		uint32_t key = shadow_atlas->shadow_owners[p_light];

		uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3;
		uint32_t shadow = key & ShadowAtlas::SHADOW_INDEX_MASK;

		ERR_FAIL_INDEX((int)shadow, shadow_atlas->quadrants[quadrant].shadows.size());

		uint32_t quadrant_size = shadow_atlas->size >> 1;

		atlas_rect.position.x = (quadrant & 1) * quadrant_size;
		atlas_rect.position.y = (quadrant >> 1) * quadrant_size;

		uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision);
		atlas_rect.position.x += (shadow % shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
		atlas_rect.position.y += (shadow / shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;

		atlas_rect.size.width = shadow_size;
		atlas_rect.size.height = shadow_size;

		zfar = RSG::light_storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_RANGE);

		if (RSG::light_storage->light_get_type(light_instance->light) == RS::LIGHT_OMNI) {
			bool wrap = (shadow + 1) % shadow_atlas->quadrants[quadrant].subdivision == 0;
			dual_paraboloid_offset = wrap ? Vector2i(1 - shadow_atlas->quadrants[quadrant].subdivision, 1) : Vector2i(1, 0);

			if (RSG::light_storage->light_omni_get_shadow_mode(light_instance->light) == RS::LIGHT_OMNI_SHADOW_CUBE) {
				ShadowCubemap *cubemap = _get_shadow_cubemap(shadow_size / 2);

				render_fb = cubemap->side_fb[p_pass];
				render_texture = cubemap->cubemap;

				light_projection = light_instance->shadow_transform[p_pass].camera;
				light_transform = light_instance->shadow_transform[p_pass].transform;
				render_cubemap = true;
				finalize_cubemap = p_pass == 5;
				atlas_fb = shadow_atlas->fb;

				atlas_size = shadow_atlas->size;

				if (p_pass == 0) {
					_render_shadow_begin();
				}

			} else {
				atlas_rect.position.x += 1;
				atlas_rect.position.y += 1;
				atlas_rect.size.x -= 2;
				atlas_rect.size.y -= 2;

				atlas_rect.position += p_pass * atlas_rect.size * dual_paraboloid_offset;

				light_projection = light_instance->shadow_transform[0].camera;
				light_transform = light_instance->shadow_transform[0].transform;

				using_dual_paraboloid = true;
				using_dual_paraboloid_flip = p_pass == 1;
				render_fb = shadow_atlas->fb;
				flip_y = true;
			}

		} else if (RSG::light_storage->light_get_type(light_instance->light) == RS::LIGHT_SPOT) {
			light_projection = light_instance->shadow_transform[0].camera;
			light_transform = light_instance->shadow_transform[0].transform;

			render_fb = shadow_atlas->fb;

			flip_y = true;
		}
	}

	if (render_cubemap) {
		//rendering to cubemap
		_render_shadow_append(render_fb, p_instances, light_projection, light_transform, zfar, 0, 0, false, false, use_pancake, p_camera_plane, p_lod_distance_multiplier, p_screen_mesh_lod_threshold, Rect2(), false, true, true, true, p_render_info);
		if (finalize_cubemap) {
			_render_shadow_process();
			_render_shadow_end();
			//reblit
			Rect2 atlas_rect_norm = atlas_rect;
			atlas_rect_norm.position /= float(atlas_size);
			atlas_rect_norm.size /= float(atlas_size);
			copy_effects->copy_cubemap_to_dp(render_texture, atlas_fb, atlas_rect_norm, atlas_rect.size, light_projection.get_z_near(), light_projection.get_z_far(), false);
			atlas_rect_norm.position += Vector2(dual_paraboloid_offset) * atlas_rect_norm.size;
			copy_effects->copy_cubemap_to_dp(render_texture, atlas_fb, atlas_rect_norm, atlas_rect.size, light_projection.get_z_near(), light_projection.get_z_far(), true);

			//restore transform so it can be properly used
			light_instance_set_shadow_transform(p_light, Projection(), light_instance->transform, zfar, 0, 0, 0);
		}

	} else {
		//render shadow
		_render_shadow_append(render_fb, p_instances, light_projection, light_transform, zfar, 0, 0, using_dual_paraboloid, using_dual_paraboloid_flip, use_pancake, p_camera_plane, p_lod_distance_multiplier, p_screen_mesh_lod_threshold, atlas_rect, flip_y, p_clear_region, p_open_pass, p_close_pass, p_render_info);
	}
}

void RendererSceneRenderRD::render_material(const Transform3D &p_cam_transform, const Projection &p_cam_projection, bool p_cam_orthogonal, const PagedArray<RenderGeometryInstance *> &p_instances, RID p_framebuffer, const Rect2i &p_region) {
	_render_material(p_cam_transform, p_cam_projection, p_cam_orthogonal, p_instances, p_framebuffer, p_region, 1.0);
}

void RendererSceneRenderRD::render_particle_collider_heightfield(RID p_collider, const Transform3D &p_transform, const PagedArray<RenderGeometryInstance *> &p_instances) {
	RendererRD::ParticlesStorage *particles_storage = RendererRD::ParticlesStorage::get_singleton();

	ERR_FAIL_COND(!particles_storage->particles_collision_is_heightfield(p_collider));
	Vector3 extents = particles_storage->particles_collision_get_extents(p_collider) * p_transform.basis.get_scale();
	Projection cm;
	cm.set_orthogonal(-extents.x, extents.x, -extents.z, extents.z, 0, extents.y * 2.0);

	Vector3 cam_pos = p_transform.origin;
	cam_pos.y += extents.y;

	Transform3D cam_xform;
	cam_xform.set_look_at(cam_pos, cam_pos - p_transform.basis.get_column(Vector3::AXIS_Y), -p_transform.basis.get_column(Vector3::AXIS_Z).normalized());

	RID fb = particles_storage->particles_collision_get_heightfield_framebuffer(p_collider);

	_render_particle_collider_heightfield(fb, cam_xform, cm, p_instances);
}

bool RendererSceneRenderRD::free(RID p_rid) {
	if (is_environment(p_rid)) {
		environment_free(p_rid);
	} else if (RSG::camera_attributes->owns_camera_attributes(p_rid)) {
		RSG::camera_attributes->camera_attributes_free(p_rid);
	} else if (reflection_atlas_owner.owns(p_rid)) {
		reflection_atlas_set_size(p_rid, 0, 0);
		ReflectionAtlas *ra = reflection_atlas_owner.get_or_null(p_rid);
		if (ra->cluster_builder) {
			memdelete(ra->cluster_builder);
		}
		reflection_atlas_owner.free(p_rid);
	} else if (reflection_probe_instance_owner.owns(p_rid)) {
		ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_rid);
		_free_forward_id(FORWARD_ID_TYPE_REFLECTION_PROBE, rpi->forward_id);
		reflection_probe_release_atlas_index(p_rid);
		reflection_probe_instance_owner.free(p_rid);
	} else if (decal_instance_owner.owns(p_rid)) {
		DecalInstance *di = decal_instance_owner.get_or_null(p_rid);
		_free_forward_id(FORWARD_ID_TYPE_DECAL, di->forward_id);
		decal_instance_owner.free(p_rid);
	} else if (lightmap_instance_owner.owns(p_rid)) {
		lightmap_instance_owner.free(p_rid);
	} else if (gi.voxel_gi_instance_owns(p_rid)) {
		gi.voxel_gi_instance_free(p_rid);
	} else if (sky.sky_owner.owns(p_rid)) {
		sky.update_dirty_skys();
		sky.free_sky(p_rid);
	} else if (light_instance_owner.owns(p_rid)) {
		LightInstance *light_instance = light_instance_owner.get_or_null(p_rid);

		//remove from shadow atlases..
		for (const RID &E : light_instance->shadow_atlases) {
			ShadowAtlas *shadow_atlas = shadow_atlas_owner.get_or_null(E);
			ERR_CONTINUE(!shadow_atlas->shadow_owners.has(p_rid));
			uint32_t key = shadow_atlas->shadow_owners[p_rid];
			uint32_t q = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3;
			uint32_t s = key & ShadowAtlas::SHADOW_INDEX_MASK;

			shadow_atlas->quadrants[q].shadows.write[s].owner = RID();

			if (key & ShadowAtlas::OMNI_LIGHT_FLAG) {
				// Omni lights use two atlas spots, make sure to clear the other as well
				shadow_atlas->quadrants[q].shadows.write[s + 1].owner = RID();
			}

			shadow_atlas->shadow_owners.erase(p_rid);
		}

		if (light_instance->light_type != RS::LIGHT_DIRECTIONAL) {
			_free_forward_id(light_instance->light_type == RS::LIGHT_OMNI ? FORWARD_ID_TYPE_OMNI_LIGHT : FORWARD_ID_TYPE_SPOT_LIGHT, light_instance->forward_id);
		}
		light_instance_owner.free(p_rid);

	} else if (shadow_atlas_owner.owns(p_rid)) {
		shadow_atlas_set_size(p_rid, 0);
		shadow_atlas_owner.free(p_rid);
	} else if (RendererRD::Fog::get_singleton()->owns_fog_volume_instance(p_rid)) {
		RendererRD::Fog::get_singleton()->fog_instance_free(p_rid);
	} else {
		return false;
	}

	return true;
}

void RendererSceneRenderRD::set_debug_draw_mode(RS::ViewportDebugDraw p_debug_draw) {
	debug_draw = p_debug_draw;
}

void RendererSceneRenderRD::update() {
	sky.update_dirty_skys();
}

void RendererSceneRenderRD::set_time(double p_time, double p_step) {
	time = p_time;
	time_step = p_step;
}

void RendererSceneRenderRD::screen_space_roughness_limiter_set_active(bool p_enable, float p_amount, float p_limit) {
	screen_space_roughness_limiter = p_enable;
	screen_space_roughness_limiter_amount = p_amount;
	screen_space_roughness_limiter_limit = p_limit;
}

bool RendererSceneRenderRD::screen_space_roughness_limiter_is_active() const {
	return screen_space_roughness_limiter;
}

float RendererSceneRenderRD::screen_space_roughness_limiter_get_amount() const {
	return screen_space_roughness_limiter_amount;
}

float RendererSceneRenderRD::screen_space_roughness_limiter_get_limit() const {
	return screen_space_roughness_limiter_limit;
}

TypedArray<Image> RendererSceneRenderRD::bake_render_uv2(RID p_base, const TypedArray<RID> &p_material_overrides, const Size2i &p_image_size) {
	RD::TextureFormat tf;
	tf.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
	tf.width = p_image_size.width; // Always 64x64
	tf.height = p_image_size.height;
	tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT;

	RID albedo_alpha_tex = RD::get_singleton()->texture_create(tf, RD::TextureView());
	RID normal_tex = RD::get_singleton()->texture_create(tf, RD::TextureView());
	RID orm_tex = RD::get_singleton()->texture_create(tf, RD::TextureView());

	tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
	RID emission_tex = RD::get_singleton()->texture_create(tf, RD::TextureView());

	tf.format = RD::DATA_FORMAT_R32_SFLOAT;
	RID depth_write_tex = RD::get_singleton()->texture_create(tf, RD::TextureView());

	tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT;
	tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32;
	RID depth_tex = RD::get_singleton()->texture_create(tf, RD::TextureView());

	Vector<RID> fb_tex;
	fb_tex.push_back(albedo_alpha_tex);
	fb_tex.push_back(normal_tex);
	fb_tex.push_back(orm_tex);
	fb_tex.push_back(emission_tex);
	fb_tex.push_back(depth_write_tex);
	fb_tex.push_back(depth_tex);

	RID fb = RD::get_singleton()->framebuffer_create(fb_tex);

	//RID sampled_light;

	RenderGeometryInstance *gi = geometry_instance_create(p_base);
	ERR_FAIL_NULL_V(gi, TypedArray<Image>());

	uint32_t sc = RSG::mesh_storage->mesh_get_surface_count(p_base);
	Vector<RID> materials;
	materials.resize(sc);

	for (uint32_t i = 0; i < sc; i++) {
		if (i < (uint32_t)p_material_overrides.size()) {
			materials.write[i] = p_material_overrides[i];
		}
	}

	gi->set_surface_materials(materials);

	if (cull_argument.size() == 0) {
		cull_argument.push_back(nullptr);
	}
	cull_argument[0] = gi;
	_render_uv2(cull_argument, fb, Rect2i(0, 0, p_image_size.width, p_image_size.height));

	geometry_instance_free(gi);

	TypedArray<Image> ret;

	{
		PackedByteArray data = RD::get_singleton()->texture_get_data(albedo_alpha_tex, 0);
		Ref<Image> img;
		img.instantiate();
		img->create(p_image_size.width, p_image_size.height, false, Image::FORMAT_RGBA8, data);
		RD::get_singleton()->free(albedo_alpha_tex);
		ret.push_back(img);
	}

	{
		PackedByteArray data = RD::get_singleton()->texture_get_data(normal_tex, 0);
		Ref<Image> img;
		img.instantiate();
		img->create(p_image_size.width, p_image_size.height, false, Image::FORMAT_RGBA8, data);
		RD::get_singleton()->free(normal_tex);
		ret.push_back(img);
	}

	{
		PackedByteArray data = RD::get_singleton()->texture_get_data(orm_tex, 0);
		Ref<Image> img;
		img.instantiate();
		img->create(p_image_size.width, p_image_size.height, false, Image::FORMAT_RGBA8, data);
		RD::get_singleton()->free(orm_tex);
		ret.push_back(img);
	}

	{
		PackedByteArray data = RD::get_singleton()->texture_get_data(emission_tex, 0);
		Ref<Image> img;
		img.instantiate();
		img->create(p_image_size.width, p_image_size.height, false, Image::FORMAT_RGBAH, data);
		RD::get_singleton()->free(emission_tex);
		ret.push_back(img);
	}

	RD::get_singleton()->free(depth_write_tex);
	RD::get_singleton()->free(depth_tex);

	return ret;
}

void RendererSceneRenderRD::sdfgi_set_debug_probe_select(const Vector3 &p_position, const Vector3 &p_dir) {
	gi.sdfgi_debug_probe_pos = p_position;
	gi.sdfgi_debug_probe_dir = p_dir;
}

RendererSceneRenderRD *RendererSceneRenderRD::singleton = nullptr;

RID RendererSceneRenderRD::get_reflection_probe_buffer() {
	return cluster.reflection_buffer;
}
RID RendererSceneRenderRD::get_omni_light_buffer() {
	return cluster.omni_light_buffer;
}

RID RendererSceneRenderRD::get_spot_light_buffer() {
	return cluster.spot_light_buffer;
}

RID RendererSceneRenderRD::get_directional_light_buffer() {
	return cluster.directional_light_buffer;
}
RID RendererSceneRenderRD::get_decal_buffer() {
	return cluster.decal_buffer;
}
int RendererSceneRenderRD::get_max_directional_lights() const {
	return cluster.max_directional_lights;
}

bool RendererSceneRenderRD::is_vrs_supported() const {
	return RD::get_singleton()->has_feature(RD::SUPPORTS_ATTACHMENT_VRS);
}

bool RendererSceneRenderRD::is_dynamic_gi_supported() const {
	// usable by default (unless low end = true)
	return true;
}

bool RendererSceneRenderRD::is_clustered_enabled() const {
	// used by default.
	return true;
}

bool RendererSceneRenderRD::is_volumetric_supported() const {
	// usable by default (unless low end = true)
	return true;
}

uint32_t RendererSceneRenderRD::get_max_elements() const {
	return GLOBAL_GET("rendering/limits/cluster_builder/max_clustered_elements");
}

RendererSceneRenderRD::RendererSceneRenderRD() {
	singleton = this;
}

void RendererSceneRenderRD::init() {
	max_cluster_elements = get_max_elements();

	directional_shadow.size = GLOBAL_GET("rendering/lights_and_shadows/directional_shadow/size");
	directional_shadow.use_16_bits = GLOBAL_GET("rendering/lights_and_shadows/directional_shadow/16_bits");

	/* SKY SHADER */

	sky.init();

	/* GI */

	if (is_dynamic_gi_supported()) {
		gi.init(&sky);
	}

	{ //decals
		cluster.max_decals = max_cluster_elements;
		uint32_t decal_buffer_size = cluster.max_decals * sizeof(Cluster::DecalData);
		cluster.decals = memnew_arr(Cluster::DecalData, cluster.max_decals);
		cluster.decal_sort = memnew_arr(Cluster::InstanceSort<DecalInstance>, cluster.max_decals);
		cluster.decal_buffer = RD::get_singleton()->storage_buffer_create(decal_buffer_size);
	}

	{ //reflections

		cluster.max_reflections = max_cluster_elements;
		cluster.reflections = memnew_arr(Cluster::ReflectionData, cluster.max_reflections);
		cluster.reflection_sort = memnew_arr(Cluster::InstanceSort<ReflectionProbeInstance>, cluster.max_reflections);
		cluster.reflection_buffer = RD::get_singleton()->storage_buffer_create(sizeof(Cluster::ReflectionData) * cluster.max_reflections);
	}

	{ //lights
		cluster.max_lights = max_cluster_elements;

		uint32_t light_buffer_size = cluster.max_lights * sizeof(Cluster::LightData);
		cluster.omni_lights = memnew_arr(Cluster::LightData, cluster.max_lights);
		cluster.omni_light_buffer = RD::get_singleton()->storage_buffer_create(light_buffer_size);
		cluster.omni_light_sort = memnew_arr(Cluster::InstanceSort<LightInstance>, cluster.max_lights);
		cluster.spot_lights = memnew_arr(Cluster::LightData, cluster.max_lights);
		cluster.spot_light_buffer = RD::get_singleton()->storage_buffer_create(light_buffer_size);
		cluster.spot_light_sort = memnew_arr(Cluster::InstanceSort<LightInstance>, cluster.max_lights);
		//defines += "\n#define MAX_LIGHT_DATA_STRUCTS " + itos(cluster.max_lights) + "\n";

		cluster.max_directional_lights = MAX_DIRECTIONAL_LIGHTS;
		uint32_t directional_light_buffer_size = cluster.max_directional_lights * sizeof(Cluster::DirectionalLightData);
		cluster.directional_lights = memnew_arr(Cluster::DirectionalLightData, cluster.max_directional_lights);
		cluster.directional_light_buffer = RD::get_singleton()->uniform_buffer_create(directional_light_buffer_size);
	}

	if (is_volumetric_supported()) {
		RendererRD::Fog::get_singleton()->init_fog_shader(cluster.max_directional_lights, get_roughness_layers(), is_using_radiance_cubemap_array());
	}

	{
		RD::SamplerState sampler;
		sampler.mag_filter = RD::SAMPLER_FILTER_NEAREST;
		sampler.min_filter = RD::SAMPLER_FILTER_NEAREST;
		sampler.enable_compare = true;
		sampler.compare_op = RD::COMPARE_OP_LESS;
		shadow_sampler = RD::get_singleton()->sampler_create(sampler);
	}

	RSG::camera_attributes->camera_attributes_set_dof_blur_bokeh_shape(RS::DOFBokehShape(int(GLOBAL_GET("rendering/camera/depth_of_field/depth_of_field_bokeh_shape"))));
	RSG::camera_attributes->camera_attributes_set_dof_blur_quality(RS::DOFBlurQuality(int(GLOBAL_GET("rendering/camera/depth_of_field/depth_of_field_bokeh_quality"))), GLOBAL_GET("rendering/camera/depth_of_field/depth_of_field_use_jitter"));
	use_physical_light_units = GLOBAL_GET("rendering/lights_and_shadows/use_physical_light_units");

	environment_set_ssao_quality(RS::EnvironmentSSAOQuality(int(GLOBAL_GET("rendering/environment/ssao/quality"))), GLOBAL_GET("rendering/environment/ssao/half_size"), GLOBAL_GET("rendering/environment/ssao/adaptive_target"), GLOBAL_GET("rendering/environment/ssao/blur_passes"), GLOBAL_GET("rendering/environment/ssao/fadeout_from"), GLOBAL_GET("rendering/environment/ssao/fadeout_to"));
	screen_space_roughness_limiter = GLOBAL_GET("rendering/anti_aliasing/screen_space_roughness_limiter/enabled");
	screen_space_roughness_limiter_amount = GLOBAL_GET("rendering/anti_aliasing/screen_space_roughness_limiter/amount");
	screen_space_roughness_limiter_limit = GLOBAL_GET("rendering/anti_aliasing/screen_space_roughness_limiter/limit");
	glow_bicubic_upscale = int(GLOBAL_GET("rendering/environment/glow/upscale_mode")) > 0;
	glow_high_quality = GLOBAL_GET("rendering/environment/glow/use_high_quality");
	ssr_roughness_quality = RS::EnvironmentSSRRoughnessQuality(int(GLOBAL_GET("rendering/environment/screen_space_reflection/roughness_quality")));
	sss_quality = RS::SubSurfaceScatteringQuality(int(GLOBAL_GET("rendering/environment/subsurface_scattering/subsurface_scattering_quality")));
	sss_scale = GLOBAL_GET("rendering/environment/subsurface_scattering/subsurface_scattering_scale");
	sss_depth_scale = GLOBAL_GET("rendering/environment/subsurface_scattering/subsurface_scattering_depth_scale");

	environment_set_ssil_quality(RS::EnvironmentSSILQuality(int(GLOBAL_GET("rendering/environment/ssil/quality"))), GLOBAL_GET("rendering/environment/ssil/half_size"), GLOBAL_GET("rendering/environment/ssil/adaptive_target"), GLOBAL_GET("rendering/environment/ssil/blur_passes"), GLOBAL_GET("rendering/environment/ssil/fadeout_from"), GLOBAL_GET("rendering/environment/ssil/fadeout_to"));

	directional_penumbra_shadow_kernel = memnew_arr(float, 128);
	directional_soft_shadow_kernel = memnew_arr(float, 128);
	penumbra_shadow_kernel = memnew_arr(float, 128);
	soft_shadow_kernel = memnew_arr(float, 128);
	positional_soft_shadow_filter_set_quality(RS::ShadowQuality(int(GLOBAL_GET("rendering/lights_and_shadows/positional_shadow/soft_shadow_filter_quality"))));
	directional_soft_shadow_filter_set_quality(RS::ShadowQuality(int(GLOBAL_GET("rendering/lights_and_shadows/directional_shadow/soft_shadow_filter_quality"))));

	environment_set_volumetric_fog_volume_size(GLOBAL_GET("rendering/environment/volumetric_fog/volume_size"), GLOBAL_GET("rendering/environment/volumetric_fog/volume_depth"));
	environment_set_volumetric_fog_filter_active(GLOBAL_GET("rendering/environment/volumetric_fog/use_filter"));

	decals_set_filter(RS::DecalFilter(int(GLOBAL_GET("rendering/textures/decals/filter"))));
	light_projectors_set_filter(RS::LightProjectorFilter(int(GLOBAL_GET("rendering/textures/light_projectors/filter"))));

	cull_argument.set_page_pool(&cull_argument_pool);

	bool can_use_storage = _render_buffers_can_be_storage();
	bokeh_dof = memnew(RendererRD::BokehDOF(!can_use_storage));
	copy_effects = memnew(RendererRD::CopyEffects(!can_use_storage));
	tone_mapper = memnew(RendererRD::ToneMapper);
	vrs = memnew(RendererRD::VRS);
	if (can_use_storage) {
		fsr = memnew(RendererRD::FSR);
		ss_effects = memnew(RendererRD::SSEffects);
	}
}

RendererSceneRenderRD::~RendererSceneRenderRD() {
	if (bokeh_dof) {
		memdelete(bokeh_dof);
	}
	if (copy_effects) {
		memdelete(copy_effects);
	}
	if (tone_mapper) {
		memdelete(tone_mapper);
	}
	if (vrs) {
		memdelete(vrs);
	}
	if (fsr) {
		memdelete(fsr);
	}
	if (ss_effects) {
		memdelete(ss_effects);
	}

	for (const KeyValue<int, ShadowCubemap> &E : shadow_cubemaps) {
		RD::get_singleton()->free(E.value.cubemap);
	}

	if (sky.sky_scene_state.uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(sky.sky_scene_state.uniform_set)) {
		RD::get_singleton()->free(sky.sky_scene_state.uniform_set);
	}

	if (is_dynamic_gi_supported()) {
		gi.free();
	}

	if (is_volumetric_supported()) {
		RendererRD::Fog::get_singleton()->free_fog_shader();
	}

	memdelete_arr(directional_penumbra_shadow_kernel);
	memdelete_arr(directional_soft_shadow_kernel);
	memdelete_arr(penumbra_shadow_kernel);
	memdelete_arr(soft_shadow_kernel);

	{
		RD::get_singleton()->free(cluster.directional_light_buffer);
		RD::get_singleton()->free(cluster.omni_light_buffer);
		RD::get_singleton()->free(cluster.spot_light_buffer);
		RD::get_singleton()->free(cluster.reflection_buffer);
		RD::get_singleton()->free(cluster.decal_buffer);
		memdelete_arr(cluster.directional_lights);
		memdelete_arr(cluster.omni_lights);
		memdelete_arr(cluster.spot_lights);
		memdelete_arr(cluster.omni_light_sort);
		memdelete_arr(cluster.spot_light_sort);
		memdelete_arr(cluster.reflections);
		memdelete_arr(cluster.reflection_sort);
		memdelete_arr(cluster.decals);
		memdelete_arr(cluster.decal_sort);
	}

	RD::get_singleton()->free(shadow_sampler);

	directional_shadow_atlas_set_size(0);
	cull_argument.reset(); //avoid exit error
}