/*************************************************************************/ /* renderer_scene_render_rd.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "renderer_scene_render_rd.h" #include "core/config/project_settings.h" #include "core/os/os.h" #include "renderer_compositor_rd.h" #include "servers/rendering/rendering_server_default.h" void get_vogel_disk(float *r_kernel, int p_sample_count) { const float golden_angle = 2.4; for (int i = 0; i < p_sample_count; i++) { float r = Math::sqrt(float(i) + 0.5) / Math::sqrt(float(p_sample_count)); float theta = float(i) * golden_angle; r_kernel[i * 4] = Math::cos(theta) * r; r_kernel[i * 4 + 1] = Math::sin(theta) * r; } } void RendererSceneRenderRD::sdfgi_update(RID p_render_buffers, RID p_environment, const Vector3 &p_world_position) { RendererSceneEnvironmentRD *env = environment_owner.getornull(p_environment); RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); bool needs_sdfgi = env && env->sdfgi_enabled; if (!needs_sdfgi) { if (rb->sdfgi != nullptr) { //erase it rb->sdfgi->erase(); memdelete(rb->sdfgi); rb->sdfgi = nullptr; } return; } static const uint32_t history_frames_to_converge[RS::ENV_SDFGI_CONVERGE_MAX] = { 5, 10, 15, 20, 25, 30 }; uint32_t requested_history_size = history_frames_to_converge[gi.sdfgi_frames_to_converge]; if (rb->sdfgi && (rb->sdfgi->cascade_mode != env->sdfgi_cascades || rb->sdfgi->min_cell_size != env->sdfgi_min_cell_size || requested_history_size != rb->sdfgi->history_size || rb->sdfgi->uses_occlusion != env->sdfgi_use_occlusion || rb->sdfgi->y_scale_mode != env->sdfgi_y_scale)) { //configuration changed, erase rb->sdfgi->erase(); memdelete(rb->sdfgi); rb->sdfgi = nullptr; } RendererSceneGIRD::SDFGI *sdfgi = rb->sdfgi; if (sdfgi == nullptr) { // re-create rb->sdfgi = gi.create_sdfgi(env, p_world_position, requested_history_size); } else { //check for updates rb->sdfgi->update(env, p_world_position); } } int RendererSceneRenderRD::sdfgi_get_pending_region_count(RID p_render_buffers) const { RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND_V(rb == nullptr, 0); if (rb->sdfgi == nullptr) { return 0; } int dirty_count = 0; for (uint32_t i = 0; i < rb->sdfgi->cascades.size(); i++) { const RendererSceneGIRD::SDFGI::Cascade &c = rb->sdfgi->cascades[i]; if (c.dirty_regions == RendererSceneGIRD::SDFGI::Cascade::DIRTY_ALL) { dirty_count++; } else { for (int j = 0; j < 3; j++) { if (c.dirty_regions[j] != 0) { dirty_count++; } } } } return dirty_count; } AABB RendererSceneRenderRD::sdfgi_get_pending_region_bounds(RID p_render_buffers, int p_region) const { AABB bounds; Vector3i from; Vector3i size; RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND_V(rb == nullptr, AABB()); ERR_FAIL_COND_V(rb->sdfgi == nullptr, AABB()); int c = rb->sdfgi->get_pending_region_data(p_region, from, size, bounds); ERR_FAIL_COND_V(c == -1, AABB()); return bounds; } uint32_t RendererSceneRenderRD::sdfgi_get_pending_region_cascade(RID p_render_buffers, int p_region) const { AABB bounds; Vector3i from; Vector3i size; RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND_V(rb == nullptr, -1); ERR_FAIL_COND_V(rb->sdfgi == nullptr, -1); return rb->sdfgi->get_pending_region_data(p_region, from, size, bounds); } RID RendererSceneRenderRD::sky_allocate() { return sky.allocate_sky_rid(); } void RendererSceneRenderRD::sky_initialize(RID p_rid) { sky.initialize_sky_rid(p_rid); } void RendererSceneRenderRD::sky_set_radiance_size(RID p_sky, int p_radiance_size) { sky.sky_set_radiance_size(p_sky, p_radiance_size); } void RendererSceneRenderRD::sky_set_mode(RID p_sky, RS::SkyMode p_mode) { sky.sky_set_mode(p_sky, p_mode); } void RendererSceneRenderRD::sky_set_material(RID p_sky, RID p_material) { sky.sky_set_material(p_sky, p_material); } Ref RendererSceneRenderRD::sky_bake_panorama(RID p_sky, float p_energy, bool p_bake_irradiance, const Size2i &p_size) { return sky.sky_bake_panorama(p_sky, p_energy, p_bake_irradiance, p_size); } RID RendererSceneRenderRD::environment_allocate() { return environment_owner.allocate_rid(); } void RendererSceneRenderRD::environment_initialize(RID p_rid) { environment_owner.initialize_rid(p_rid, RendererSceneEnvironmentRD()); } void RendererSceneRenderRD::environment_set_background(RID p_env, RS::EnvironmentBG p_bg) { RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->background = p_bg; } void RendererSceneRenderRD::environment_set_sky(RID p_env, RID p_sky) { RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->sky = p_sky; } void RendererSceneRenderRD::environment_set_sky_custom_fov(RID p_env, float p_scale) { RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->sky_custom_fov = p_scale; } void RendererSceneRenderRD::environment_set_sky_orientation(RID p_env, const Basis &p_orientation) { RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->sky_orientation = p_orientation; } void RendererSceneRenderRD::environment_set_bg_color(RID p_env, const Color &p_color) { RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->bg_color = p_color; } void RendererSceneRenderRD::environment_set_bg_energy(RID p_env, float p_energy) { RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->bg_energy = p_energy; } void RendererSceneRenderRD::environment_set_canvas_max_layer(RID p_env, int p_max_layer) { RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->canvas_max_layer = p_max_layer; } void RendererSceneRenderRD::environment_set_ambient_light(RID p_env, const Color &p_color, RS::EnvironmentAmbientSource p_ambient, float p_energy, float p_sky_contribution, RS::EnvironmentReflectionSource p_reflection_source, const Color &p_ao_color) { RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->set_ambient_light(p_color, p_ambient, p_energy, p_sky_contribution, p_reflection_source, p_ao_color); } RS::EnvironmentBG RendererSceneRenderRD::environment_get_background(RID p_env) const { RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, RS::ENV_BG_MAX); return env->background; } RID RendererSceneRenderRD::environment_get_sky(RID p_env) const { RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, RID()); return env->sky; } float RendererSceneRenderRD::environment_get_sky_custom_fov(RID p_env) const { RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, 0); return env->sky_custom_fov; } Basis RendererSceneRenderRD::environment_get_sky_orientation(RID p_env) const { RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, Basis()); return env->sky_orientation; } Color RendererSceneRenderRD::environment_get_bg_color(RID p_env) const { RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, Color()); return env->bg_color; } float RendererSceneRenderRD::environment_get_bg_energy(RID p_env) const { RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, 0); return env->bg_energy; } int RendererSceneRenderRD::environment_get_canvas_max_layer(RID p_env) const { RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, 0); return env->canvas_max_layer; } Color RendererSceneRenderRD::environment_get_ambient_light_color(RID p_env) const { RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, Color()); return env->ambient_light; } RS::EnvironmentAmbientSource RendererSceneRenderRD::environment_get_ambient_source(RID p_env) const { RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, RS::ENV_AMBIENT_SOURCE_BG); return env->ambient_source; } float RendererSceneRenderRD::environment_get_ambient_light_energy(RID p_env) const { RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, 0); return env->ambient_light_energy; } float RendererSceneRenderRD::environment_get_ambient_sky_contribution(RID p_env) const { RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, 0); return env->ambient_sky_contribution; } RS::EnvironmentReflectionSource RendererSceneRenderRD::environment_get_reflection_source(RID p_env) const { RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, RS::ENV_REFLECTION_SOURCE_DISABLED); return env->reflection_source; } Color RendererSceneRenderRD::environment_get_ao_color(RID p_env) const { RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, Color()); return env->ao_color; } void RendererSceneRenderRD::environment_set_tonemap(RID p_env, RS::EnvironmentToneMapper p_tone_mapper, float p_exposure, float p_white, bool p_auto_exposure, float p_min_luminance, float p_max_luminance, float p_auto_exp_speed, float p_auto_exp_scale) { RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->set_tonemap(p_tone_mapper, p_exposure, p_white, p_auto_exposure, p_min_luminance, p_max_luminance, p_auto_exp_speed, p_auto_exp_scale); } void RendererSceneRenderRD::environment_set_glow(RID p_env, bool p_enable, Vector p_levels, float p_intensity, float p_strength, float p_mix, float p_bloom_threshold, RS::EnvironmentGlowBlendMode p_blend_mode, float p_hdr_bleed_threshold, float p_hdr_bleed_scale, float p_hdr_luminance_cap) { RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->set_glow(p_enable, p_levels, p_intensity, p_strength, p_mix, p_bloom_threshold, p_blend_mode, p_hdr_bleed_threshold, p_hdr_bleed_scale, p_hdr_luminance_cap); } void RendererSceneRenderRD::environment_glow_set_use_bicubic_upscale(bool p_enable) { glow_bicubic_upscale = p_enable; } void RendererSceneRenderRD::environment_glow_set_use_high_quality(bool p_enable) { glow_high_quality = p_enable; } void RendererSceneRenderRD::environment_set_sdfgi(RID p_env, bool p_enable, RS::EnvironmentSDFGICascades p_cascades, float p_min_cell_size, RS::EnvironmentSDFGIYScale p_y_scale, bool p_use_occlusion, float p_bounce_feedback, bool p_read_sky, float p_energy, float p_normal_bias, float p_probe_bias) { RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); if (!is_dynamic_gi_supported()) { return; } env->set_sdfgi(p_enable, p_cascades, p_min_cell_size, p_y_scale, p_use_occlusion, p_bounce_feedback, p_read_sky, p_energy, p_normal_bias, p_probe_bias); } void RendererSceneRenderRD::environment_set_fog(RID p_env, bool p_enable, const Color &p_light_color, float p_light_energy, float p_sun_scatter, float p_density, float p_height, float p_height_density, float p_fog_aerial_perspective) { RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->set_fog(p_enable, p_light_color, p_light_energy, p_sun_scatter, p_density, p_height, p_height_density, p_fog_aerial_perspective); } bool RendererSceneRenderRD::environment_is_fog_enabled(RID p_env) const { const RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, false); return env->fog_enabled; } Color RendererSceneRenderRD::environment_get_fog_light_color(RID p_env) const { const RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, Color()); return env->fog_light_color; } float RendererSceneRenderRD::environment_get_fog_light_energy(RID p_env) const { const RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, 0); return env->fog_light_energy; } float RendererSceneRenderRD::environment_get_fog_sun_scatter(RID p_env) const { const RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, 0); return env->fog_sun_scatter; } float RendererSceneRenderRD::environment_get_fog_density(RID p_env) const { const RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, 0); return env->fog_density; } float RendererSceneRenderRD::environment_get_fog_height(RID p_env) const { const RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, 0); return env->fog_height; } float RendererSceneRenderRD::environment_get_fog_height_density(RID p_env) const { const RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, 0); return env->fog_height_density; } float RendererSceneRenderRD::environment_get_fog_aerial_perspective(RID p_env) const { const RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, 0); return env->fog_aerial_perspective; } void RendererSceneRenderRD::environment_set_volumetric_fog(RID p_env, bool p_enable, float p_density, const Color &p_light, float p_light_energy, float p_length, float p_detail_spread, float p_gi_inject, bool p_temporal_reprojection, float p_temporal_reprojection_amount) { RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); if (!is_volumetric_supported()) { return; } env->set_volumetric_fog(p_enable, p_density, p_light, p_light_energy, p_length, p_detail_spread, p_gi_inject, p_temporal_reprojection, p_temporal_reprojection_amount); } void RendererSceneRenderRD::environment_set_volumetric_fog_volume_size(int p_size, int p_depth) { volumetric_fog_size = p_size; volumetric_fog_depth = p_depth; } void RendererSceneRenderRD::environment_set_volumetric_fog_filter_active(bool p_enable) { volumetric_fog_filter_active = p_enable; } void RendererSceneRenderRD::environment_set_sdfgi_ray_count(RS::EnvironmentSDFGIRayCount p_ray_count) { gi.sdfgi_ray_count = p_ray_count; } void RendererSceneRenderRD::environment_set_sdfgi_frames_to_converge(RS::EnvironmentSDFGIFramesToConverge p_frames) { gi.sdfgi_frames_to_converge = p_frames; } void RendererSceneRenderRD::environment_set_sdfgi_frames_to_update_light(RS::EnvironmentSDFGIFramesToUpdateLight p_update) { gi.sdfgi_frames_to_update_light = p_update; } void RendererSceneRenderRD::environment_set_ssr(RID p_env, bool p_enable, int p_max_steps, float p_fade_int, float p_fade_out, float p_depth_tolerance) { RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->set_ssr(p_enable, p_max_steps, p_fade_int, p_fade_out, p_depth_tolerance); } void RendererSceneRenderRD::environment_set_ssr_roughness_quality(RS::EnvironmentSSRRoughnessQuality p_quality) { ssr_roughness_quality = p_quality; } RS::EnvironmentSSRRoughnessQuality RendererSceneRenderRD::environment_get_ssr_roughness_quality() const { return ssr_roughness_quality; } void RendererSceneRenderRD::environment_set_ssao(RID p_env, bool p_enable, float p_radius, float p_intensity, float p_power, float p_detail, float p_horizon, float p_sharpness, float p_light_affect, float p_ao_channel_affect) { RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->set_ssao(p_enable, p_radius, p_intensity, p_power, p_detail, p_horizon, p_sharpness, p_light_affect, p_ao_channel_affect); } void RendererSceneRenderRD::environment_set_ssao_quality(RS::EnvironmentSSAOQuality p_quality, bool p_half_size, float p_adaptive_target, int p_blur_passes, float p_fadeout_from, float p_fadeout_to) { ssao_quality = p_quality; ssao_half_size = p_half_size; ssao_adaptive_target = p_adaptive_target; ssao_blur_passes = p_blur_passes; ssao_fadeout_from = p_fadeout_from; ssao_fadeout_to = p_fadeout_to; } bool RendererSceneRenderRD::environment_is_ssao_enabled(RID p_env) const { RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, false); return env->ssao_enabled; } float RendererSceneRenderRD::environment_get_ssao_ao_affect(RID p_env) const { RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, 0.0); return env->ssao_ao_channel_affect; } float RendererSceneRenderRD::environment_get_ssao_light_affect(RID p_env) const { RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, 0.0); return env->ssao_direct_light_affect; } bool RendererSceneRenderRD::environment_is_ssr_enabled(RID p_env) const { RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, false); return env->ssr_enabled; } bool RendererSceneRenderRD::environment_is_sdfgi_enabled(RID p_env) const { RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, false); return env->sdfgi_enabled; } bool RendererSceneRenderRD::is_environment(RID p_env) const { return environment_owner.owns(p_env); } Ref RendererSceneRenderRD::environment_bake_panorama(RID p_env, bool p_bake_irradiance, const Size2i &p_size) { RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, Ref()); if (env->background == RS::ENV_BG_CAMERA_FEED || env->background == RS::ENV_BG_CANVAS || env->background == RS::ENV_BG_KEEP) { return Ref(); //nothing to bake } if (env->background == RS::ENV_BG_CLEAR_COLOR || env->background == RS::ENV_BG_COLOR) { Color color; if (env->background == RS::ENV_BG_CLEAR_COLOR) { color = storage->get_default_clear_color(); } else { color = env->bg_color; } color.r *= env->bg_energy; color.g *= env->bg_energy; color.b *= env->bg_energy; Ref ret; ret.instantiate(); ret->create(p_size.width, p_size.height, false, Image::FORMAT_RGBAF); for (int i = 0; i < p_size.width; i++) { for (int j = 0; j < p_size.height; j++) { ret->set_pixel(i, j, color); } } return ret; } if (env->background == RS::ENV_BG_SKY && env->sky.is_valid()) { return sky_bake_panorama(env->sky, env->bg_energy, p_bake_irradiance, p_size); } return Ref(); } //////////////////////////////////////////////////////////// RID RendererSceneRenderRD::reflection_atlas_create() { ReflectionAtlas ra; ra.count = GLOBAL_GET("rendering/reflections/reflection_atlas/reflection_count"); ra.size = GLOBAL_GET("rendering/reflections/reflection_atlas/reflection_size"); if (is_clustered_enabled()) { ra.cluster_builder = memnew(ClusterBuilderRD); ra.cluster_builder->set_shared(&cluster_builder_shared); ra.cluster_builder->setup(Size2i(ra.size, ra.size), max_cluster_elements, RID(), RID(), RID()); } else { ra.cluster_builder = nullptr; } return reflection_atlas_owner.make_rid(ra); } void RendererSceneRenderRD::reflection_atlas_set_size(RID p_ref_atlas, int p_reflection_size, int p_reflection_count) { ReflectionAtlas *ra = reflection_atlas_owner.getornull(p_ref_atlas); ERR_FAIL_COND(!ra); if (ra->size == p_reflection_size && ra->count == p_reflection_count) { return; //no changes } if (ra->cluster_builder) { // only if we're using our cluster ra->cluster_builder->setup(Size2i(ra->size, ra->size), max_cluster_elements, RID(), RID(), RID()); } ra->size = p_reflection_size; ra->count = p_reflection_count; if (ra->reflection.is_valid()) { //clear and invalidate everything RD::get_singleton()->free(ra->reflection); ra->reflection = RID(); RD::get_singleton()->free(ra->depth_buffer); ra->depth_buffer = RID(); for (int i = 0; i < ra->reflections.size(); i++) { ra->reflections.write[i].data.clear_reflection_data(); if (ra->reflections[i].owner.is_null()) { continue; } reflection_probe_release_atlas_index(ra->reflections[i].owner); //rp->atlasindex clear } ra->reflections.clear(); } } int RendererSceneRenderRD::reflection_atlas_get_size(RID p_ref_atlas) const { ReflectionAtlas *ra = reflection_atlas_owner.getornull(p_ref_atlas); ERR_FAIL_COND_V(!ra, 0); return ra->size; } //////////////////////// RID RendererSceneRenderRD::reflection_probe_instance_create(RID p_probe) { ReflectionProbeInstance rpi; rpi.probe = p_probe; return reflection_probe_instance_owner.make_rid(rpi); } void RendererSceneRenderRD::reflection_probe_instance_set_transform(RID p_instance, const Transform3D &p_transform) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND(!rpi); rpi->transform = p_transform; rpi->dirty = true; } void RendererSceneRenderRD::reflection_probe_release_atlas_index(RID p_instance) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND(!rpi); if (rpi->atlas.is_null()) { return; //nothing to release } ReflectionAtlas *atlas = reflection_atlas_owner.getornull(rpi->atlas); ERR_FAIL_COND(!atlas); ERR_FAIL_INDEX(rpi->atlas_index, atlas->reflections.size()); atlas->reflections.write[rpi->atlas_index].owner = RID(); rpi->atlas_index = -1; rpi->atlas = RID(); } bool RendererSceneRenderRD::reflection_probe_instance_needs_redraw(RID p_instance) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND_V(!rpi, false); if (rpi->rendering) { return false; } if (rpi->dirty) { return true; } if (storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS) { return true; } return rpi->atlas_index == -1; } bool RendererSceneRenderRD::reflection_probe_instance_has_reflection(RID p_instance) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND_V(!rpi, false); return rpi->atlas.is_valid(); } bool RendererSceneRenderRD::reflection_probe_instance_begin_render(RID p_instance, RID p_reflection_atlas) { ReflectionAtlas *atlas = reflection_atlas_owner.getornull(p_reflection_atlas); ERR_FAIL_COND_V(!atlas, false); ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND_V(!rpi, false); if (storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS && atlas->reflection.is_valid() && atlas->size != 256) { WARN_PRINT("ReflectionProbes set to UPDATE_ALWAYS must have an atlas size of 256. Please update the atlas size in the ProjectSettings."); reflection_atlas_set_size(p_reflection_atlas, 256, atlas->count); } if (storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS && atlas->reflection.is_valid() && atlas->reflections[0].data.layers[0].mipmaps.size() != 8) { // Invalidate reflection atlas, need to regenerate RD::get_singleton()->free(atlas->reflection); atlas->reflection = RID(); for (int i = 0; i < atlas->reflections.size(); i++) { if (atlas->reflections[i].owner.is_null()) { continue; } reflection_probe_release_atlas_index(atlas->reflections[i].owner); } atlas->reflections.clear(); } if (atlas->reflection.is_null()) { int mipmaps = MIN(sky.roughness_layers, Image::get_image_required_mipmaps(atlas->size, atlas->size, Image::FORMAT_RGBAH) + 1); mipmaps = storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS ? 8 : mipmaps; // always use 8 mipmaps with real time filtering { //reflection atlas was unused, create: RD::TextureFormat tf; tf.array_layers = 6 * atlas->count; tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT; tf.texture_type = RD::TEXTURE_TYPE_CUBE_ARRAY; tf.mipmaps = mipmaps; tf.width = atlas->size; tf.height = atlas->size; tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT; atlas->reflection = RD::get_singleton()->texture_create(tf, RD::TextureView()); } { RD::TextureFormat tf; tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32; tf.width = atlas->size; tf.height = atlas->size; tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT; atlas->depth_buffer = RD::get_singleton()->texture_create(tf, RD::TextureView()); } atlas->reflections.resize(atlas->count); for (int i = 0; i < atlas->count; i++) { atlas->reflections.write[i].data.update_reflection_data(atlas->size, mipmaps, false, atlas->reflection, i * 6, storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS, sky.roughness_layers); for (int j = 0; j < 6; j++) { Vector fb; fb.push_back(atlas->reflections.write[i].data.layers[0].mipmaps[0].views[j]); fb.push_back(atlas->depth_buffer); atlas->reflections.write[i].fbs[j] = RD::get_singleton()->framebuffer_create(fb); } } Vector fb; fb.push_back(atlas->depth_buffer); atlas->depth_fb = RD::get_singleton()->framebuffer_create(fb); } if (rpi->atlas_index == -1) { for (int i = 0; i < atlas->reflections.size(); i++) { if (atlas->reflections[i].owner.is_null()) { rpi->atlas_index = i; break; } } //find the one used last if (rpi->atlas_index == -1) { //everything is in use, find the one least used via LRU uint64_t pass_min = 0; for (int i = 0; i < atlas->reflections.size(); i++) { ReflectionProbeInstance *rpi2 = reflection_probe_instance_owner.getornull(atlas->reflections[i].owner); if (rpi2->last_pass < pass_min) { pass_min = rpi2->last_pass; rpi->atlas_index = i; } } } } if (rpi->atlas_index != -1) { // should we fail if this is still -1 ? atlas->reflections.write[rpi->atlas_index].owner = p_instance; } rpi->atlas = p_reflection_atlas; rpi->rendering = true; rpi->dirty = false; rpi->processing_layer = 1; rpi->processing_side = 0; return true; } bool RendererSceneRenderRD::reflection_probe_instance_postprocess_step(RID p_instance) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND_V(!rpi, false); ERR_FAIL_COND_V(!rpi->rendering, false); ERR_FAIL_COND_V(rpi->atlas.is_null(), false); ReflectionAtlas *atlas = reflection_atlas_owner.getornull(rpi->atlas); if (!atlas || rpi->atlas_index == -1) { //does not belong to an atlas anymore, cancel (was removed from atlas or atlas changed while rendering) rpi->rendering = false; return false; } if (storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS) { // Using real time reflections, all roughness is done in one step atlas->reflections.write[rpi->atlas_index].data.create_reflection_fast_filter(storage, false); rpi->rendering = false; rpi->processing_side = 0; rpi->processing_layer = 1; return true; } if (rpi->processing_layer > 1) { atlas->reflections.write[rpi->atlas_index].data.create_reflection_importance_sample(storage, false, 10, rpi->processing_layer, sky.sky_ggx_samples_quality); rpi->processing_layer++; if (rpi->processing_layer == atlas->reflections[rpi->atlas_index].data.layers[0].mipmaps.size()) { rpi->rendering = false; rpi->processing_side = 0; rpi->processing_layer = 1; return true; } return false; } else { atlas->reflections.write[rpi->atlas_index].data.create_reflection_importance_sample(storage, false, rpi->processing_side, rpi->processing_layer, sky.sky_ggx_samples_quality); } rpi->processing_side++; if (rpi->processing_side == 6) { rpi->processing_side = 0; rpi->processing_layer++; } return false; } uint32_t RendererSceneRenderRD::reflection_probe_instance_get_resolution(RID p_instance) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND_V(!rpi, 0); ReflectionAtlas *atlas = reflection_atlas_owner.getornull(rpi->atlas); ERR_FAIL_COND_V(!atlas, 0); return atlas->size; } RID RendererSceneRenderRD::reflection_probe_instance_get_framebuffer(RID p_instance, int p_index) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND_V(!rpi, RID()); ERR_FAIL_INDEX_V(p_index, 6, RID()); ReflectionAtlas *atlas = reflection_atlas_owner.getornull(rpi->atlas); ERR_FAIL_COND_V(!atlas, RID()); return atlas->reflections[rpi->atlas_index].fbs[p_index]; } RID RendererSceneRenderRD::reflection_probe_instance_get_depth_framebuffer(RID p_instance, int p_index) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND_V(!rpi, RID()); ERR_FAIL_INDEX_V(p_index, 6, RID()); ReflectionAtlas *atlas = reflection_atlas_owner.getornull(rpi->atlas); ERR_FAIL_COND_V(!atlas, RID()); return atlas->depth_fb; } /////////////////////////////////////////////////////////// RID RendererSceneRenderRD::shadow_atlas_create() { return shadow_atlas_owner.make_rid(ShadowAtlas()); } void RendererSceneRenderRD::_update_shadow_atlas(ShadowAtlas *shadow_atlas) { if (shadow_atlas->size > 0 && shadow_atlas->depth.is_null()) { RD::TextureFormat tf; tf.format = shadow_atlas->use_16_bits ? RD::DATA_FORMAT_D16_UNORM : RD::DATA_FORMAT_D32_SFLOAT; tf.width = shadow_atlas->size; tf.height = shadow_atlas->size; tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT; shadow_atlas->depth = RD::get_singleton()->texture_create(tf, RD::TextureView()); Vector fb_tex; fb_tex.push_back(shadow_atlas->depth); shadow_atlas->fb = RD::get_singleton()->framebuffer_create(fb_tex); } } void RendererSceneRenderRD::shadow_atlas_set_size(RID p_atlas, int p_size, bool p_16_bits) { ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas); ERR_FAIL_COND(!shadow_atlas); ERR_FAIL_COND(p_size < 0); p_size = next_power_of_2(p_size); if (p_size == shadow_atlas->size && p_16_bits == shadow_atlas->use_16_bits) { return; } // erasing atlas if (shadow_atlas->depth.is_valid()) { RD::get_singleton()->free(shadow_atlas->depth); shadow_atlas->depth = RID(); } for (int i = 0; i < 4; i++) { //clear subdivisions shadow_atlas->quadrants[i].shadows.resize(0); shadow_atlas->quadrants[i].shadows.resize(1 << shadow_atlas->quadrants[i].subdivision); } //erase shadow atlas reference from lights for (Map::Element *E = shadow_atlas->shadow_owners.front(); E; E = E->next()) { LightInstance *li = light_instance_owner.getornull(E->key()); ERR_CONTINUE(!li); li->shadow_atlases.erase(p_atlas); } //clear owners shadow_atlas->shadow_owners.clear(); shadow_atlas->size = p_size; shadow_atlas->use_16_bits = p_size; } void RendererSceneRenderRD::shadow_atlas_set_quadrant_subdivision(RID p_atlas, int p_quadrant, int p_subdivision) { ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas); ERR_FAIL_COND(!shadow_atlas); ERR_FAIL_INDEX(p_quadrant, 4); ERR_FAIL_INDEX(p_subdivision, 16384); uint32_t subdiv = next_power_of_2(p_subdivision); if (subdiv & 0xaaaaaaaa) { //sqrt(subdiv) must be integer subdiv <<= 1; } subdiv = int(Math::sqrt((float)subdiv)); //obtain the number that will be x*x if (shadow_atlas->quadrants[p_quadrant].subdivision == subdiv) { return; } //erase all data from quadrant for (int i = 0; i < shadow_atlas->quadrants[p_quadrant].shadows.size(); i++) { if (shadow_atlas->quadrants[p_quadrant].shadows[i].owner.is_valid()) { shadow_atlas->shadow_owners.erase(shadow_atlas->quadrants[p_quadrant].shadows[i].owner); LightInstance *li = light_instance_owner.getornull(shadow_atlas->quadrants[p_quadrant].shadows[i].owner); ERR_CONTINUE(!li); li->shadow_atlases.erase(p_atlas); } } shadow_atlas->quadrants[p_quadrant].shadows.resize(0); shadow_atlas->quadrants[p_quadrant].shadows.resize(subdiv * subdiv); shadow_atlas->quadrants[p_quadrant].subdivision = subdiv; //cache the smallest subdiv (for faster allocation in light update) shadow_atlas->smallest_subdiv = 1 << 30; for (int i = 0; i < 4; i++) { if (shadow_atlas->quadrants[i].subdivision) { shadow_atlas->smallest_subdiv = MIN(shadow_atlas->smallest_subdiv, shadow_atlas->quadrants[i].subdivision); } } if (shadow_atlas->smallest_subdiv == 1 << 30) { shadow_atlas->smallest_subdiv = 0; } //resort the size orders, simple bublesort for 4 elements.. int swaps = 0; do { swaps = 0; for (int i = 0; i < 3; i++) { if (shadow_atlas->quadrants[shadow_atlas->size_order[i]].subdivision < shadow_atlas->quadrants[shadow_atlas->size_order[i + 1]].subdivision) { SWAP(shadow_atlas->size_order[i], shadow_atlas->size_order[i + 1]); swaps++; } } } while (swaps > 0); } bool RendererSceneRenderRD::_shadow_atlas_find_shadow(ShadowAtlas *shadow_atlas, int *p_in_quadrants, int p_quadrant_count, int p_current_subdiv, uint64_t p_tick, int &r_quadrant, int &r_shadow) { for (int i = p_quadrant_count - 1; i >= 0; i--) { int qidx = p_in_quadrants[i]; if (shadow_atlas->quadrants[qidx].subdivision == (uint32_t)p_current_subdiv) { return false; } //look for an empty space int sc = shadow_atlas->quadrants[qidx].shadows.size(); ShadowAtlas::Quadrant::Shadow *sarr = shadow_atlas->quadrants[qidx].shadows.ptrw(); int found_free_idx = -1; //found a free one int found_used_idx = -1; //found existing one, must steal it uint64_t min_pass = 0; // pass of the existing one, try to use the least recently used one (LRU fashion) for (int j = 0; j < sc; j++) { if (!sarr[j].owner.is_valid()) { found_free_idx = j; break; } LightInstance *sli = light_instance_owner.getornull(sarr[j].owner); ERR_CONTINUE(!sli); if (sli->last_scene_pass != scene_pass) { //was just allocated, don't kill it so soon, wait a bit.. if (p_tick - sarr[j].alloc_tick < shadow_atlas_realloc_tolerance_msec) { continue; } if (found_used_idx == -1 || sli->last_scene_pass < min_pass) { found_used_idx = j; min_pass = sli->last_scene_pass; } } } if (found_free_idx == -1 && found_used_idx == -1) { continue; //nothing found } if (found_free_idx == -1 && found_used_idx != -1) { found_free_idx = found_used_idx; } r_quadrant = qidx; r_shadow = found_free_idx; return true; } return false; } bool RendererSceneRenderRD::shadow_atlas_update_light(RID p_atlas, RID p_light_intance, float p_coverage, uint64_t p_light_version) { ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas); ERR_FAIL_COND_V(!shadow_atlas, false); LightInstance *li = light_instance_owner.getornull(p_light_intance); ERR_FAIL_COND_V(!li, false); if (shadow_atlas->size == 0 || shadow_atlas->smallest_subdiv == 0) { return false; } uint32_t quad_size = shadow_atlas->size >> 1; int desired_fit = MIN(quad_size / shadow_atlas->smallest_subdiv, next_power_of_2(quad_size * p_coverage)); int valid_quadrants[4]; int valid_quadrant_count = 0; int best_size = -1; //best size found int best_subdiv = -1; //subdiv for the best size //find the quadrants this fits into, and the best possible size it can fit into for (int i = 0; i < 4; i++) { int q = shadow_atlas->size_order[i]; int sd = shadow_atlas->quadrants[q].subdivision; if (sd == 0) { continue; //unused } int max_fit = quad_size / sd; if (best_size != -1 && max_fit > best_size) { break; //too large } valid_quadrants[valid_quadrant_count++] = q; best_subdiv = sd; if (max_fit >= desired_fit) { best_size = max_fit; } } ERR_FAIL_COND_V(valid_quadrant_count == 0, false); uint64_t tick = OS::get_singleton()->get_ticks_msec(); //see if it already exists if (shadow_atlas->shadow_owners.has(p_light_intance)) { //it does! uint32_t key = shadow_atlas->shadow_owners[p_light_intance]; uint32_t q = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3; uint32_t s = key & ShadowAtlas::SHADOW_INDEX_MASK; bool should_realloc = shadow_atlas->quadrants[q].subdivision != (uint32_t)best_subdiv && (shadow_atlas->quadrants[q].shadows[s].alloc_tick - tick > shadow_atlas_realloc_tolerance_msec); bool should_redraw = shadow_atlas->quadrants[q].shadows[s].version != p_light_version; if (!should_realloc) { shadow_atlas->quadrants[q].shadows.write[s].version = p_light_version; //already existing, see if it should redraw or it's just OK return should_redraw; } int new_quadrant, new_shadow; //find a better place if (_shadow_atlas_find_shadow(shadow_atlas, valid_quadrants, valid_quadrant_count, shadow_atlas->quadrants[q].subdivision, tick, new_quadrant, new_shadow)) { //found a better place! ShadowAtlas::Quadrant::Shadow *sh = &shadow_atlas->quadrants[new_quadrant].shadows.write[new_shadow]; if (sh->owner.is_valid()) { //is taken, but is invalid, erasing it shadow_atlas->shadow_owners.erase(sh->owner); LightInstance *sli = light_instance_owner.getornull(sh->owner); sli->shadow_atlases.erase(p_atlas); } //erase previous shadow_atlas->quadrants[q].shadows.write[s].version = 0; shadow_atlas->quadrants[q].shadows.write[s].owner = RID(); sh->owner = p_light_intance; sh->alloc_tick = tick; sh->version = p_light_version; li->shadow_atlases.insert(p_atlas); //make new key key = new_quadrant << ShadowAtlas::QUADRANT_SHIFT; key |= new_shadow; //update it in map shadow_atlas->shadow_owners[p_light_intance] = key; //make it dirty, as it should redraw anyway return true; } //no better place for this shadow found, keep current //already existing, see if it should redraw or it's just OK shadow_atlas->quadrants[q].shadows.write[s].version = p_light_version; return should_redraw; } int new_quadrant, new_shadow; //find a better place if (_shadow_atlas_find_shadow(shadow_atlas, valid_quadrants, valid_quadrant_count, -1, tick, new_quadrant, new_shadow)) { //found a better place! ShadowAtlas::Quadrant::Shadow *sh = &shadow_atlas->quadrants[new_quadrant].shadows.write[new_shadow]; if (sh->owner.is_valid()) { //is taken, but is invalid, erasing it shadow_atlas->shadow_owners.erase(sh->owner); LightInstance *sli = light_instance_owner.getornull(sh->owner); sli->shadow_atlases.erase(p_atlas); } sh->owner = p_light_intance; sh->alloc_tick = tick; sh->version = p_light_version; li->shadow_atlases.insert(p_atlas); //make new key uint32_t key = new_quadrant << ShadowAtlas::QUADRANT_SHIFT; key |= new_shadow; //update it in map shadow_atlas->shadow_owners[p_light_intance] = key; //make it dirty, as it should redraw anyway return true; } //no place to allocate this light, apologies return false; } void RendererSceneRenderRD::_update_directional_shadow_atlas() { if (directional_shadow.depth.is_null() && directional_shadow.size > 0) { RD::TextureFormat tf; tf.format = directional_shadow.use_16_bits ? RD::DATA_FORMAT_D16_UNORM : RD::DATA_FORMAT_D32_SFLOAT; tf.width = directional_shadow.size; tf.height = directional_shadow.size; tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT; directional_shadow.depth = RD::get_singleton()->texture_create(tf, RD::TextureView()); Vector fb_tex; fb_tex.push_back(directional_shadow.depth); directional_shadow.fb = RD::get_singleton()->framebuffer_create(fb_tex); } } void RendererSceneRenderRD::directional_shadow_atlas_set_size(int p_size, bool p_16_bits) { p_size = nearest_power_of_2_templated(p_size); if (directional_shadow.size == p_size && directional_shadow.use_16_bits == p_16_bits) { return; } directional_shadow.size = p_size; if (directional_shadow.depth.is_valid()) { RD::get_singleton()->free(directional_shadow.depth); directional_shadow.depth = RID(); _base_uniforms_changed(); } } void RendererSceneRenderRD::set_directional_shadow_count(int p_count) { directional_shadow.light_count = p_count; directional_shadow.current_light = 0; } static Rect2i _get_directional_shadow_rect(int p_size, int p_shadow_count, int p_shadow_index) { int split_h = 1; int split_v = 1; while (split_h * split_v < p_shadow_count) { if (split_h == split_v) { split_h <<= 1; } else { split_v <<= 1; } } Rect2i rect(0, 0, p_size, p_size); rect.size.width /= split_h; rect.size.height /= split_v; rect.position.x = rect.size.width * (p_shadow_index % split_h); rect.position.y = rect.size.height * (p_shadow_index / split_h); return rect; } int RendererSceneRenderRD::get_directional_light_shadow_size(RID p_light_intance) { ERR_FAIL_COND_V(directional_shadow.light_count == 0, 0); Rect2i r = _get_directional_shadow_rect(directional_shadow.size, directional_shadow.light_count, 0); LightInstance *light_instance = light_instance_owner.getornull(p_light_intance); ERR_FAIL_COND_V(!light_instance, 0); switch (storage->light_directional_get_shadow_mode(light_instance->light)) { case RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL: break; //none case RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS: r.size.height /= 2; break; case RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS: r.size /= 2; break; } return MAX(r.size.width, r.size.height); } ////////////////////////////////////////////////// RID RendererSceneRenderRD::camera_effects_allocate() { return camera_effects_owner.allocate_rid(); } void RendererSceneRenderRD::camera_effects_initialize(RID p_rid) { camera_effects_owner.initialize_rid(p_rid, CameraEffects()); } void RendererSceneRenderRD::camera_effects_set_dof_blur_quality(RS::DOFBlurQuality p_quality, bool p_use_jitter) { dof_blur_quality = p_quality; dof_blur_use_jitter = p_use_jitter; } void RendererSceneRenderRD::camera_effects_set_dof_blur_bokeh_shape(RS::DOFBokehShape p_shape) { dof_blur_bokeh_shape = p_shape; } void RendererSceneRenderRD::camera_effects_set_dof_blur(RID p_camera_effects, bool p_far_enable, float p_far_distance, float p_far_transition, bool p_near_enable, float p_near_distance, float p_near_transition, float p_amount) { CameraEffects *camfx = camera_effects_owner.getornull(p_camera_effects); ERR_FAIL_COND(!camfx); camfx->dof_blur_far_enabled = p_far_enable; camfx->dof_blur_far_distance = p_far_distance; camfx->dof_blur_far_transition = p_far_transition; camfx->dof_blur_near_enabled = p_near_enable; camfx->dof_blur_near_distance = p_near_distance; camfx->dof_blur_near_transition = p_near_transition; camfx->dof_blur_amount = p_amount; } void RendererSceneRenderRD::camera_effects_set_custom_exposure(RID p_camera_effects, bool p_enable, float p_exposure) { CameraEffects *camfx = camera_effects_owner.getornull(p_camera_effects); ERR_FAIL_COND(!camfx); camfx->override_exposure_enabled = p_enable; camfx->override_exposure = p_exposure; } RID RendererSceneRenderRD::light_instance_create(RID p_light) { RID li = light_instance_owner.make_rid(LightInstance()); LightInstance *light_instance = light_instance_owner.getornull(li); light_instance->self = li; light_instance->light = p_light; light_instance->light_type = storage->light_get_type(p_light); return li; } void RendererSceneRenderRD::light_instance_set_transform(RID p_light_instance, const Transform3D &p_transform) { LightInstance *light_instance = light_instance_owner.getornull(p_light_instance); ERR_FAIL_COND(!light_instance); light_instance->transform = p_transform; } void RendererSceneRenderRD::light_instance_set_aabb(RID p_light_instance, const AABB &p_aabb) { LightInstance *light_instance = light_instance_owner.getornull(p_light_instance); ERR_FAIL_COND(!light_instance); light_instance->aabb = p_aabb; } void RendererSceneRenderRD::light_instance_set_shadow_transform(RID p_light_instance, const CameraMatrix &p_projection, const Transform3D &p_transform, float p_far, float p_split, int p_pass, float p_shadow_texel_size, float p_bias_scale, float p_range_begin, const Vector2 &p_uv_scale) { LightInstance *light_instance = light_instance_owner.getornull(p_light_instance); ERR_FAIL_COND(!light_instance); ERR_FAIL_INDEX(p_pass, 6); light_instance->shadow_transform[p_pass].camera = p_projection; light_instance->shadow_transform[p_pass].transform = p_transform; light_instance->shadow_transform[p_pass].farplane = p_far; light_instance->shadow_transform[p_pass].split = p_split; light_instance->shadow_transform[p_pass].bias_scale = p_bias_scale; light_instance->shadow_transform[p_pass].range_begin = p_range_begin; light_instance->shadow_transform[p_pass].shadow_texel_size = p_shadow_texel_size; light_instance->shadow_transform[p_pass].uv_scale = p_uv_scale; } void RendererSceneRenderRD::light_instance_mark_visible(RID p_light_instance) { LightInstance *light_instance = light_instance_owner.getornull(p_light_instance); ERR_FAIL_COND(!light_instance); light_instance->last_scene_pass = scene_pass; } RendererSceneRenderRD::ShadowCubemap *RendererSceneRenderRD::_get_shadow_cubemap(int p_size) { if (!shadow_cubemaps.has(p_size)) { ShadowCubemap sc; { RD::TextureFormat tf; tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32; tf.width = p_size; tf.height = p_size; tf.texture_type = RD::TEXTURE_TYPE_CUBE; tf.array_layers = 6; tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT; sc.cubemap = RD::get_singleton()->texture_create(tf, RD::TextureView()); } for (int i = 0; i < 6; i++) { RID side_texture = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), sc.cubemap, i, 0); Vector fbtex; fbtex.push_back(side_texture); sc.side_fb[i] = RD::get_singleton()->framebuffer_create(fbtex); } shadow_cubemaps[p_size] = sc; } return &shadow_cubemaps[p_size]; } ////////////////////////// RID RendererSceneRenderRD::decal_instance_create(RID p_decal) { DecalInstance di; di.decal = p_decal; return decal_instance_owner.make_rid(di); } void RendererSceneRenderRD::decal_instance_set_transform(RID p_decal, const Transform3D &p_transform) { DecalInstance *di = decal_instance_owner.getornull(p_decal); ERR_FAIL_COND(!di); di->transform = p_transform; } ///////////////////////////////// RID RendererSceneRenderRD::lightmap_instance_create(RID p_lightmap) { LightmapInstance li; li.lightmap = p_lightmap; return lightmap_instance_owner.make_rid(li); } void RendererSceneRenderRD::lightmap_instance_set_transform(RID p_lightmap, const Transform3D &p_transform) { LightmapInstance *li = lightmap_instance_owner.getornull(p_lightmap); ERR_FAIL_COND(!li); li->transform = p_transform; } ///////////////////////////////// RID RendererSceneRenderRD::voxel_gi_instance_create(RID p_base) { return gi.voxel_gi_instance_create(p_base); } void RendererSceneRenderRD::voxel_gi_instance_set_transform_to_data(RID p_probe, const Transform3D &p_xform) { gi.voxel_gi_instance_set_transform_to_data(p_probe, p_xform); } bool RendererSceneRenderRD::voxel_gi_needs_update(RID p_probe) const { if (!is_dynamic_gi_supported()) { return false; } return gi.voxel_gi_needs_update(p_probe); } void RendererSceneRenderRD::voxel_gi_update(RID p_probe, bool p_update_light_instances, const Vector &p_light_instances, const PagedArray &p_dynamic_objects) { if (!is_dynamic_gi_supported()) { return; } gi.voxel_gi_update(p_probe, p_update_light_instances, p_light_instances, p_dynamic_objects, this); } void RendererSceneRenderRD::_debug_sdfgi_probes(RID p_render_buffers, RD::DrawListID p_draw_list, RID p_framebuffer, const CameraMatrix &p_camera_with_transform) { RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND(!rb); if (!rb->sdfgi) { return; //nothing to debug } rb->sdfgi->debug_probes(p_draw_list, p_framebuffer, p_camera_with_transform); } //////////////////////////////// RID RendererSceneRenderRD::render_buffers_create() { RenderBuffers rb; rb.data = _create_render_buffer_data(); return render_buffers_owner.make_rid(rb); } void RendererSceneRenderRD::_allocate_blur_textures(RenderBuffers *rb) { ERR_FAIL_COND(!rb->blur[0].texture.is_null()); uint32_t mipmaps_required = Image::get_image_required_mipmaps(rb->width, rb->height, Image::FORMAT_RGBAH); RD::TextureFormat tf; tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT; tf.width = rb->width; tf.height = rb->height; tf.texture_type = RD::TEXTURE_TYPE_2D; tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT; tf.mipmaps = mipmaps_required; rb->blur[0].texture = RD::get_singleton()->texture_create(tf, RD::TextureView()); //the second one is smaller (only used for separatable part of blur) tf.width >>= 1; tf.height >>= 1; tf.mipmaps--; rb->blur[1].texture = RD::get_singleton()->texture_create(tf, RD::TextureView()); int base_width = rb->width; int base_height = rb->height; for (uint32_t i = 0; i < mipmaps_required; i++) { RenderBuffers::Blur::Mipmap mm; mm.texture = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rb->blur[0].texture, 0, i); mm.width = base_width; mm.height = base_height; rb->blur[0].mipmaps.push_back(mm); if (i > 0) { mm.texture = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rb->blur[1].texture, 0, i - 1); rb->blur[1].mipmaps.push_back(mm); } base_width = MAX(1, base_width >> 1); base_height = MAX(1, base_height >> 1); } } void RendererSceneRenderRD::_allocate_luminance_textures(RenderBuffers *rb) { ERR_FAIL_COND(!rb->luminance.current.is_null()); int w = rb->width; int h = rb->height; while (true) { w = MAX(w / 8, 1); h = MAX(h / 8, 1); RD::TextureFormat tf; tf.format = RD::DATA_FORMAT_R32_SFLOAT; tf.width = w; tf.height = h; tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT; bool final = w == 1 && h == 1; if (final) { tf.usage_bits |= RD::TEXTURE_USAGE_SAMPLING_BIT; } RID texture = RD::get_singleton()->texture_create(tf, RD::TextureView()); rb->luminance.reduce.push_back(texture); if (final) { rb->luminance.current = RD::get_singleton()->texture_create(tf, RD::TextureView()); break; } } } void RendererSceneRenderRD::_free_render_buffer_data(RenderBuffers *rb) { if (rb->texture.is_valid()) { RD::get_singleton()->free(rb->texture); rb->texture = RID(); } if (rb->depth_texture.is_valid()) { RD::get_singleton()->free(rb->depth_texture); rb->depth_texture = RID(); } for (int i = 0; i < 2; i++) { if (rb->blur[i].texture.is_valid()) { RD::get_singleton()->free(rb->blur[i].texture); rb->blur[i].texture = RID(); rb->blur[i].mipmaps.clear(); } } for (int i = 0; i < rb->luminance.reduce.size(); i++) { RD::get_singleton()->free(rb->luminance.reduce[i]); } rb->luminance.reduce.clear(); if (rb->luminance.current.is_valid()) { RD::get_singleton()->free(rb->luminance.current); rb->luminance.current = RID(); } if (rb->ssao.depth.is_valid()) { RD::get_singleton()->free(rb->ssao.depth); RD::get_singleton()->free(rb->ssao.ao_deinterleaved); RD::get_singleton()->free(rb->ssao.ao_pong); RD::get_singleton()->free(rb->ssao.ao_final); RD::get_singleton()->free(rb->ssao.importance_map[0]); RD::get_singleton()->free(rb->ssao.importance_map[1]); rb->ssao.depth = RID(); rb->ssao.ao_deinterleaved = RID(); rb->ssao.ao_pong = RID(); rb->ssao.ao_final = RID(); rb->ssao.importance_map[0] = RID(); rb->ssao.importance_map[1] = RID(); rb->ssao.depth_slices.clear(); rb->ssao.ao_deinterleaved_slices.clear(); rb->ssao.ao_pong_slices.clear(); } if (rb->ssr.blur_radius[0].is_valid()) { RD::get_singleton()->free(rb->ssr.blur_radius[0]); RD::get_singleton()->free(rb->ssr.blur_radius[1]); rb->ssr.blur_radius[0] = RID(); rb->ssr.blur_radius[1] = RID(); } if (rb->ssr.depth_scaled.is_valid()) { RD::get_singleton()->free(rb->ssr.depth_scaled); rb->ssr.depth_scaled = RID(); RD::get_singleton()->free(rb->ssr.normal_scaled); rb->ssr.normal_scaled = RID(); } if (rb->ambient_buffer.is_valid()) { RD::get_singleton()->free(rb->ambient_buffer); RD::get_singleton()->free(rb->reflection_buffer); rb->ambient_buffer = RID(); rb->reflection_buffer = RID(); } } void RendererSceneRenderRD::_process_sss(RID p_render_buffers, const CameraMatrix &p_camera) { RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND(!rb); bool can_use_effects = rb->width >= 8 && rb->height >= 8; if (!can_use_effects) { //just copy return; } if (rb->blur[0].texture.is_null()) { _allocate_blur_textures(rb); } storage->get_effects()->sub_surface_scattering(rb->texture, rb->blur[0].mipmaps[0].texture, rb->depth_texture, p_camera, Size2i(rb->width, rb->height), sss_scale, sss_depth_scale, sss_quality); } void RendererSceneRenderRD::_process_ssr(RID p_render_buffers, RID p_dest_framebuffer, RID p_normal_buffer, RID p_specular_buffer, RID p_metallic, const Color &p_metallic_mask, RID p_environment, const CameraMatrix &p_projection, bool p_use_additive) { RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND(!rb); bool can_use_effects = rb->width >= 8 && rb->height >= 8; if (!can_use_effects) { //just copy storage->get_effects()->merge_specular(p_dest_framebuffer, p_specular_buffer, p_use_additive ? RID() : rb->texture, RID()); return; } RendererSceneEnvironmentRD *env = environment_owner.getornull(p_environment); ERR_FAIL_COND(!env); ERR_FAIL_COND(!env->ssr_enabled); if (rb->ssr.depth_scaled.is_null()) { RD::TextureFormat tf; tf.format = RD::DATA_FORMAT_R32_SFLOAT; tf.width = rb->width / 2; tf.height = rb->height / 2; tf.texture_type = RD::TEXTURE_TYPE_2D; tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT; rb->ssr.depth_scaled = RD::get_singleton()->texture_create(tf, RD::TextureView()); tf.format = RD::DATA_FORMAT_R8G8B8A8_UNORM; rb->ssr.normal_scaled = RD::get_singleton()->texture_create(tf, RD::TextureView()); } if (ssr_roughness_quality != RS::ENV_SSR_ROUGNESS_QUALITY_DISABLED && !rb->ssr.blur_radius[0].is_valid()) { RD::TextureFormat tf; tf.format = RD::DATA_FORMAT_R8_UNORM; tf.width = rb->width / 2; tf.height = rb->height / 2; tf.texture_type = RD::TEXTURE_TYPE_2D; tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT; rb->ssr.blur_radius[0] = RD::get_singleton()->texture_create(tf, RD::TextureView()); rb->ssr.blur_radius[1] = RD::get_singleton()->texture_create(tf, RD::TextureView()); } if (rb->blur[0].texture.is_null()) { _allocate_blur_textures(rb); } storage->get_effects()->screen_space_reflection(rb->texture, p_normal_buffer, ssr_roughness_quality, rb->ssr.blur_radius[0], rb->ssr.blur_radius[1], p_metallic, p_metallic_mask, rb->depth_texture, rb->ssr.depth_scaled, rb->ssr.normal_scaled, rb->blur[0].mipmaps[1].texture, rb->blur[1].mipmaps[0].texture, Size2i(rb->width / 2, rb->height / 2), env->ssr_max_steps, env->ssr_fade_in, env->ssr_fade_out, env->ssr_depth_tolerance, p_projection); storage->get_effects()->merge_specular(p_dest_framebuffer, p_specular_buffer, p_use_additive ? RID() : rb->texture, rb->blur[0].mipmaps[1].texture); } void RendererSceneRenderRD::_process_ssao(RID p_render_buffers, RID p_environment, RID p_normal_buffer, const CameraMatrix &p_projection) { RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND(!rb); RendererSceneEnvironmentRD *env = environment_owner.getornull(p_environment); ERR_FAIL_COND(!env); RENDER_TIMESTAMP("Process SSAO"); if (rb->ssao.ao_final.is_valid() && ssao_using_half_size != ssao_half_size) { RD::get_singleton()->free(rb->ssao.depth); RD::get_singleton()->free(rb->ssao.ao_deinterleaved); RD::get_singleton()->free(rb->ssao.ao_pong); RD::get_singleton()->free(rb->ssao.ao_final); RD::get_singleton()->free(rb->ssao.importance_map[0]); RD::get_singleton()->free(rb->ssao.importance_map[1]); rb->ssao.depth = RID(); rb->ssao.ao_deinterleaved = RID(); rb->ssao.ao_pong = RID(); rb->ssao.ao_final = RID(); rb->ssao.importance_map[0] = RID(); rb->ssao.importance_map[1] = RID(); rb->ssao.depth_slices.clear(); rb->ssao.ao_deinterleaved_slices.clear(); rb->ssao.ao_pong_slices.clear(); } int buffer_width; int buffer_height; int half_width; int half_height; if (ssao_half_size) { buffer_width = (rb->width + 3) / 4; buffer_height = (rb->height + 3) / 4; half_width = (rb->width + 7) / 8; half_height = (rb->height + 7) / 8; } else { buffer_width = (rb->width + 1) / 2; buffer_height = (rb->height + 1) / 2; half_width = (rb->width + 3) / 4; half_height = (rb->height + 3) / 4; } bool uniform_sets_are_invalid = false; if (rb->ssao.depth.is_null()) { //allocate depth slices { RD::TextureFormat tf; tf.format = RD::DATA_FORMAT_R16_SFLOAT; tf.texture_type = RD::TEXTURE_TYPE_2D_ARRAY; tf.width = buffer_width; tf.height = buffer_height; tf.mipmaps = 4; tf.array_layers = 4; tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT; rb->ssao.depth = RD::get_singleton()->texture_create(tf, RD::TextureView()); RD::get_singleton()->set_resource_name(rb->ssao.depth, "SSAO Depth"); for (uint32_t i = 0; i < tf.mipmaps; i++) { RID slice = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rb->ssao.depth, 0, i, RD::TEXTURE_SLICE_2D_ARRAY); rb->ssao.depth_slices.push_back(slice); RD::get_singleton()->set_resource_name(rb->ssao.depth_slices[i], "SSAO Depth Mip " + itos(i) + " "); } } { RD::TextureFormat tf; tf.format = RD::DATA_FORMAT_R8G8_UNORM; tf.texture_type = RD::TEXTURE_TYPE_2D_ARRAY; tf.width = buffer_width; tf.height = buffer_height; tf.array_layers = 4; tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT; rb->ssao.ao_deinterleaved = RD::get_singleton()->texture_create(tf, RD::TextureView()); RD::get_singleton()->set_resource_name(rb->ssao.ao_deinterleaved, "SSAO De-interleaved Array"); for (uint32_t i = 0; i < 4; i++) { RID slice = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rb->ssao.ao_deinterleaved, i, 0); rb->ssao.ao_deinterleaved_slices.push_back(slice); RD::get_singleton()->set_resource_name(rb->ssao.ao_deinterleaved_slices[i], "SSAO De-interleaved Array Layer " + itos(i) + " "); } } { RD::TextureFormat tf; tf.format = RD::DATA_FORMAT_R8G8_UNORM; tf.texture_type = RD::TEXTURE_TYPE_2D_ARRAY; tf.width = buffer_width; tf.height = buffer_height; tf.array_layers = 4; tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT; rb->ssao.ao_pong = RD::get_singleton()->texture_create(tf, RD::TextureView()); RD::get_singleton()->set_resource_name(rb->ssao.ao_pong, "SSAO De-interleaved Array Pong"); for (uint32_t i = 0; i < 4; i++) { RID slice = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rb->ssao.ao_pong, i, 0); rb->ssao.ao_pong_slices.push_back(slice); RD::get_singleton()->set_resource_name(rb->ssao.ao_deinterleaved_slices[i], "SSAO De-interleaved Array Layer " + itos(i) + " Pong"); } } { RD::TextureFormat tf; tf.format = RD::DATA_FORMAT_R8_UNORM; tf.width = half_width; tf.height = half_height; tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT; rb->ssao.importance_map[0] = RD::get_singleton()->texture_create(tf, RD::TextureView()); RD::get_singleton()->set_resource_name(rb->ssao.importance_map[0], "SSAO Importance Map"); rb->ssao.importance_map[1] = RD::get_singleton()->texture_create(tf, RD::TextureView()); RD::get_singleton()->set_resource_name(rb->ssao.importance_map[1], "SSAO Importance Map Pong"); } { RD::TextureFormat tf; tf.format = RD::DATA_FORMAT_R8_UNORM; tf.width = rb->width; tf.height = rb->height; tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT; rb->ssao.ao_final = RD::get_singleton()->texture_create(tf, RD::TextureView()); RD::get_singleton()->set_resource_name(rb->ssao.ao_final, "SSAO Final"); } ssao_using_half_size = ssao_half_size; uniform_sets_are_invalid = true; } EffectsRD::SSAOSettings settings; settings.radius = env->ssao_radius; settings.intensity = env->ssao_intensity; settings.power = env->ssao_power; settings.detail = env->ssao_detail; settings.horizon = env->ssao_horizon; settings.sharpness = env->ssao_sharpness; settings.quality = ssao_quality; settings.half_size = ssao_half_size; settings.adaptive_target = ssao_adaptive_target; settings.blur_passes = ssao_blur_passes; settings.fadeout_from = ssao_fadeout_from; settings.fadeout_to = ssao_fadeout_to; settings.full_screen_size = Size2i(rb->width, rb->height); settings.half_screen_size = Size2i(buffer_width, buffer_height); settings.quarter_screen_size = Size2i(half_width, half_height); storage->get_effects()->generate_ssao(rb->depth_texture, p_normal_buffer, rb->ssao.depth, rb->ssao.depth_slices, rb->ssao.ao_deinterleaved, rb->ssao.ao_deinterleaved_slices, rb->ssao.ao_pong, rb->ssao.ao_pong_slices, rb->ssao.ao_final, rb->ssao.importance_map[0], rb->ssao.importance_map[1], p_projection, settings, uniform_sets_are_invalid, rb->ssao.downsample_uniform_set, rb->ssao.gather_uniform_set, rb->ssao.importance_map_uniform_set); } void RendererSceneRenderRD::_render_buffers_post_process_and_tonemap(const RenderDataRD *p_render_data) { RenderBuffers *rb = render_buffers_owner.getornull(p_render_data->render_buffers); ERR_FAIL_COND(!rb); RendererSceneEnvironmentRD *env = environment_owner.getornull(p_render_data->environment); //glow (if enabled) CameraEffects *camfx = camera_effects_owner.getornull(p_render_data->camera_effects); bool can_use_effects = rb->width >= 8 && rb->height >= 8; if (can_use_effects && camfx && (camfx->dof_blur_near_enabled || camfx->dof_blur_far_enabled) && camfx->dof_blur_amount > 0.0) { if (rb->blur[0].texture.is_null()) { _allocate_blur_textures(rb); } float bokeh_size = camfx->dof_blur_amount * 64.0; storage->get_effects()->bokeh_dof(rb->texture, rb->depth_texture, Size2i(rb->width, rb->height), rb->blur[0].mipmaps[0].texture, rb->blur[1].mipmaps[0].texture, rb->blur[0].mipmaps[1].texture, camfx->dof_blur_far_enabled, camfx->dof_blur_far_distance, camfx->dof_blur_far_transition, camfx->dof_blur_near_enabled, camfx->dof_blur_near_distance, camfx->dof_blur_near_transition, bokeh_size, dof_blur_bokeh_shape, dof_blur_quality, dof_blur_use_jitter, p_render_data->z_near, p_render_data->z_far, p_render_data->cam_ortogonal); } if (can_use_effects && env && env->auto_exposure) { if (rb->luminance.current.is_null()) { _allocate_luminance_textures(rb); } bool set_immediate = env->auto_exposure_version != rb->auto_exposure_version; rb->auto_exposure_version = env->auto_exposure_version; double step = env->auto_exp_speed * time_step; storage->get_effects()->luminance_reduction(rb->texture, Size2i(rb->width, rb->height), rb->luminance.reduce, rb->luminance.current, env->min_luminance, env->max_luminance, step, set_immediate); //swap final reduce with prev luminance SWAP(rb->luminance.current, rb->luminance.reduce.write[rb->luminance.reduce.size() - 1]); RenderingServerDefault::redraw_request(); //redraw all the time if auto exposure rendering is on } int max_glow_level = -1; if (can_use_effects && env && env->glow_enabled) { /* see that blur textures are allocated */ if (rb->blur[1].texture.is_null()) { _allocate_blur_textures(rb); } for (int i = 0; i < RS::MAX_GLOW_LEVELS; i++) { if (env->glow_levels[i] > 0.0) { if (i >= rb->blur[1].mipmaps.size()) { max_glow_level = rb->blur[1].mipmaps.size() - 1; } else { max_glow_level = i; } } } for (int i = 0; i < (max_glow_level + 1); i++) { int vp_w = rb->blur[1].mipmaps[i].width; int vp_h = rb->blur[1].mipmaps[i].height; if (i == 0) { RID luminance_texture; if (env->auto_exposure && rb->luminance.current.is_valid()) { luminance_texture = rb->luminance.current; } storage->get_effects()->gaussian_glow(rb->texture, rb->blur[1].mipmaps[i].texture, Size2i(vp_w, vp_h), env->glow_strength, glow_high_quality, true, env->glow_hdr_luminance_cap, env->exposure, env->glow_bloom, env->glow_hdr_bleed_threshold, env->glow_hdr_bleed_scale, luminance_texture, env->auto_exp_scale); } else { storage->get_effects()->gaussian_glow(rb->blur[1].mipmaps[i - 1].texture, rb->blur[1].mipmaps[i].texture, Size2i(vp_w, vp_h), env->glow_strength, glow_high_quality); } } } { //tonemap EffectsRD::TonemapSettings tonemap; if (can_use_effects && env && env->auto_exposure && rb->luminance.current.is_valid()) { tonemap.use_auto_exposure = true; tonemap.exposure_texture = rb->luminance.current; tonemap.auto_exposure_grey = env->auto_exp_scale; } else { tonemap.exposure_texture = storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_WHITE); } if (can_use_effects && env && env->glow_enabled) { tonemap.use_glow = true; tonemap.glow_mode = EffectsRD::TonemapSettings::GlowMode(env->glow_blend_mode); tonemap.glow_intensity = env->glow_blend_mode == RS::ENV_GLOW_BLEND_MODE_MIX ? env->glow_mix : env->glow_intensity; for (int i = 0; i < RS::MAX_GLOW_LEVELS; i++) { tonemap.glow_levels[i] = env->glow_levels[i]; } tonemap.glow_texture_size.x = rb->blur[1].mipmaps[0].width; tonemap.glow_texture_size.y = rb->blur[1].mipmaps[0].height; tonemap.glow_use_bicubic_upscale = glow_bicubic_upscale; tonemap.glow_texture = rb->blur[1].texture; } else { tonemap.glow_texture = storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_BLACK); } if (rb->screen_space_aa == RS::VIEWPORT_SCREEN_SPACE_AA_FXAA) { tonemap.use_fxaa = true; } tonemap.use_debanding = rb->use_debanding; tonemap.texture_size = Vector2i(rb->width, rb->height); if (env) { tonemap.tonemap_mode = env->tone_mapper; tonemap.white = env->white; tonemap.exposure = env->exposure; } tonemap.use_color_correction = false; tonemap.use_1d_color_correction = false; tonemap.color_correction_texture = storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE); if (can_use_effects && env) { tonemap.use_bcs = env->adjustments_enabled; tonemap.brightness = env->adjustments_brightness; tonemap.contrast = env->adjustments_contrast; tonemap.saturation = env->adjustments_saturation; if (env->adjustments_enabled && env->color_correction.is_valid()) { tonemap.use_color_correction = true; tonemap.use_1d_color_correction = env->use_1d_color_correction; tonemap.color_correction_texture = storage->texture_get_rd_texture(env->color_correction); } } tonemap.view_count = p_render_data->view_count; storage->get_effects()->tonemapper(rb->texture, storage->render_target_get_rd_framebuffer(rb->render_target), tonemap); } storage->render_target_disable_clear_request(rb->render_target); } void RendererSceneRenderRD::_render_buffers_debug_draw(RID p_render_buffers, RID p_shadow_atlas, RID p_occlusion_buffer) { EffectsRD *effects = storage->get_effects(); RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND(!rb); if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SHADOW_ATLAS) { if (p_shadow_atlas.is_valid()) { RID shadow_atlas_texture = shadow_atlas_get_texture(p_shadow_atlas); Size2 rtsize = storage->render_target_get_size(rb->render_target); effects->copy_to_fb_rect(shadow_atlas_texture, storage->render_target_get_rd_framebuffer(rb->render_target), Rect2i(Vector2(), rtsize / 2), false, true); } } if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_DIRECTIONAL_SHADOW_ATLAS) { if (directional_shadow_get_texture().is_valid()) { RID shadow_atlas_texture = directional_shadow_get_texture(); Size2 rtsize = storage->render_target_get_size(rb->render_target); effects->copy_to_fb_rect(shadow_atlas_texture, storage->render_target_get_rd_framebuffer(rb->render_target), Rect2i(Vector2(), rtsize / 2), false, true); } } if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_DECAL_ATLAS) { RID decal_atlas = storage->decal_atlas_get_texture(); if (decal_atlas.is_valid()) { Size2 rtsize = storage->render_target_get_size(rb->render_target); effects->copy_to_fb_rect(decal_atlas, storage->render_target_get_rd_framebuffer(rb->render_target), Rect2i(Vector2(), rtsize / 2), false, false, true); } } if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SCENE_LUMINANCE) { if (rb->luminance.current.is_valid()) { Size2 rtsize = storage->render_target_get_size(rb->render_target); effects->copy_to_fb_rect(rb->luminance.current, storage->render_target_get_rd_framebuffer(rb->render_target), Rect2(Vector2(), rtsize / 8), false, true); } } if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SSAO && rb->ssao.ao_final.is_valid()) { Size2 rtsize = storage->render_target_get_size(rb->render_target); RID ao_buf = rb->ssao.ao_final; effects->copy_to_fb_rect(ao_buf, storage->render_target_get_rd_framebuffer(rb->render_target), Rect2(Vector2(), rtsize), false, true); } if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_NORMAL_BUFFER && _render_buffers_get_normal_texture(p_render_buffers).is_valid()) { Size2 rtsize = storage->render_target_get_size(rb->render_target); effects->copy_to_fb_rect(_render_buffers_get_normal_texture(p_render_buffers), storage->render_target_get_rd_framebuffer(rb->render_target), Rect2(Vector2(), rtsize), false, false); } if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_GI_BUFFER && rb->ambient_buffer.is_valid()) { Size2 rtsize = storage->render_target_get_size(rb->render_target); RID ambient_texture = rb->ambient_buffer; RID reflection_texture = rb->reflection_buffer; effects->copy_to_fb_rect(ambient_texture, storage->render_target_get_rd_framebuffer(rb->render_target), Rect2(Vector2(), rtsize), false, false, false, true, reflection_texture); } if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_OCCLUDERS) { if (p_occlusion_buffer.is_valid()) { Size2 rtsize = storage->render_target_get_size(rb->render_target); effects->copy_to_fb_rect(storage->texture_get_rd_texture(p_occlusion_buffer), storage->render_target_get_rd_framebuffer(rb->render_target), Rect2i(Vector2(), rtsize), true, false); } } } void RendererSceneRenderRD::environment_set_adjustment(RID p_env, bool p_enable, float p_brightness, float p_contrast, float p_saturation, bool p_use_1d_color_correction, RID p_color_correction) { RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->adjustments_enabled = p_enable; env->adjustments_brightness = p_brightness; env->adjustments_contrast = p_contrast; env->adjustments_saturation = p_saturation; env->use_1d_color_correction = p_use_1d_color_correction; env->color_correction = p_color_correction; } RID RendererSceneRenderRD::render_buffers_get_back_buffer_texture(RID p_render_buffers) { RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND_V(!rb, RID()); if (!rb->blur[0].texture.is_valid()) { return RID(); //not valid at the moment } return rb->blur[0].texture; } RID RendererSceneRenderRD::render_buffers_get_ao_texture(RID p_render_buffers) { RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND_V(!rb, RID()); return rb->ssao.ao_final; } RID RendererSceneRenderRD::render_buffers_get_voxel_gi_buffer(RID p_render_buffers) { RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND_V(!rb, RID()); if (rb->gi.voxel_gi_buffer.is_null()) { rb->gi.voxel_gi_buffer = RD::get_singleton()->uniform_buffer_create(sizeof(RendererSceneGIRD::VoxelGIData) * RendererSceneGIRD::MAX_VOXEL_GI_INSTANCES); } return rb->gi.voxel_gi_buffer; } RID RendererSceneRenderRD::render_buffers_get_default_voxel_gi_buffer() { return gi.default_voxel_gi_buffer; } RID RendererSceneRenderRD::render_buffers_get_gi_ambient_texture(RID p_render_buffers) { RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND_V(!rb, RID()); return rb->ambient_buffer; } RID RendererSceneRenderRD::render_buffers_get_gi_reflection_texture(RID p_render_buffers) { RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND_V(!rb, RID()); return rb->reflection_buffer; } uint32_t RendererSceneRenderRD::render_buffers_get_sdfgi_cascade_count(RID p_render_buffers) const { const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND_V(!rb, 0); ERR_FAIL_COND_V(!rb->sdfgi, 0); return rb->sdfgi->cascades.size(); } bool RendererSceneRenderRD::render_buffers_is_sdfgi_enabled(RID p_render_buffers) const { const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND_V(!rb, false); return rb->sdfgi != nullptr; } RID RendererSceneRenderRD::render_buffers_get_sdfgi_irradiance_probes(RID p_render_buffers) const { const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND_V(!rb, RID()); ERR_FAIL_COND_V(!rb->sdfgi, RID()); return rb->sdfgi->lightprobe_texture; } Vector3 RendererSceneRenderRD::render_buffers_get_sdfgi_cascade_offset(RID p_render_buffers, uint32_t p_cascade) const { const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND_V(!rb, Vector3()); ERR_FAIL_COND_V(!rb->sdfgi, Vector3()); ERR_FAIL_UNSIGNED_INDEX_V(p_cascade, rb->sdfgi->cascades.size(), Vector3()); return Vector3((Vector3i(1, 1, 1) * -int32_t(rb->sdfgi->cascade_size >> 1) + rb->sdfgi->cascades[p_cascade].position)) * rb->sdfgi->cascades[p_cascade].cell_size; } Vector3i RendererSceneRenderRD::render_buffers_get_sdfgi_cascade_probe_offset(RID p_render_buffers, uint32_t p_cascade) const { const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND_V(!rb, Vector3i()); ERR_FAIL_COND_V(!rb->sdfgi, Vector3i()); ERR_FAIL_UNSIGNED_INDEX_V(p_cascade, rb->sdfgi->cascades.size(), Vector3i()); int32_t probe_divisor = rb->sdfgi->cascade_size / RendererSceneGIRD::SDFGI::PROBE_DIVISOR; return rb->sdfgi->cascades[p_cascade].position / probe_divisor; } float RendererSceneRenderRD::render_buffers_get_sdfgi_normal_bias(RID p_render_buffers) const { const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND_V(!rb, 0); ERR_FAIL_COND_V(!rb->sdfgi, 0); return rb->sdfgi->normal_bias; } float RendererSceneRenderRD::render_buffers_get_sdfgi_cascade_probe_size(RID p_render_buffers, uint32_t p_cascade) const { const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND_V(!rb, 0); ERR_FAIL_COND_V(!rb->sdfgi, 0); ERR_FAIL_UNSIGNED_INDEX_V(p_cascade, rb->sdfgi->cascades.size(), 0); return float(rb->sdfgi->cascade_size) * rb->sdfgi->cascades[p_cascade].cell_size / float(rb->sdfgi->probe_axis_count - 1); } uint32_t RendererSceneRenderRD::render_buffers_get_sdfgi_cascade_probe_count(RID p_render_buffers) const { const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND_V(!rb, 0); ERR_FAIL_COND_V(!rb->sdfgi, 0); return rb->sdfgi->probe_axis_count; } uint32_t RendererSceneRenderRD::render_buffers_get_sdfgi_cascade_size(RID p_render_buffers) const { const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND_V(!rb, 0); ERR_FAIL_COND_V(!rb->sdfgi, 0); return rb->sdfgi->cascade_size; } bool RendererSceneRenderRD::render_buffers_is_sdfgi_using_occlusion(RID p_render_buffers) const { const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND_V(!rb, false); ERR_FAIL_COND_V(!rb->sdfgi, false); return rb->sdfgi->uses_occlusion; } float RendererSceneRenderRD::render_buffers_get_sdfgi_energy(RID p_render_buffers) const { const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND_V(!rb, 0.0); ERR_FAIL_COND_V(!rb->sdfgi, 0.0); return rb->sdfgi->energy; } RID RendererSceneRenderRD::render_buffers_get_sdfgi_occlusion_texture(RID p_render_buffers) const { const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND_V(!rb, RID()); ERR_FAIL_COND_V(!rb->sdfgi, RID()); return rb->sdfgi->occlusion_texture; } bool RendererSceneRenderRD::render_buffers_has_volumetric_fog(RID p_render_buffers) const { const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND_V(!rb, false); return rb->volumetric_fog != nullptr; } RID RendererSceneRenderRD::render_buffers_get_volumetric_fog_texture(RID p_render_buffers) { const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND_V(!rb || !rb->volumetric_fog, RID()); return rb->volumetric_fog->fog_map; } RID RendererSceneRenderRD::render_buffers_get_volumetric_fog_sky_uniform_set(RID p_render_buffers) { const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND_V(!rb, RID()); if (!rb->volumetric_fog) { return RID(); } return rb->volumetric_fog->sky_uniform_set; } float RendererSceneRenderRD::render_buffers_get_volumetric_fog_end(RID p_render_buffers) { const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND_V(!rb || !rb->volumetric_fog, 0); return rb->volumetric_fog->length; } float RendererSceneRenderRD::render_buffers_get_volumetric_fog_detail_spread(RID p_render_buffers) { const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND_V(!rb || !rb->volumetric_fog, 0); return rb->volumetric_fog->spread; } void RendererSceneRenderRD::render_buffers_configure(RID p_render_buffers, RID p_render_target, int p_width, int p_height, RS::ViewportMSAA p_msaa, RenderingServer::ViewportScreenSpaceAA p_screen_space_aa, bool p_use_debanding, uint32_t p_view_count) { ERR_FAIL_COND_MSG(p_view_count == 0, "Must have atleast 1 view"); RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); rb->width = p_width; rb->height = p_height; rb->render_target = p_render_target; rb->msaa = p_msaa; rb->screen_space_aa = p_screen_space_aa; rb->use_debanding = p_use_debanding; rb->view_count = p_view_count; if (is_clustered_enabled()) { if (rb->cluster_builder == nullptr) { rb->cluster_builder = memnew(ClusterBuilderRD); } rb->cluster_builder->set_shared(&cluster_builder_shared); } _free_render_buffer_data(rb); { RD::TextureFormat tf; if (rb->view_count > 1) { tf.texture_type = RD::TEXTURE_TYPE_2D_ARRAY; } tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT; tf.width = rb->width; tf.height = rb->height; tf.array_layers = rb->view_count; // create a layer for every view tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT; if (rb->msaa != RS::VIEWPORT_MSAA_DISABLED) { tf.usage_bits |= RD::TEXTURE_USAGE_CAN_COPY_TO_BIT | RD::TEXTURE_USAGE_STORAGE_BIT; } else { tf.usage_bits |= RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT; } rb->texture = RD::get_singleton()->texture_create(tf, RD::TextureView()); } { RD::TextureFormat tf; if (rb->view_count > 1) { tf.texture_type = RD::TEXTURE_TYPE_2D_ARRAY; } if (rb->msaa == RS::VIEWPORT_MSAA_DISABLED) { tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D24_UNORM_S8_UINT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D24_UNORM_S8_UINT : RD::DATA_FORMAT_D32_SFLOAT_S8_UINT; } else { tf.format = RD::DATA_FORMAT_R32_SFLOAT; } tf.width = p_width; tf.height = p_height; tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT; tf.array_layers = rb->view_count; // create a layer for every view if (rb->msaa != RS::VIEWPORT_MSAA_DISABLED) { tf.usage_bits |= RD::TEXTURE_USAGE_CAN_COPY_TO_BIT | RD::TEXTURE_USAGE_STORAGE_BIT; } else { tf.usage_bits |= RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT; } rb->depth_texture = RD::get_singleton()->texture_create(tf, RD::TextureView()); } rb->data->configure(rb->texture, rb->depth_texture, p_width, p_height, p_msaa, p_view_count); if (is_clustered_enabled()) { rb->cluster_builder->setup(Size2i(p_width, p_height), max_cluster_elements, rb->depth_texture, storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED), rb->texture); } } void RendererSceneRenderRD::gi_set_use_half_resolution(bool p_enable) { gi.half_resolution = p_enable; } void RendererSceneRenderRD::sub_surface_scattering_set_quality(RS::SubSurfaceScatteringQuality p_quality) { sss_quality = p_quality; } RS::SubSurfaceScatteringQuality RendererSceneRenderRD::sub_surface_scattering_get_quality() const { return sss_quality; } void RendererSceneRenderRD::sub_surface_scattering_set_scale(float p_scale, float p_depth_scale) { sss_scale = p_scale; sss_depth_scale = p_depth_scale; } void RendererSceneRenderRD::shadows_quality_set(RS::ShadowQuality p_quality) { ERR_FAIL_INDEX_MSG(p_quality, RS::SHADOW_QUALITY_MAX, "Shadow quality too high, please see RenderingServer's ShadowQuality enum"); if (shadows_quality != p_quality) { shadows_quality = p_quality; switch (shadows_quality) { case RS::SHADOW_QUALITY_HARD: { penumbra_shadow_samples = 4; soft_shadow_samples = 1; shadows_quality_radius = 1.0; } break; case RS::SHADOW_QUALITY_SOFT_LOW: { penumbra_shadow_samples = 8; soft_shadow_samples = 4; shadows_quality_radius = 2.0; } break; case RS::SHADOW_QUALITY_SOFT_MEDIUM: { penumbra_shadow_samples = 12; soft_shadow_samples = 8; shadows_quality_radius = 2.0; } break; case RS::SHADOW_QUALITY_SOFT_HIGH: { penumbra_shadow_samples = 24; soft_shadow_samples = 16; shadows_quality_radius = 3.0; } break; case RS::SHADOW_QUALITY_SOFT_ULTRA: { penumbra_shadow_samples = 32; soft_shadow_samples = 32; shadows_quality_radius = 4.0; } break; case RS::SHADOW_QUALITY_MAX: break; } get_vogel_disk(penumbra_shadow_kernel, penumbra_shadow_samples); get_vogel_disk(soft_shadow_kernel, soft_shadow_samples); } } void RendererSceneRenderRD::directional_shadow_quality_set(RS::ShadowQuality p_quality) { ERR_FAIL_INDEX_MSG(p_quality, RS::SHADOW_QUALITY_MAX, "Shadow quality too high, please see RenderingServer's ShadowQuality enum"); if (directional_shadow_quality != p_quality) { directional_shadow_quality = p_quality; switch (directional_shadow_quality) { case RS::SHADOW_QUALITY_HARD: { directional_penumbra_shadow_samples = 4; directional_soft_shadow_samples = 1; directional_shadow_quality_radius = 1.0; } break; case RS::SHADOW_QUALITY_SOFT_LOW: { directional_penumbra_shadow_samples = 8; directional_soft_shadow_samples = 4; directional_shadow_quality_radius = 2.0; } break; case RS::SHADOW_QUALITY_SOFT_MEDIUM: { directional_penumbra_shadow_samples = 12; directional_soft_shadow_samples = 8; directional_shadow_quality_radius = 2.0; } break; case RS::SHADOW_QUALITY_SOFT_HIGH: { directional_penumbra_shadow_samples = 24; directional_soft_shadow_samples = 16; directional_shadow_quality_radius = 3.0; } break; case RS::SHADOW_QUALITY_SOFT_ULTRA: { directional_penumbra_shadow_samples = 32; directional_soft_shadow_samples = 32; directional_shadow_quality_radius = 4.0; } break; case RS::SHADOW_QUALITY_MAX: break; } get_vogel_disk(directional_penumbra_shadow_kernel, directional_penumbra_shadow_samples); get_vogel_disk(directional_soft_shadow_kernel, directional_soft_shadow_samples); } } int RendererSceneRenderRD::get_roughness_layers() const { return sky.roughness_layers; } bool RendererSceneRenderRD::is_using_radiance_cubemap_array() const { return sky.sky_use_cubemap_array; } RendererSceneRenderRD::RenderBufferData *RendererSceneRenderRD::render_buffers_get_data(RID p_render_buffers) { RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND_V(!rb, nullptr); return rb->data; } void RendererSceneRenderRD::_setup_reflections(const PagedArray &p_reflections, const Transform3D &p_camera_inverse_transform, RID p_environment) { cluster.reflection_count = 0; for (uint32_t i = 0; i < (uint32_t)p_reflections.size(); i++) { if (cluster.reflection_count == cluster.max_reflections) { break; } ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_reflections[i]); if (!rpi) { continue; } cluster.reflection_sort[cluster.reflection_count].instance = rpi; cluster.reflection_sort[cluster.reflection_count].depth = -p_camera_inverse_transform.xform(rpi->transform.origin).z; cluster.reflection_count++; } if (cluster.reflection_count > 0) { SortArray> sort_array; sort_array.sort(cluster.reflection_sort, cluster.reflection_count); } for (uint32_t i = 0; i < cluster.reflection_count; i++) { ReflectionProbeInstance *rpi = cluster.reflection_sort[i].instance; rpi->render_index = i; RID base_probe = rpi->probe; Cluster::ReflectionData &reflection_ubo = cluster.reflections[i]; Vector3 extents = storage->reflection_probe_get_extents(base_probe); rpi->cull_mask = storage->reflection_probe_get_cull_mask(base_probe); reflection_ubo.box_extents[0] = extents.x; reflection_ubo.box_extents[1] = extents.y; reflection_ubo.box_extents[2] = extents.z; reflection_ubo.index = rpi->atlas_index; Vector3 origin_offset = storage->reflection_probe_get_origin_offset(base_probe); reflection_ubo.box_offset[0] = origin_offset.x; reflection_ubo.box_offset[1] = origin_offset.y; reflection_ubo.box_offset[2] = origin_offset.z; reflection_ubo.mask = storage->reflection_probe_get_cull_mask(base_probe); reflection_ubo.intensity = storage->reflection_probe_get_intensity(base_probe); reflection_ubo.ambient_mode = storage->reflection_probe_get_ambient_mode(base_probe); reflection_ubo.exterior = !storage->reflection_probe_is_interior(base_probe); reflection_ubo.box_project = storage->reflection_probe_is_box_projection(base_probe); Color ambient_linear = storage->reflection_probe_get_ambient_color(base_probe).to_linear(); float interior_ambient_energy = storage->reflection_probe_get_ambient_color_energy(base_probe); reflection_ubo.ambient[0] = ambient_linear.r * interior_ambient_energy; reflection_ubo.ambient[1] = ambient_linear.g * interior_ambient_energy; reflection_ubo.ambient[2] = ambient_linear.b * interior_ambient_energy; Transform3D transform = rpi->transform; Transform3D proj = (p_camera_inverse_transform * transform).inverse(); RendererStorageRD::store_transform(proj, reflection_ubo.local_matrix); if (current_cluster_builder != nullptr) { current_cluster_builder->add_box(ClusterBuilderRD::BOX_TYPE_REFLECTION_PROBE, transform, extents); } rpi->last_pass = RSG::rasterizer->get_frame_number(); } if (cluster.reflection_count) { RD::get_singleton()->buffer_update(cluster.reflection_buffer, 0, cluster.reflection_count * sizeof(Cluster::ReflectionData), cluster.reflections, RD::BARRIER_MASK_RASTER | RD::BARRIER_MASK_COMPUTE); } } void RendererSceneRenderRD::_setup_lights(const PagedArray &p_lights, const Transform3D &p_camera_transform, RID p_shadow_atlas, bool p_using_shadows, uint32_t &r_directional_light_count, uint32_t &r_positional_light_count) { Transform3D inverse_transform = p_camera_transform.affine_inverse(); r_directional_light_count = 0; r_positional_light_count = 0; sky.sky_scene_state.ubo.directional_light_count = 0; Plane camera_plane(p_camera_transform.origin, -p_camera_transform.basis.get_axis(Vector3::AXIS_Z).normalized()); cluster.omni_light_count = 0; cluster.spot_light_count = 0; for (int i = 0; i < (int)p_lights.size(); i++) { LightInstance *li = light_instance_owner.getornull(p_lights[i]); if (!li) { continue; } RID base = li->light; ERR_CONTINUE(base.is_null()); RS::LightType type = storage->light_get_type(base); switch (type) { case RS::LIGHT_DIRECTIONAL: { // Copy to SkyDirectionalLightData if (r_directional_light_count < sky.sky_scene_state.max_directional_lights) { RendererSceneSkyRD::SkyDirectionalLightData &sky_light_data = sky.sky_scene_state.directional_lights[r_directional_light_count]; Transform3D light_transform = li->transform; Vector3 world_direction = light_transform.basis.xform(Vector3(0, 0, 1)).normalized(); sky_light_data.direction[0] = world_direction.x; sky_light_data.direction[1] = world_direction.y; sky_light_data.direction[2] = -world_direction.z; float sign = storage->light_is_negative(base) ? -1 : 1; sky_light_data.energy = sign * storage->light_get_param(base, RS::LIGHT_PARAM_ENERGY); Color linear_col = storage->light_get_color(base).to_linear(); sky_light_data.color[0] = linear_col.r; sky_light_data.color[1] = linear_col.g; sky_light_data.color[2] = linear_col.b; sky_light_data.enabled = true; float angular_diameter = storage->light_get_param(base, RS::LIGHT_PARAM_SIZE); if (angular_diameter > 0.0) { // I know tan(0) is 0, but let's not risk it with numerical precision. // technically this will keep expanding until reaching the sun, but all we care // is expand until we reach the radius of the near plane (there can't be more occluders than that) angular_diameter = Math::tan(Math::deg2rad(angular_diameter)); } else { angular_diameter = 0.0; } sky_light_data.size = angular_diameter; sky.sky_scene_state.ubo.directional_light_count++; } if (r_directional_light_count >= cluster.max_directional_lights || storage->light_directional_is_sky_only(base)) { continue; } Cluster::DirectionalLightData &light_data = cluster.directional_lights[r_directional_light_count]; Transform3D light_transform = li->transform; Vector3 direction = inverse_transform.basis.xform(light_transform.basis.xform(Vector3(0, 0, 1))).normalized(); light_data.direction[0] = direction.x; light_data.direction[1] = direction.y; light_data.direction[2] = direction.z; float sign = storage->light_is_negative(base) ? -1 : 1; light_data.energy = sign * storage->light_get_param(base, RS::LIGHT_PARAM_ENERGY) * Math_PI; Color linear_col = storage->light_get_color(base).to_linear(); light_data.color[0] = linear_col.r; light_data.color[1] = linear_col.g; light_data.color[2] = linear_col.b; light_data.specular = storage->light_get_param(base, RS::LIGHT_PARAM_SPECULAR); light_data.mask = storage->light_get_cull_mask(base); float size = storage->light_get_param(base, RS::LIGHT_PARAM_SIZE); light_data.size = 1.0 - Math::cos(Math::deg2rad(size)); //angle to cosine offset Color shadow_col = storage->light_get_shadow_color(base).to_linear(); if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_PSSM_SPLITS) { light_data.shadow_color1[0] = 1.0; light_data.shadow_color1[1] = 0.0; light_data.shadow_color1[2] = 0.0; light_data.shadow_color1[3] = 1.0; light_data.shadow_color2[0] = 0.0; light_data.shadow_color2[1] = 1.0; light_data.shadow_color2[2] = 0.0; light_data.shadow_color2[3] = 1.0; light_data.shadow_color3[0] = 0.0; light_data.shadow_color3[1] = 0.0; light_data.shadow_color3[2] = 1.0; light_data.shadow_color3[3] = 1.0; light_data.shadow_color4[0] = 1.0; light_data.shadow_color4[1] = 1.0; light_data.shadow_color4[2] = 0.0; light_data.shadow_color4[3] = 1.0; } else { light_data.shadow_color1[0] = shadow_col.r; light_data.shadow_color1[1] = shadow_col.g; light_data.shadow_color1[2] = shadow_col.b; light_data.shadow_color1[3] = 1.0; light_data.shadow_color2[0] = shadow_col.r; light_data.shadow_color2[1] = shadow_col.g; light_data.shadow_color2[2] = shadow_col.b; light_data.shadow_color2[3] = 1.0; light_data.shadow_color3[0] = shadow_col.r; light_data.shadow_color3[1] = shadow_col.g; light_data.shadow_color3[2] = shadow_col.b; light_data.shadow_color3[3] = 1.0; light_data.shadow_color4[0] = shadow_col.r; light_data.shadow_color4[1] = shadow_col.g; light_data.shadow_color4[2] = shadow_col.b; light_data.shadow_color4[3] = 1.0; } light_data.shadow_enabled = p_using_shadows && storage->light_has_shadow(base); float angular_diameter = storage->light_get_param(base, RS::LIGHT_PARAM_SIZE); if (angular_diameter > 0.0) { // I know tan(0) is 0, but let's not risk it with numerical precision. // technically this will keep expanding until reaching the sun, but all we care // is expand until we reach the radius of the near plane (there can't be more occluders than that) angular_diameter = Math::tan(Math::deg2rad(angular_diameter)); } else { angular_diameter = 0.0; } if (light_data.shadow_enabled) { RS::LightDirectionalShadowMode smode = storage->light_directional_get_shadow_mode(base); int limit = smode == RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL ? 0 : (smode == RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS ? 1 : 3); light_data.blend_splits = storage->light_directional_get_blend_splits(base); for (int j = 0; j < 4; j++) { Rect2 atlas_rect = li->shadow_transform[j].atlas_rect; CameraMatrix matrix = li->shadow_transform[j].camera; float split = li->shadow_transform[MIN(limit, j)].split; CameraMatrix bias; bias.set_light_bias(); CameraMatrix rectm; rectm.set_light_atlas_rect(atlas_rect); Transform3D modelview = (inverse_transform * li->shadow_transform[j].transform).inverse(); CameraMatrix shadow_mtx = rectm * bias * matrix * modelview; light_data.shadow_split_offsets[j] = split; float bias_scale = li->shadow_transform[j].bias_scale; light_data.shadow_bias[j] = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BIAS) * bias_scale; light_data.shadow_normal_bias[j] = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS) * li->shadow_transform[j].shadow_texel_size; light_data.shadow_transmittance_bias[j] = storage->light_get_transmittance_bias(base) * bias_scale; light_data.shadow_z_range[j] = li->shadow_transform[j].farplane; light_data.shadow_range_begin[j] = li->shadow_transform[j].range_begin; RendererStorageRD::store_camera(shadow_mtx, light_data.shadow_matrices[j]); Vector2 uv_scale = li->shadow_transform[j].uv_scale; uv_scale *= atlas_rect.size; //adapt to atlas size switch (j) { case 0: { light_data.uv_scale1[0] = uv_scale.x; light_data.uv_scale1[1] = uv_scale.y; } break; case 1: { light_data.uv_scale2[0] = uv_scale.x; light_data.uv_scale2[1] = uv_scale.y; } break; case 2: { light_data.uv_scale3[0] = uv_scale.x; light_data.uv_scale3[1] = uv_scale.y; } break; case 3: { light_data.uv_scale4[0] = uv_scale.x; light_data.uv_scale4[1] = uv_scale.y; } break; } } float fade_start = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_FADE_START); light_data.fade_from = -light_data.shadow_split_offsets[3] * MIN(fade_start, 0.999); //using 1.0 would break smoothstep light_data.fade_to = -light_data.shadow_split_offsets[3]; light_data.shadow_volumetric_fog_fade = 1.0 / storage->light_get_shadow_volumetric_fog_fade(base); light_data.soft_shadow_scale = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BLUR); light_data.softshadow_angle = angular_diameter; light_data.bake_mode = storage->light_get_bake_mode(base); if (angular_diameter <= 0.0) { light_data.soft_shadow_scale *= directional_shadow_quality_radius_get(); // Only use quality radius for PCF } } r_directional_light_count++; } break; case RS::LIGHT_OMNI: { if (cluster.omni_light_count >= cluster.max_lights) { continue; } cluster.omni_light_sort[cluster.omni_light_count].instance = li; cluster.omni_light_sort[cluster.omni_light_count].depth = camera_plane.distance_to(li->transform.origin); cluster.omni_light_count++; } break; case RS::LIGHT_SPOT: { if (cluster.spot_light_count >= cluster.max_lights) { continue; } cluster.spot_light_sort[cluster.spot_light_count].instance = li; cluster.spot_light_sort[cluster.spot_light_count].depth = camera_plane.distance_to(li->transform.origin); cluster.spot_light_count++; } break; } li->last_pass = RSG::rasterizer->get_frame_number(); } if (cluster.omni_light_count) { SortArray> sorter; sorter.sort(cluster.omni_light_sort, cluster.omni_light_count); } if (cluster.spot_light_count) { SortArray> sorter; sorter.sort(cluster.spot_light_sort, cluster.spot_light_count); } ShadowAtlas *shadow_atlas = nullptr; if (p_shadow_atlas.is_valid() && p_using_shadows) { shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas); } for (uint32_t i = 0; i < (cluster.omni_light_count + cluster.spot_light_count); i++) { uint32_t index = (i < cluster.omni_light_count) ? i : i - (cluster.omni_light_count); Cluster::LightData &light_data = (i < cluster.omni_light_count) ? cluster.omni_lights[index] : cluster.spot_lights[index]; RS::LightType type = (i < cluster.omni_light_count) ? RS::LIGHT_OMNI : RS::LIGHT_SPOT; LightInstance *li = (i < cluster.omni_light_count) ? cluster.omni_light_sort[index].instance : cluster.spot_light_sort[index].instance; RID base = li->light; Transform3D light_transform = li->transform; float sign = storage->light_is_negative(base) ? -1 : 1; Color linear_col = storage->light_get_color(base).to_linear(); light_data.attenuation = storage->light_get_param(base, RS::LIGHT_PARAM_ATTENUATION); float energy = sign * storage->light_get_param(base, RS::LIGHT_PARAM_ENERGY) * Math_PI; light_data.color[0] = linear_col.r * energy; light_data.color[1] = linear_col.g * energy; light_data.color[2] = linear_col.b * energy; light_data.specular_amount = storage->light_get_param(base, RS::LIGHT_PARAM_SPECULAR) * 2.0; light_data.bake_mode = storage->light_get_bake_mode(base); float radius = MAX(0.001, storage->light_get_param(base, RS::LIGHT_PARAM_RANGE)); light_data.inv_radius = 1.0 / radius; Vector3 pos = inverse_transform.xform(light_transform.origin); light_data.position[0] = pos.x; light_data.position[1] = pos.y; light_data.position[2] = pos.z; Vector3 direction = inverse_transform.basis.xform(light_transform.basis.xform(Vector3(0, 0, -1))).normalized(); light_data.direction[0] = direction.x; light_data.direction[1] = direction.y; light_data.direction[2] = direction.z; float size = storage->light_get_param(base, RS::LIGHT_PARAM_SIZE); light_data.size = size; light_data.inv_spot_attenuation = 1.0f / storage->light_get_param(base, RS::LIGHT_PARAM_SPOT_ATTENUATION); float spot_angle = storage->light_get_param(base, RS::LIGHT_PARAM_SPOT_ANGLE); light_data.cos_spot_angle = Math::cos(Math::deg2rad(spot_angle)); light_data.mask = storage->light_get_cull_mask(base); light_data.atlas_rect[0] = 0; light_data.atlas_rect[1] = 0; light_data.atlas_rect[2] = 0; light_data.atlas_rect[3] = 0; RID projector = storage->light_get_projector(base); if (projector.is_valid()) { Rect2 rect = storage->decal_atlas_get_texture_rect(projector); if (type == RS::LIGHT_SPOT) { light_data.projector_rect[0] = rect.position.x; light_data.projector_rect[1] = rect.position.y + rect.size.height; //flip because shadow is flipped light_data.projector_rect[2] = rect.size.width; light_data.projector_rect[3] = -rect.size.height; } else { light_data.projector_rect[0] = rect.position.x; light_data.projector_rect[1] = rect.position.y; light_data.projector_rect[2] = rect.size.width; light_data.projector_rect[3] = rect.size.height * 0.5; //used by dp, so needs to be half } } else { light_data.projector_rect[0] = 0; light_data.projector_rect[1] = 0; light_data.projector_rect[2] = 0; light_data.projector_rect[3] = 0; } if (shadow_atlas && shadow_atlas->shadow_owners.has(li->self)) { // fill in the shadow information light_data.shadow_enabled = true; if (type == RS::LIGHT_SPOT) { light_data.shadow_bias = (storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BIAS) * radius / 10.0); float shadow_texel_size = Math::tan(Math::deg2rad(spot_angle)) * radius * 2.0; shadow_texel_size *= light_instance_get_shadow_texel_size(li->self, p_shadow_atlas); light_data.shadow_normal_bias = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS) * shadow_texel_size; } else { //omni light_data.shadow_bias = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BIAS) * radius / 10.0; float shadow_texel_size = light_instance_get_shadow_texel_size(li->self, p_shadow_atlas); light_data.shadow_normal_bias = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS) * shadow_texel_size * 2.0; // applied in -1 .. 1 space } light_data.transmittance_bias = storage->light_get_transmittance_bias(base); Rect2 rect = light_instance_get_shadow_atlas_rect(li->self, p_shadow_atlas); light_data.atlas_rect[0] = rect.position.x; light_data.atlas_rect[1] = rect.position.y; light_data.atlas_rect[2] = rect.size.width; light_data.atlas_rect[3] = rect.size.height; light_data.soft_shadow_scale = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BLUR); light_data.shadow_volumetric_fog_fade = 1.0 / storage->light_get_shadow_volumetric_fog_fade(base); if (type == RS::LIGHT_OMNI) { light_data.atlas_rect[3] *= 0.5; //one paraboloid on top of another Transform3D proj = (inverse_transform * light_transform).inverse(); RendererStorageRD::store_transform(proj, light_data.shadow_matrix); if (size > 0.0) { light_data.soft_shadow_size = size; } else { light_data.soft_shadow_size = 0.0; light_data.soft_shadow_scale *= shadows_quality_radius_get(); // Only use quality radius for PCF } } else if (type == RS::LIGHT_SPOT) { Transform3D modelview = (inverse_transform * light_transform).inverse(); CameraMatrix bias; bias.set_light_bias(); CameraMatrix shadow_mtx = bias * li->shadow_transform[0].camera * modelview; RendererStorageRD::store_camera(shadow_mtx, light_data.shadow_matrix); if (size > 0.0) { CameraMatrix cm = li->shadow_transform[0].camera; float half_np = cm.get_z_near() * Math::tan(Math::deg2rad(spot_angle)); light_data.soft_shadow_size = (size * 0.5 / radius) / (half_np / cm.get_z_near()) * rect.size.width; } else { light_data.soft_shadow_size = 0.0; light_data.soft_shadow_scale *= shadows_quality_radius_get(); // Only use quality radius for PCF } } } else { light_data.shadow_enabled = false; } li->light_index = index; li->cull_mask = storage->light_get_cull_mask(base); if (current_cluster_builder != nullptr) { current_cluster_builder->add_light(type == RS::LIGHT_SPOT ? ClusterBuilderRD::LIGHT_TYPE_SPOT : ClusterBuilderRD::LIGHT_TYPE_OMNI, light_transform, radius, spot_angle); } r_positional_light_count++; } //update without barriers if (cluster.omni_light_count) { RD::get_singleton()->buffer_update(cluster.omni_light_buffer, 0, sizeof(Cluster::LightData) * cluster.omni_light_count, cluster.omni_lights, RD::BARRIER_MASK_RASTER | RD::BARRIER_MASK_COMPUTE); } if (cluster.spot_light_count) { RD::get_singleton()->buffer_update(cluster.spot_light_buffer, 0, sizeof(Cluster::LightData) * cluster.spot_light_count, cluster.spot_lights, RD::BARRIER_MASK_RASTER | RD::BARRIER_MASK_COMPUTE); } if (r_directional_light_count) { RD::get_singleton()->buffer_update(cluster.directional_light_buffer, 0, sizeof(Cluster::DirectionalLightData) * r_directional_light_count, cluster.directional_lights, RD::BARRIER_MASK_RASTER | RD::BARRIER_MASK_COMPUTE); } } void RendererSceneRenderRD::_setup_decals(const PagedArray &p_decals, const Transform3D &p_camera_inverse_xform) { Transform3D uv_xform; uv_xform.basis.scale(Vector3(2.0, 1.0, 2.0)); uv_xform.origin = Vector3(-1.0, 0.0, -1.0); uint32_t decal_count = p_decals.size(); cluster.decal_count = 0; for (uint32_t i = 0; i < decal_count; i++) { if (cluster.decal_count == cluster.max_decals) { break; } DecalInstance *di = decal_instance_owner.getornull(p_decals[i]); if (!di) { continue; } RID decal = di->decal; Transform3D xform = di->transform; real_t distance = -p_camera_inverse_xform.xform(xform.origin).z; if (storage->decal_is_distance_fade_enabled(decal)) { float fade_begin = storage->decal_get_distance_fade_begin(decal); float fade_length = storage->decal_get_distance_fade_length(decal); if (distance > fade_begin) { if (distance > fade_begin + fade_length) { continue; // do not use this decal, its invisible } } } cluster.decal_sort[cluster.decal_count].instance = di; cluster.decal_sort[cluster.decal_count].depth = distance; cluster.decal_count++; } if (cluster.decal_count > 0) { SortArray> sort_array; sort_array.sort(cluster.decal_sort, cluster.decal_count); } for (uint32_t i = 0; i < cluster.decal_count; i++) { DecalInstance *di = cluster.decal_sort[i].instance; RID decal = di->decal; di->render_index = i; di->cull_mask = storage->decal_get_cull_mask(decal); Transform3D xform = di->transform; float fade = 1.0; if (storage->decal_is_distance_fade_enabled(decal)) { real_t distance = -p_camera_inverse_xform.xform(xform.origin).z; float fade_begin = storage->decal_get_distance_fade_begin(decal); float fade_length = storage->decal_get_distance_fade_length(decal); if (distance > fade_begin) { fade = 1.0 - (distance - fade_begin) / fade_length; } } Cluster::DecalData &dd = cluster.decals[i]; Vector3 decal_extents = storage->decal_get_extents(decal); Transform3D scale_xform; scale_xform.basis.scale(Vector3(decal_extents.x, decal_extents.y, decal_extents.z)); Transform3D to_decal_xform = (p_camera_inverse_xform * di->transform * scale_xform * uv_xform).affine_inverse(); RendererStorageRD::store_transform(to_decal_xform, dd.xform); Vector3 normal = xform.basis.get_axis(Vector3::AXIS_Y).normalized(); normal = p_camera_inverse_xform.basis.xform(normal); //camera is normalized, so fine dd.normal[0] = normal.x; dd.normal[1] = normal.y; dd.normal[2] = normal.z; dd.normal_fade = storage->decal_get_normal_fade(decal); RID albedo_tex = storage->decal_get_texture(decal, RS::DECAL_TEXTURE_ALBEDO); RID emission_tex = storage->decal_get_texture(decal, RS::DECAL_TEXTURE_EMISSION); if (albedo_tex.is_valid()) { Rect2 rect = storage->decal_atlas_get_texture_rect(albedo_tex); dd.albedo_rect[0] = rect.position.x; dd.albedo_rect[1] = rect.position.y; dd.albedo_rect[2] = rect.size.x; dd.albedo_rect[3] = rect.size.y; } else { if (!emission_tex.is_valid()) { continue; //no albedo, no emission, no decal. } dd.albedo_rect[0] = 0; dd.albedo_rect[1] = 0; dd.albedo_rect[2] = 0; dd.albedo_rect[3] = 0; } RID normal_tex = storage->decal_get_texture(decal, RS::DECAL_TEXTURE_NORMAL); if (normal_tex.is_valid()) { Rect2 rect = storage->decal_atlas_get_texture_rect(normal_tex); dd.normal_rect[0] = rect.position.x; dd.normal_rect[1] = rect.position.y; dd.normal_rect[2] = rect.size.x; dd.normal_rect[3] = rect.size.y; Basis normal_xform = p_camera_inverse_xform.basis * xform.basis.orthonormalized(); RendererStorageRD::store_basis_3x4(normal_xform, dd.normal_xform); } else { dd.normal_rect[0] = 0; dd.normal_rect[1] = 0; dd.normal_rect[2] = 0; dd.normal_rect[3] = 0; } RID orm_tex = storage->decal_get_texture(decal, RS::DECAL_TEXTURE_ORM); if (orm_tex.is_valid()) { Rect2 rect = storage->decal_atlas_get_texture_rect(orm_tex); dd.orm_rect[0] = rect.position.x; dd.orm_rect[1] = rect.position.y; dd.orm_rect[2] = rect.size.x; dd.orm_rect[3] = rect.size.y; } else { dd.orm_rect[0] = 0; dd.orm_rect[1] = 0; dd.orm_rect[2] = 0; dd.orm_rect[3] = 0; } if (emission_tex.is_valid()) { Rect2 rect = storage->decal_atlas_get_texture_rect(emission_tex); dd.emission_rect[0] = rect.position.x; dd.emission_rect[1] = rect.position.y; dd.emission_rect[2] = rect.size.x; dd.emission_rect[3] = rect.size.y; } else { dd.emission_rect[0] = 0; dd.emission_rect[1] = 0; dd.emission_rect[2] = 0; dd.emission_rect[3] = 0; } Color modulate = storage->decal_get_modulate(decal); dd.modulate[0] = modulate.r; dd.modulate[1] = modulate.g; dd.modulate[2] = modulate.b; dd.modulate[3] = modulate.a * fade; dd.emission_energy = storage->decal_get_emission_energy(decal) * fade; dd.albedo_mix = storage->decal_get_albedo_mix(decal); dd.mask = storage->decal_get_cull_mask(decal); dd.upper_fade = storage->decal_get_upper_fade(decal); dd.lower_fade = storage->decal_get_lower_fade(decal); if (current_cluster_builder != nullptr) { current_cluster_builder->add_box(ClusterBuilderRD::BOX_TYPE_DECAL, xform, decal_extents); } } if (cluster.decal_count > 0) { RD::get_singleton()->buffer_update(cluster.decal_buffer, 0, sizeof(Cluster::DecalData) * cluster.decal_count, cluster.decals, RD::BARRIER_MASK_RASTER | RD::BARRIER_MASK_COMPUTE); } } void RendererSceneRenderRD::_fill_instance_indices(const RID *p_omni_light_instances, uint32_t p_omni_light_instance_count, uint32_t *p_omni_light_indices, const RID *p_spot_light_instances, uint32_t p_spot_light_instance_count, uint32_t *p_spot_light_indices, const RID *p_reflection_probe_instances, uint32_t p_reflection_probe_instance_count, uint32_t *p_reflection_probe_indices, const RID *p_decal_instances, uint32_t p_decal_instance_count, uint32_t *p_decal_instance_indices, uint32_t p_layer_mask, uint32_t p_max_dst_words) { // first zero out our indices for (uint32_t i = 0; i < p_max_dst_words; i++) { p_omni_light_indices[i] = 0; p_spot_light_indices[i] = 0; p_reflection_probe_indices[i] = 0; p_decal_instance_indices[i] = 0; } { // process omni lights uint32_t dword = 0; uint32_t shift = 0; for (uint32_t i = 0; i < p_omni_light_instance_count && dword < p_max_dst_words; i++) { LightInstance *li = light_instance_owner.getornull(p_omni_light_instances[i]); if ((li->cull_mask & p_layer_mask) && (li->light_index < 255)) { p_omni_light_indices[dword] += li->light_index << shift; if (shift == 24) { dword++; shift = 0; } else { shift += 8; } } } if (dword < 2) { // put in ending mark p_omni_light_indices[dword] += 0xFF << shift; } } { // process spot lights uint32_t dword = 0; uint32_t shift = 0; for (uint32_t i = 0; i < p_spot_light_instance_count && dword < p_max_dst_words; i++) { LightInstance *li = light_instance_owner.getornull(p_spot_light_instances[i]); if ((li->cull_mask & p_layer_mask) && (li->light_index < 255)) { p_spot_light_indices[dword] += li->light_index << shift; if (shift == 24) { dword++; shift = 0; } else { shift += 8; } } } if (dword < 2) { // put in ending mark p_spot_light_indices[dword] += 0xFF << shift; } } { // process reflection probes uint32_t dword = 0; uint32_t shift = 0; for (uint32_t i = 0; i < p_reflection_probe_instance_count && dword < p_max_dst_words; i++) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_reflection_probe_instances[i]); if ((rpi->cull_mask & p_layer_mask) && (rpi->render_index < 255)) { p_reflection_probe_indices[dword] += rpi->render_index << shift; if (shift == 24) { dword++; shift = 0; } else { shift += 8; } } } if (dword < 2) { // put in ending mark p_reflection_probe_indices[dword] += 0xFF << shift; } } { // process decals uint32_t dword = 0; uint32_t shift = 0; for (uint32_t i = 0; i < p_decal_instance_count && dword < p_max_dst_words; i++) { DecalInstance *decal = decal_instance_owner.getornull(p_decal_instances[i]); if ((decal->cull_mask & p_layer_mask) && (decal->render_index < 255)) { p_decal_instance_indices[dword] += decal->render_index << shift; if (shift == 24) { dword++; shift = 0; } else { shift += 8; } } } if (dword < 2) { // put in ending mark p_decal_instance_indices[dword] += 0xFF << shift; } } } void RendererSceneRenderRD::_volumetric_fog_erase(RenderBuffers *rb) { ERR_FAIL_COND(!rb->volumetric_fog); RD::get_singleton()->free(rb->volumetric_fog->prev_light_density_map); RD::get_singleton()->free(rb->volumetric_fog->light_density_map); RD::get_singleton()->free(rb->volumetric_fog->fog_map); if (rb->volumetric_fog->uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(rb->volumetric_fog->uniform_set)) { RD::get_singleton()->free(rb->volumetric_fog->uniform_set); } if (rb->volumetric_fog->uniform_set2.is_valid() && RD::get_singleton()->uniform_set_is_valid(rb->volumetric_fog->uniform_set2)) { RD::get_singleton()->free(rb->volumetric_fog->uniform_set2); } if (rb->volumetric_fog->sdfgi_uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(rb->volumetric_fog->sdfgi_uniform_set)) { RD::get_singleton()->free(rb->volumetric_fog->sdfgi_uniform_set); } if (rb->volumetric_fog->sky_uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(rb->volumetric_fog->sky_uniform_set)) { RD::get_singleton()->free(rb->volumetric_fog->sky_uniform_set); } memdelete(rb->volumetric_fog); rb->volumetric_fog = nullptr; } void RendererSceneRenderRD::_update_volumetric_fog(RID p_render_buffers, RID p_environment, const CameraMatrix &p_cam_projection, const Transform3D &p_cam_transform, RID p_shadow_atlas, int p_directional_light_count, bool p_use_directional_shadows, int p_positional_light_count, int p_voxel_gi_count) { ERR_FAIL_COND(!is_clustered_enabled()); // can't use volumetric fog without clustered RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND(!rb); RendererSceneEnvironmentRD *env = environment_owner.getornull(p_environment); float ratio = float(rb->width) / float((rb->width + rb->height) / 2); uint32_t target_width = uint32_t(float(volumetric_fog_size) * ratio); uint32_t target_height = uint32_t(float(volumetric_fog_size) / ratio); if (rb->volumetric_fog) { //validate if (!env || !env->volumetric_fog_enabled || rb->volumetric_fog->width != target_width || rb->volumetric_fog->height != target_height || rb->volumetric_fog->depth != volumetric_fog_depth) { _volumetric_fog_erase(rb); } } if (!env || !env->volumetric_fog_enabled) { //no reason to enable or update, bye return; } RENDER_TIMESTAMP(">Volumetric Fog"); if (env && env->volumetric_fog_enabled && !rb->volumetric_fog) { //required volumetric fog but not existing, create rb->volumetric_fog = memnew(VolumetricFog); rb->volumetric_fog->width = target_width; rb->volumetric_fog->height = target_height; rb->volumetric_fog->depth = volumetric_fog_depth; RD::TextureFormat tf; tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT; tf.width = target_width; tf.height = target_height; tf.depth = volumetric_fog_depth; tf.texture_type = RD::TEXTURE_TYPE_3D; tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT; rb->volumetric_fog->light_density_map = RD::get_singleton()->texture_create(tf, RD::TextureView()); tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT; rb->volumetric_fog->prev_light_density_map = RD::get_singleton()->texture_create(tf, RD::TextureView()); RD::get_singleton()->texture_clear(rb->volumetric_fog->prev_light_density_map, Color(0, 0, 0, 0), 0, 1, 0, 1); tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT; rb->volumetric_fog->fog_map = RD::get_singleton()->texture_create(tf, RD::TextureView()); Vector uniforms; { RD::Uniform u; u.binding = 0; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; u.ids.push_back(rb->volumetric_fog->fog_map); uniforms.push_back(u); } rb->volumetric_fog->sky_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sky.sky_shader.default_shader_rd, RendererSceneSkyRD::SKY_SET_FOG); } //update volumetric fog if (rb->volumetric_fog->uniform_set.is_null() || !RD::get_singleton()->uniform_set_is_valid(rb->volumetric_fog->uniform_set)) { //re create uniform set if needed Vector uniforms; { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 1; ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas); if (shadow_atlas == nullptr || shadow_atlas->depth.is_null()) { u.ids.push_back(storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_BLACK)); } else { u.ids.push_back(shadow_atlas->depth); } uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 2; if (directional_shadow.depth.is_valid()) { u.ids.push_back(directional_shadow.depth); } else { u.ids.push_back(storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_BLACK)); } uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u.binding = 3; u.ids.push_back(get_omni_light_buffer()); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u.binding = 4; u.ids.push_back(get_spot_light_buffer()); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER; u.binding = 5; u.ids.push_back(get_directional_light_buffer()); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u.binding = 6; u.ids.push_back(rb->cluster_builder->get_cluster_buffer()); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_SAMPLER; u.binding = 7; u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED)); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_IMAGE; u.binding = 8; u.ids.push_back(rb->volumetric_fog->light_density_map); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_IMAGE; u.binding = 9; u.ids.push_back(rb->volumetric_fog->fog_map); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_SAMPLER; u.binding = 10; u.ids.push_back(shadow_sampler); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER; u.binding = 11; u.ids.push_back(render_buffers_get_voxel_gi_buffer(p_render_buffers)); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 12; for (int i = 0; i < RendererSceneGIRD::MAX_VOXEL_GI_INSTANCES; i++) { u.ids.push_back(rb->gi.voxel_gi_textures[i]); } uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_SAMPLER; u.binding = 13; u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED)); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER; u.binding = 14; u.ids.push_back(volumetric_fog.params_ubo); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 15; u.ids.push_back(rb->volumetric_fog->prev_light_density_map); uniforms.push_back(u); } rb->volumetric_fog->uniform_set = RD::get_singleton()->uniform_set_create(uniforms, volumetric_fog.shader.version_get_shader(volumetric_fog.shader_version, 0), 0); SWAP(uniforms.write[7].ids.write[0], uniforms.write[8].ids.write[0]); rb->volumetric_fog->uniform_set2 = RD::get_singleton()->uniform_set_create(uniforms, volumetric_fog.shader.version_get_shader(volumetric_fog.shader_version, 0), 0); } bool using_sdfgi = env->volumetric_fog_gi_inject > 0.0001 && env->sdfgi_enabled && (rb->sdfgi != nullptr); if (using_sdfgi) { if (rb->volumetric_fog->sdfgi_uniform_set.is_null() || !RD::get_singleton()->uniform_set_is_valid(rb->volumetric_fog->sdfgi_uniform_set)) { Vector uniforms; { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER; u.binding = 0; u.ids.push_back(gi.sdfgi_ubo); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 1; u.ids.push_back(rb->sdfgi->ambient_texture); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 2; u.ids.push_back(rb->sdfgi->occlusion_texture); uniforms.push_back(u); } rb->volumetric_fog->sdfgi_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, volumetric_fog.shader.version_get_shader(volumetric_fog.shader_version, VOLUMETRIC_FOG_SHADER_DENSITY_WITH_SDFGI), 1); } } rb->volumetric_fog->length = env->volumetric_fog_length; rb->volumetric_fog->spread = env->volumetric_fog_detail_spread; VolumetricFogShader::ParamsUBO params; Vector2 frustum_near_size = p_cam_projection.get_viewport_half_extents(); Vector2 frustum_far_size = p_cam_projection.get_far_plane_half_extents(); float z_near = p_cam_projection.get_z_near(); float z_far = p_cam_projection.get_z_far(); float fog_end = env->volumetric_fog_length; Vector2 fog_far_size = frustum_near_size.lerp(frustum_far_size, (fog_end - z_near) / (z_far - z_near)); Vector2 fog_near_size; if (p_cam_projection.is_orthogonal()) { fog_near_size = fog_far_size; } else { fog_near_size = Vector2(); } params.fog_frustum_size_begin[0] = fog_near_size.x; params.fog_frustum_size_begin[1] = fog_near_size.y; params.fog_frustum_size_end[0] = fog_far_size.x; params.fog_frustum_size_end[1] = fog_far_size.y; params.z_near = z_near; params.z_far = z_far; params.fog_frustum_end = fog_end; params.fog_volume_size[0] = rb->volumetric_fog->width; params.fog_volume_size[1] = rb->volumetric_fog->height; params.fog_volume_size[2] = rb->volumetric_fog->depth; params.directional_light_count = p_directional_light_count; Color light = env->volumetric_fog_light.to_linear(); params.light_energy[0] = light.r * env->volumetric_fog_light_energy; params.light_energy[1] = light.g * env->volumetric_fog_light_energy; params.light_energy[2] = light.b * env->volumetric_fog_light_energy; params.base_density = env->volumetric_fog_density; params.detail_spread = env->volumetric_fog_detail_spread; params.gi_inject = env->volumetric_fog_gi_inject; params.cam_rotation[0] = p_cam_transform.basis[0][0]; params.cam_rotation[1] = p_cam_transform.basis[1][0]; params.cam_rotation[2] = p_cam_transform.basis[2][0]; params.cam_rotation[3] = 0; params.cam_rotation[4] = p_cam_transform.basis[0][1]; params.cam_rotation[5] = p_cam_transform.basis[1][1]; params.cam_rotation[6] = p_cam_transform.basis[2][1]; params.cam_rotation[7] = 0; params.cam_rotation[8] = p_cam_transform.basis[0][2]; params.cam_rotation[9] = p_cam_transform.basis[1][2]; params.cam_rotation[10] = p_cam_transform.basis[2][2]; params.cam_rotation[11] = 0; params.filter_axis = 0; params.max_voxel_gi_instances = env->volumetric_fog_gi_inject > 0.001 ? p_voxel_gi_count : 0; params.temporal_frame = RSG::rasterizer->get_frame_number() % VolumetricFog::MAX_TEMPORAL_FRAMES; Transform3D to_prev_cam_view = rb->volumetric_fog->prev_cam_transform.affine_inverse() * p_cam_transform; storage->store_transform(to_prev_cam_view, params.to_prev_view); params.use_temporal_reprojection = env->volumetric_fog_temporal_reprojection; params.temporal_blend = env->volumetric_fog_temporal_reprojection_amount; { uint32_t cluster_size = rb->cluster_builder->get_cluster_size(); params.cluster_shift = get_shift_from_power_of_2(cluster_size); uint32_t cluster_screen_width = (rb->width - 1) / cluster_size + 1; uint32_t cluster_screen_height = (rb->height - 1) / cluster_size + 1; params.cluster_type_size = cluster_screen_width * cluster_screen_height * (32 + 32); params.cluster_width = cluster_screen_width; params.max_cluster_element_count_div_32 = max_cluster_elements / 32; params.screen_size[0] = rb->width; params.screen_size[1] = rb->height; } /* Vector2 dssize = directional_shadow_get_size(); push_constant.directional_shadow_pixel_size[0] = 1.0 / dssize.x; push_constant.directional_shadow_pixel_size[1] = 1.0 / dssize.y; */ RD::get_singleton()->draw_command_begin_label("Render Volumetric Fog"); RENDER_TIMESTAMP("Render Fog"); RD::get_singleton()->buffer_update(volumetric_fog.params_ubo, 0, sizeof(VolumetricFogShader::ParamsUBO), ¶ms, RD::BARRIER_MASK_COMPUTE); RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin(); bool use_filter = volumetric_fog_filter_active; RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, volumetric_fog.pipelines[using_sdfgi ? VOLUMETRIC_FOG_SHADER_DENSITY_WITH_SDFGI : VOLUMETRIC_FOG_SHADER_DENSITY]); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->volumetric_fog->uniform_set, 0); if (using_sdfgi) { RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->volumetric_fog->sdfgi_uniform_set, 1); } RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->volumetric_fog->width, rb->volumetric_fog->height, rb->volumetric_fog->depth); RD::get_singleton()->draw_command_end_label(); RD::get_singleton()->compute_list_end(); RD::get_singleton()->texture_copy(rb->volumetric_fog->light_density_map, rb->volumetric_fog->prev_light_density_map, Vector3(0, 0, 0), Vector3(0, 0, 0), Vector3(rb->volumetric_fog->width, rb->volumetric_fog->height, rb->volumetric_fog->depth), 0, 0, 0, 0); compute_list = RD::get_singleton()->compute_list_begin(); if (use_filter) { RD::get_singleton()->draw_command_begin_label("Filter Fog"); RENDER_TIMESTAMP("Filter Fog"); RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, volumetric_fog.pipelines[VOLUMETRIC_FOG_SHADER_FILTER]); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->volumetric_fog->uniform_set, 0); RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->volumetric_fog->width, rb->volumetric_fog->height, rb->volumetric_fog->depth); RD::get_singleton()->compute_list_end(); //need restart for buffer update params.filter_axis = 1; RD::get_singleton()->buffer_update(volumetric_fog.params_ubo, 0, sizeof(VolumetricFogShader::ParamsUBO), ¶ms); compute_list = RD::get_singleton()->compute_list_begin(); RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, volumetric_fog.pipelines[VOLUMETRIC_FOG_SHADER_FILTER]); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->volumetric_fog->uniform_set2, 0); if (using_sdfgi) { RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->volumetric_fog->sdfgi_uniform_set, 1); } RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->volumetric_fog->width, rb->volumetric_fog->height, rb->volumetric_fog->depth); RD::get_singleton()->compute_list_add_barrier(compute_list); RD::get_singleton()->draw_command_end_label(); } RENDER_TIMESTAMP("Integrate Fog"); RD::get_singleton()->draw_command_begin_label("Integrate Fog"); RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, volumetric_fog.pipelines[VOLUMETRIC_FOG_SHADER_FOG]); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->volumetric_fog->uniform_set, 0); RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->volumetric_fog->width, rb->volumetric_fog->height, 1); RD::get_singleton()->compute_list_end(RD::BARRIER_MASK_RASTER); RENDER_TIMESTAMP("draw_command_end_label(); rb->volumetric_fog->prev_cam_transform = p_cam_transform; } bool RendererSceneRenderRD::_needs_post_prepass_render(RenderDataRD *p_render_data, bool p_use_gi) { if (p_render_data->render_buffers.is_valid()) { RenderBuffers *rb = render_buffers_owner.getornull(p_render_data->render_buffers); if (rb->sdfgi != nullptr) { return true; } } return false; } void RendererSceneRenderRD::_post_prepass_render(RenderDataRD *p_render_data, bool p_use_gi) { if (p_render_data->render_buffers.is_valid()) { if (p_use_gi) { RenderBuffers *rb = render_buffers_owner.getornull(p_render_data->render_buffers); ERR_FAIL_COND(rb == nullptr); if (rb->sdfgi == nullptr) { return; } RendererSceneEnvironmentRD *env = environment_owner.getornull(p_render_data->environment); rb->sdfgi->update_probes(env, sky.sky_owner.getornull(env->sky)); } } } void RendererSceneRenderRD::_pre_resolve_render(RenderDataRD *p_render_data, bool p_use_gi) { if (p_render_data->render_buffers.is_valid()) { if (p_use_gi) { RD::get_singleton()->compute_list_end(); } } } void RendererSceneRenderRD::_pre_opaque_render(RenderDataRD *p_render_data, bool p_use_ssao, bool p_use_gi, RID p_normal_roughness_buffer, RID p_voxel_gi_buffer) { // Render shadows while GI is rendering, due to how barriers are handled, this should happen at the same time if (p_render_data->render_buffers.is_valid() && p_use_gi) { RenderBuffers *rb = render_buffers_owner.getornull(p_render_data->render_buffers); ERR_FAIL_COND(rb == nullptr); if (rb->sdfgi != nullptr) { rb->sdfgi->store_probes(); } } render_state.cube_shadows.clear(); render_state.shadows.clear(); render_state.directional_shadows.clear(); Plane camera_plane(p_render_data->cam_transform.origin, -p_render_data->cam_transform.basis.get_axis(Vector3::AXIS_Z)); float lod_distance_multiplier = p_render_data->cam_projection.get_lod_multiplier(); { for (int i = 0; i < render_state.render_shadow_count; i++) { LightInstance *li = light_instance_owner.getornull(render_state.render_shadows[i].light); if (storage->light_get_type(li->light) == RS::LIGHT_DIRECTIONAL) { render_state.directional_shadows.push_back(i); } else if (storage->light_get_type(li->light) == RS::LIGHT_OMNI && storage->light_omni_get_shadow_mode(li->light) == RS::LIGHT_OMNI_SHADOW_CUBE) { render_state.cube_shadows.push_back(i); } else { render_state.shadows.push_back(i); } } //cube shadows are rendered in their own way for (uint32_t i = 0; i < render_state.cube_shadows.size(); i++) { _render_shadow_pass(render_state.render_shadows[render_state.cube_shadows[i]].light, p_render_data->shadow_atlas, render_state.render_shadows[render_state.cube_shadows[i]].pass, render_state.render_shadows[render_state.cube_shadows[i]].instances, camera_plane, lod_distance_multiplier, p_render_data->screen_lod_threshold, true, true, true, p_render_data->render_info); } if (render_state.directional_shadows.size()) { //open the pass for directional shadows _update_directional_shadow_atlas(); RD::get_singleton()->draw_list_begin(directional_shadow.fb, RD::INITIAL_ACTION_DROP, RD::FINAL_ACTION_DISCARD, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_CONTINUE); RD::get_singleton()->draw_list_end(); } } // Render GI bool render_shadows = render_state.directional_shadows.size() || render_state.shadows.size(); bool render_gi = p_render_data->render_buffers.is_valid() && p_use_gi; if (render_shadows && render_gi) { RENDER_TIMESTAMP("Render GI + Render Shadows (parallel)"); } else if (render_shadows) { RENDER_TIMESTAMP("Render Shadows"); } else if (render_gi) { RENDER_TIMESTAMP("Render GI"); } //prepare shadow rendering if (render_shadows) { _render_shadow_begin(); //render directional shadows for (uint32_t i = 0; i < render_state.directional_shadows.size(); i++) { _render_shadow_pass(render_state.render_shadows[render_state.directional_shadows[i]].light, p_render_data->shadow_atlas, render_state.render_shadows[render_state.directional_shadows[i]].pass, render_state.render_shadows[render_state.directional_shadows[i]].instances, camera_plane, lod_distance_multiplier, p_render_data->screen_lod_threshold, false, i == render_state.directional_shadows.size() - 1, false, p_render_data->render_info); } //render positional shadows for (uint32_t i = 0; i < render_state.shadows.size(); i++) { _render_shadow_pass(render_state.render_shadows[render_state.shadows[i]].light, p_render_data->shadow_atlas, render_state.render_shadows[render_state.shadows[i]].pass, render_state.render_shadows[render_state.shadows[i]].instances, camera_plane, lod_distance_multiplier, p_render_data->screen_lod_threshold, i == 0, i == render_state.shadows.size() - 1, true, p_render_data->render_info); } _render_shadow_process(); } //start GI if (render_gi) { gi.process_gi(p_render_data->render_buffers, p_normal_roughness_buffer, p_voxel_gi_buffer, p_render_data->environment, p_render_data->cam_projection, p_render_data->cam_transform, *p_render_data->voxel_gi_instances, this); } //Do shadow rendering (in parallel with GI) if (render_shadows) { _render_shadow_end(RD::BARRIER_MASK_NO_BARRIER); } if (render_gi) { RD::get_singleton()->compute_list_end(RD::BARRIER_MASK_NO_BARRIER); //use a later barrier } if (p_render_data->render_buffers.is_valid()) { if (p_use_ssao) { _process_ssao(p_render_data->render_buffers, p_render_data->environment, p_normal_roughness_buffer, p_render_data->cam_projection); } } //full barrier here, we need raster, transfer and compute and it depends from the previous work RD::get_singleton()->barrier(RD::BARRIER_MASK_ALL, RD::BARRIER_MASK_ALL); if (current_cluster_builder) { current_cluster_builder->begin(p_render_data->cam_transform, p_render_data->cam_projection, !p_render_data->reflection_probe.is_valid()); } bool using_shadows = true; if (p_render_data->reflection_probe.is_valid()) { if (!storage->reflection_probe_renders_shadows(reflection_probe_instance_get_probe(p_render_data->reflection_probe))) { using_shadows = false; } } else { //do not render reflections when rendering a reflection probe _setup_reflections(*p_render_data->reflection_probes, p_render_data->cam_transform.affine_inverse(), p_render_data->environment); } uint32_t directional_light_count = 0; uint32_t positional_light_count = 0; _setup_lights(*p_render_data->lights, p_render_data->cam_transform, p_render_data->shadow_atlas, using_shadows, directional_light_count, positional_light_count); _setup_decals(*p_render_data->decals, p_render_data->cam_transform.affine_inverse()); p_render_data->directional_light_count = directional_light_count; if (current_cluster_builder) { current_cluster_builder->bake_cluster(); } if (p_render_data->render_buffers.is_valid()) { bool directional_shadows = false; for (uint32_t i = 0; i < directional_light_count; i++) { if (cluster.directional_lights[i].shadow_enabled) { directional_shadows = true; break; } } if (is_volumetric_supported()) { _update_volumetric_fog(p_render_data->render_buffers, p_render_data->environment, p_render_data->cam_projection, p_render_data->cam_transform, p_render_data->shadow_atlas, directional_light_count, directional_shadows, positional_light_count, render_state.voxel_gi_count); } } } void RendererSceneRenderRD::render_scene(RID p_render_buffers, const CameraData *p_camera_data, const PagedArray &p_instances, const PagedArray &p_lights, const PagedArray &p_reflection_probes, const PagedArray &p_voxel_gi_instances, const PagedArray &p_decals, const PagedArray &p_lightmaps, RID p_environment, RID p_camera_effects, RID p_shadow_atlas, RID p_occluder_debug_tex, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass, float p_screen_lod_threshold, const RenderShadowData *p_render_shadows, int p_render_shadow_count, const RenderSDFGIData *p_render_sdfgi_regions, int p_render_sdfgi_region_count, const RenderSDFGIUpdateData *p_sdfgi_update_data, RendererScene::RenderInfo *r_render_info) { // getting this here now so we can direct call a bunch of things more easily RenderBuffers *rb = nullptr; if (p_render_buffers.is_valid()) { rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND(!rb); } //assign render data RenderDataRD render_data; { render_data.render_buffers = p_render_buffers; // Our first camera is used by default render_data.cam_transform = p_camera_data->main_transform; render_data.cam_projection = p_camera_data->main_projection; render_data.view_projection[0] = p_camera_data->main_projection; render_data.cam_ortogonal = p_camera_data->is_ortogonal; render_data.view_count = p_camera_data->view_count; for (uint32_t v = 0; v < p_camera_data->view_count; v++) { render_data.view_projection[v] = p_camera_data->view_projection[v]; } render_data.z_near = p_camera_data->main_projection.get_z_near(); render_data.z_far = p_camera_data->main_projection.get_z_far(); render_data.instances = &p_instances; render_data.lights = &p_lights; render_data.reflection_probes = &p_reflection_probes; render_data.voxel_gi_instances = &p_voxel_gi_instances; render_data.decals = &p_decals; render_data.lightmaps = &p_lightmaps; render_data.environment = p_environment; render_data.camera_effects = p_camera_effects; render_data.shadow_atlas = p_shadow_atlas; render_data.reflection_atlas = p_reflection_atlas; render_data.reflection_probe = p_reflection_probe; render_data.reflection_probe_pass = p_reflection_probe_pass; // this should be the same for all cameras.. render_data.lod_distance_multiplier = p_camera_data->main_projection.get_lod_multiplier(); render_data.lod_camera_plane = Plane(p_camera_data->main_transform.get_origin(), -p_camera_data->main_transform.basis.get_axis(Vector3::AXIS_Z)); if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_DISABLE_LOD) { render_data.screen_lod_threshold = 0.0; } else { render_data.screen_lod_threshold = p_screen_lod_threshold; } render_state.render_shadows = p_render_shadows; render_state.render_shadow_count = p_render_shadow_count; render_state.render_sdfgi_regions = p_render_sdfgi_regions; render_state.render_sdfgi_region_count = p_render_sdfgi_region_count; render_state.sdfgi_update_data = p_sdfgi_update_data; render_data.render_info = r_render_info; } PagedArray empty; if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_UNSHADED) { render_data.lights = ∅ render_data.reflection_probes = ∅ render_data.voxel_gi_instances = ∅ } //sdfgi first if (rb != nullptr && rb->sdfgi != nullptr) { for (int i = 0; i < render_state.render_sdfgi_region_count; i++) { rb->sdfgi->render_region(p_render_buffers, render_state.render_sdfgi_regions[i].region, render_state.render_sdfgi_regions[i].instances, this); } if (render_state.sdfgi_update_data->update_static) { rb->sdfgi->render_static_lights(p_render_buffers, render_state.sdfgi_update_data->static_cascade_count, p_sdfgi_update_data->static_cascade_indices, render_state.sdfgi_update_data->static_positional_lights, this); } } Color clear_color; if (p_render_buffers.is_valid()) { clear_color = storage->render_target_get_clear_request_color(rb->render_target); } else { clear_color = storage->get_default_clear_color(); } //assign render indices to voxel_gi_instances if (is_dynamic_gi_supported()) { for (uint32_t i = 0; i < (uint32_t)p_voxel_gi_instances.size(); i++) { RendererSceneGIRD::VoxelGIInstance *voxel_gi_inst = gi.voxel_gi_instance_owner.getornull(p_voxel_gi_instances[i]); if (voxel_gi_inst) { voxel_gi_inst->render_index = i; } } } if (render_buffers_owner.owns(render_data.render_buffers)) { // render_data.render_buffers == p_render_buffers so we can use our already retrieved rb current_cluster_builder = rb->cluster_builder; } else if (reflection_probe_instance_owner.owns(render_data.reflection_probe)) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(render_data.reflection_probe); ReflectionAtlas *ra = reflection_atlas_owner.getornull(rpi->atlas); if (!ra) { ERR_PRINT("reflection probe has no reflection atlas! Bug?"); current_cluster_builder = nullptr; } else { current_cluster_builder = ra->cluster_builder; } } else { ERR_PRINT("No render buffer nor reflection atlas, bug"); //should never happen, will crash current_cluster_builder = nullptr; } render_state.voxel_gi_count = 0; if (rb != nullptr) { if (rb->sdfgi) { rb->sdfgi->update_cascades(); rb->sdfgi->pre_process_gi(render_data.cam_transform, &render_data, this); rb->sdfgi->update_light(); } gi.setup_voxel_gi_instances(render_data.render_buffers, render_data.cam_transform, *render_data.voxel_gi_instances, render_state.voxel_gi_count, this); } render_state.depth_prepass_used = false; //calls _pre_opaque_render between depth pre-pass and opaque pass if (current_cluster_builder != nullptr) { render_data.cluster_buffer = current_cluster_builder->get_cluster_buffer(); render_data.cluster_size = current_cluster_builder->get_cluster_size(); render_data.cluster_max_elements = current_cluster_builder->get_max_cluster_elements(); } _render_scene(&render_data, clear_color); if (p_render_buffers.is_valid()) { if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_CLUSTER_OMNI_LIGHTS || debug_draw == RS::VIEWPORT_DEBUG_DRAW_CLUSTER_SPOT_LIGHTS || debug_draw == RS::VIEWPORT_DEBUG_DRAW_CLUSTER_DECALS || debug_draw == RS::VIEWPORT_DEBUG_DRAW_CLUSTER_REFLECTION_PROBES) { ClusterBuilderRD::ElementType elem_type = ClusterBuilderRD::ELEMENT_TYPE_MAX; switch (debug_draw) { case RS::VIEWPORT_DEBUG_DRAW_CLUSTER_OMNI_LIGHTS: elem_type = ClusterBuilderRD::ELEMENT_TYPE_OMNI_LIGHT; break; case RS::VIEWPORT_DEBUG_DRAW_CLUSTER_SPOT_LIGHTS: elem_type = ClusterBuilderRD::ELEMENT_TYPE_SPOT_LIGHT; break; case RS::VIEWPORT_DEBUG_DRAW_CLUSTER_DECALS: elem_type = ClusterBuilderRD::ELEMENT_TYPE_DECAL; break; case RS::VIEWPORT_DEBUG_DRAW_CLUSTER_REFLECTION_PROBES: elem_type = ClusterBuilderRD::ELEMENT_TYPE_REFLECTION_PROBE; break; default: { } } if (current_cluster_builder != nullptr) { current_cluster_builder->debug(elem_type); } } RENDER_TIMESTAMP("Tonemap"); _render_buffers_post_process_and_tonemap(&render_data); _render_buffers_debug_draw(p_render_buffers, p_shadow_atlas, p_occluder_debug_tex); if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SDFGI && rb != nullptr && rb->sdfgi != nullptr) { rb->sdfgi->debug_draw(render_data.cam_projection, render_data.cam_transform, rb->width, rb->height, rb->render_target, rb->texture); } } } void RendererSceneRenderRD::_render_shadow_pass(RID p_light, RID p_shadow_atlas, int p_pass, const PagedArray &p_instances, const Plane &p_camera_plane, float p_lod_distance_multiplier, float p_screen_lod_threshold, bool p_open_pass, bool p_close_pass, bool p_clear_region, RendererScene::RenderInfo *p_render_info) { LightInstance *light_instance = light_instance_owner.getornull(p_light); ERR_FAIL_COND(!light_instance); Rect2i atlas_rect; uint32_t atlas_size; RID atlas_fb; bool using_dual_paraboloid = false; bool using_dual_paraboloid_flip = false; RID render_fb; RID render_texture; float zfar; bool use_pancake = false; bool render_cubemap = false; bool finalize_cubemap = false; bool flip_y = false; CameraMatrix light_projection; Transform3D light_transform; if (storage->light_get_type(light_instance->light) == RS::LIGHT_DIRECTIONAL) { //set pssm stuff if (light_instance->last_scene_shadow_pass != scene_pass) { light_instance->directional_rect = _get_directional_shadow_rect(directional_shadow.size, directional_shadow.light_count, directional_shadow.current_light); directional_shadow.current_light++; light_instance->last_scene_shadow_pass = scene_pass; } use_pancake = storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_SHADOW_PANCAKE_SIZE) > 0; light_projection = light_instance->shadow_transform[p_pass].camera; light_transform = light_instance->shadow_transform[p_pass].transform; atlas_rect.position.x = light_instance->directional_rect.position.x; atlas_rect.position.y = light_instance->directional_rect.position.y; atlas_rect.size.width = light_instance->directional_rect.size.x; atlas_rect.size.height = light_instance->directional_rect.size.y; if (storage->light_directional_get_shadow_mode(light_instance->light) == RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS) { atlas_rect.size.width /= 2; atlas_rect.size.height /= 2; if (p_pass == 1) { atlas_rect.position.x += atlas_rect.size.width; } else if (p_pass == 2) { atlas_rect.position.y += atlas_rect.size.height; } else if (p_pass == 3) { atlas_rect.position.x += atlas_rect.size.width; atlas_rect.position.y += atlas_rect.size.height; } } else if (storage->light_directional_get_shadow_mode(light_instance->light) == RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS) { atlas_rect.size.height /= 2; if (p_pass == 0) { } else { atlas_rect.position.y += atlas_rect.size.height; } } light_instance->shadow_transform[p_pass].atlas_rect = atlas_rect; light_instance->shadow_transform[p_pass].atlas_rect.position /= directional_shadow.size; light_instance->shadow_transform[p_pass].atlas_rect.size /= directional_shadow.size; zfar = storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_RANGE); render_fb = directional_shadow.fb; render_texture = RID(); flip_y = true; } else { //set from shadow atlas ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas); ERR_FAIL_COND(!shadow_atlas); ERR_FAIL_COND(!shadow_atlas->shadow_owners.has(p_light)); _update_shadow_atlas(shadow_atlas); uint32_t key = shadow_atlas->shadow_owners[p_light]; uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3; uint32_t shadow = key & ShadowAtlas::SHADOW_INDEX_MASK; ERR_FAIL_INDEX((int)shadow, shadow_atlas->quadrants[quadrant].shadows.size()); uint32_t quadrant_size = shadow_atlas->size >> 1; atlas_rect.position.x = (quadrant & 1) * quadrant_size; atlas_rect.position.y = (quadrant >> 1) * quadrant_size; uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision); atlas_rect.position.x += (shadow % shadow_atlas->quadrants[quadrant].subdivision) * shadow_size; atlas_rect.position.y += (shadow / shadow_atlas->quadrants[quadrant].subdivision) * shadow_size; atlas_rect.size.width = shadow_size; atlas_rect.size.height = shadow_size; zfar = storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_RANGE); if (storage->light_get_type(light_instance->light) == RS::LIGHT_OMNI) { if (storage->light_omni_get_shadow_mode(light_instance->light) == RS::LIGHT_OMNI_SHADOW_CUBE) { ShadowCubemap *cubemap = _get_shadow_cubemap(shadow_size / 2); render_fb = cubemap->side_fb[p_pass]; render_texture = cubemap->cubemap; light_projection = light_instance->shadow_transform[p_pass].camera; light_transform = light_instance->shadow_transform[p_pass].transform; render_cubemap = true; finalize_cubemap = p_pass == 5; atlas_fb = shadow_atlas->fb; atlas_size = shadow_atlas->size; if (p_pass == 0) { _render_shadow_begin(); } } else { light_projection = light_instance->shadow_transform[0].camera; light_transform = light_instance->shadow_transform[0].transform; atlas_rect.size.height /= 2; atlas_rect.position.y += p_pass * atlas_rect.size.height; using_dual_paraboloid = true; using_dual_paraboloid_flip = p_pass == 1; render_fb = shadow_atlas->fb; flip_y = true; } } else if (storage->light_get_type(light_instance->light) == RS::LIGHT_SPOT) { light_projection = light_instance->shadow_transform[0].camera; light_transform = light_instance->shadow_transform[0].transform; render_fb = shadow_atlas->fb; flip_y = true; } } if (render_cubemap) { //rendering to cubemap _render_shadow_append(render_fb, p_instances, light_projection, light_transform, zfar, 0, 0, false, false, use_pancake, p_camera_plane, p_lod_distance_multiplier, p_screen_lod_threshold, Rect2(), false, true, true, true, p_render_info); if (finalize_cubemap) { _render_shadow_process(); _render_shadow_end(); //reblit Rect2 atlas_rect_norm = atlas_rect; atlas_rect_norm.position.x /= float(atlas_size); atlas_rect_norm.position.y /= float(atlas_size); atlas_rect_norm.size.x /= float(atlas_size); atlas_rect_norm.size.y /= float(atlas_size); atlas_rect_norm.size.height /= 2; storage->get_effects()->copy_cubemap_to_dp(render_texture, atlas_fb, atlas_rect_norm, light_projection.get_z_near(), light_projection.get_z_far(), false); atlas_rect_norm.position.y += atlas_rect_norm.size.height; storage->get_effects()->copy_cubemap_to_dp(render_texture, atlas_fb, atlas_rect_norm, light_projection.get_z_near(), light_projection.get_z_far(), true); //restore transform so it can be properly used light_instance_set_shadow_transform(p_light, CameraMatrix(), light_instance->transform, zfar, 0, 0, 0); } } else { //render shadow _render_shadow_append(render_fb, p_instances, light_projection, light_transform, zfar, 0, 0, using_dual_paraboloid, using_dual_paraboloid_flip, use_pancake, p_camera_plane, p_lod_distance_multiplier, p_screen_lod_threshold, atlas_rect, flip_y, p_clear_region, p_open_pass, p_close_pass, p_render_info); } } void RendererSceneRenderRD::render_material(const Transform3D &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, const PagedArray &p_instances, RID p_framebuffer, const Rect2i &p_region) { _render_material(p_cam_transform, p_cam_projection, p_cam_ortogonal, p_instances, p_framebuffer, p_region); } void RendererSceneRenderRD::render_particle_collider_heightfield(RID p_collider, const Transform3D &p_transform, const PagedArray &p_instances) { ERR_FAIL_COND(!storage->particles_collision_is_heightfield(p_collider)); Vector3 extents = storage->particles_collision_get_extents(p_collider) * p_transform.basis.get_scale(); CameraMatrix cm; cm.set_orthogonal(-extents.x, extents.x, -extents.z, extents.z, 0, extents.y * 2.0); Vector3 cam_pos = p_transform.origin; cam_pos.y += extents.y; Transform3D cam_xform; cam_xform.set_look_at(cam_pos, cam_pos - p_transform.basis.get_axis(Vector3::AXIS_Y), -p_transform.basis.get_axis(Vector3::AXIS_Z).normalized()); RID fb = storage->particles_collision_get_heightfield_framebuffer(p_collider); _render_particle_collider_heightfield(fb, cam_xform, cm, p_instances); } bool RendererSceneRenderRD::free(RID p_rid) { if (render_buffers_owner.owns(p_rid)) { RenderBuffers *rb = render_buffers_owner.getornull(p_rid); _free_render_buffer_data(rb); memdelete(rb->data); if (rb->sdfgi) { rb->sdfgi->erase(); memdelete(rb->sdfgi); rb->sdfgi = nullptr; } if (rb->volumetric_fog) { _volumetric_fog_erase(rb); } if (rb->cluster_builder) { memdelete(rb->cluster_builder); } render_buffers_owner.free(p_rid); } else if (environment_owner.owns(p_rid)) { //not much to delete, just free it environment_owner.free(p_rid); } else if (camera_effects_owner.owns(p_rid)) { //not much to delete, just free it camera_effects_owner.free(p_rid); } else if (reflection_atlas_owner.owns(p_rid)) { reflection_atlas_set_size(p_rid, 0, 0); ReflectionAtlas *ra = reflection_atlas_owner.getornull(p_rid); if (ra->cluster_builder) { memdelete(ra->cluster_builder); } reflection_atlas_owner.free(p_rid); } else if (reflection_probe_instance_owner.owns(p_rid)) { //not much to delete, just free it //ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_rid); reflection_probe_release_atlas_index(p_rid); reflection_probe_instance_owner.free(p_rid); } else if (decal_instance_owner.owns(p_rid)) { decal_instance_owner.free(p_rid); } else if (lightmap_instance_owner.owns(p_rid)) { lightmap_instance_owner.free(p_rid); } else if (gi.voxel_gi_instance_owner.owns(p_rid)) { RendererSceneGIRD::VoxelGIInstance *voxel_gi = gi.voxel_gi_instance_owner.getornull(p_rid); if (voxel_gi->texture.is_valid()) { RD::get_singleton()->free(voxel_gi->texture); RD::get_singleton()->free(voxel_gi->write_buffer); } for (int i = 0; i < voxel_gi->dynamic_maps.size(); i++) { RD::get_singleton()->free(voxel_gi->dynamic_maps[i].texture); RD::get_singleton()->free(voxel_gi->dynamic_maps[i].depth); } gi.voxel_gi_instance_owner.free(p_rid); } else if (sky.sky_owner.owns(p_rid)) { sky.update_dirty_skys(); sky.free_sky(p_rid); } else if (light_instance_owner.owns(p_rid)) { LightInstance *light_instance = light_instance_owner.getornull(p_rid); //remove from shadow atlases.. for (Set::Element *E = light_instance->shadow_atlases.front(); E; E = E->next()) { ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(E->get()); ERR_CONTINUE(!shadow_atlas->shadow_owners.has(p_rid)); uint32_t key = shadow_atlas->shadow_owners[p_rid]; uint32_t q = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3; uint32_t s = key & ShadowAtlas::SHADOW_INDEX_MASK; shadow_atlas->quadrants[q].shadows.write[s].owner = RID(); shadow_atlas->shadow_owners.erase(p_rid); } light_instance_owner.free(p_rid); } else if (shadow_atlas_owner.owns(p_rid)) { shadow_atlas_set_size(p_rid, 0); shadow_atlas_owner.free(p_rid); } else { return false; } return true; } void RendererSceneRenderRD::set_debug_draw_mode(RS::ViewportDebugDraw p_debug_draw) { debug_draw = p_debug_draw; } void RendererSceneRenderRD::update() { sky.update_dirty_skys(); } void RendererSceneRenderRD::set_time(double p_time, double p_step) { time = p_time; time_step = p_step; } void RendererSceneRenderRD::screen_space_roughness_limiter_set_active(bool p_enable, float p_amount, float p_limit) { screen_space_roughness_limiter = p_enable; screen_space_roughness_limiter_amount = p_amount; screen_space_roughness_limiter_limit = p_limit; } bool RendererSceneRenderRD::screen_space_roughness_limiter_is_active() const { return screen_space_roughness_limiter; } float RendererSceneRenderRD::screen_space_roughness_limiter_get_amount() const { return screen_space_roughness_limiter_amount; } float RendererSceneRenderRD::screen_space_roughness_limiter_get_limit() const { return screen_space_roughness_limiter_limit; } TypedArray RendererSceneRenderRD::bake_render_uv2(RID p_base, const Vector &p_material_overrides, const Size2i &p_image_size) { RD::TextureFormat tf; tf.format = RD::DATA_FORMAT_R8G8B8A8_UNORM; tf.width = p_image_size.width; // Always 64x64 tf.height = p_image_size.height; tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT; RID albedo_alpha_tex = RD::get_singleton()->texture_create(tf, RD::TextureView()); RID normal_tex = RD::get_singleton()->texture_create(tf, RD::TextureView()); RID orm_tex = RD::get_singleton()->texture_create(tf, RD::TextureView()); tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT; RID emission_tex = RD::get_singleton()->texture_create(tf, RD::TextureView()); tf.format = RD::DATA_FORMAT_R32_SFLOAT; RID depth_write_tex = RD::get_singleton()->texture_create(tf, RD::TextureView()); tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT; tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32; RID depth_tex = RD::get_singleton()->texture_create(tf, RD::TextureView()); Vector fb_tex; fb_tex.push_back(albedo_alpha_tex); fb_tex.push_back(normal_tex); fb_tex.push_back(orm_tex); fb_tex.push_back(emission_tex); fb_tex.push_back(depth_write_tex); fb_tex.push_back(depth_tex); RID fb = RD::get_singleton()->framebuffer_create(fb_tex); //RID sampled_light; GeometryInstance *gi = geometry_instance_create(p_base); uint32_t sc = RSG::storage->mesh_get_surface_count(p_base); Vector materials; materials.resize(sc); for (uint32_t i = 0; i < sc; i++) { if (i < (uint32_t)p_material_overrides.size()) { materials.write[i] = p_material_overrides[i]; } } geometry_instance_set_surface_materials(gi, materials); if (cull_argument.size() == 0) { cull_argument.push_back(nullptr); } cull_argument[0] = gi; _render_uv2(cull_argument, fb, Rect2i(0, 0, p_image_size.width, p_image_size.height)); geometry_instance_free(gi); TypedArray ret; { PackedByteArray data = RD::get_singleton()->texture_get_data(albedo_alpha_tex, 0); Ref img; img.instantiate(); img->create(p_image_size.width, p_image_size.height, false, Image::FORMAT_RGBA8, data); RD::get_singleton()->free(albedo_alpha_tex); ret.push_back(img); } { PackedByteArray data = RD::get_singleton()->texture_get_data(normal_tex, 0); Ref img; img.instantiate(); img->create(p_image_size.width, p_image_size.height, false, Image::FORMAT_RGBA8, data); RD::get_singleton()->free(normal_tex); ret.push_back(img); } { PackedByteArray data = RD::get_singleton()->texture_get_data(orm_tex, 0); Ref img; img.instantiate(); img->create(p_image_size.width, p_image_size.height, false, Image::FORMAT_RGBA8, data); RD::get_singleton()->free(orm_tex); ret.push_back(img); } { PackedByteArray data = RD::get_singleton()->texture_get_data(emission_tex, 0); Ref img; img.instantiate(); img->create(p_image_size.width, p_image_size.height, false, Image::FORMAT_RGBAH, data); RD::get_singleton()->free(emission_tex); ret.push_back(img); } RD::get_singleton()->free(depth_write_tex); RD::get_singleton()->free(depth_tex); return ret; } void RendererSceneRenderRD::sdfgi_set_debug_probe_select(const Vector3 &p_position, const Vector3 &p_dir) { gi.sdfgi_debug_probe_pos = p_position; gi.sdfgi_debug_probe_dir = p_dir; } RendererSceneRenderRD *RendererSceneRenderRD::singleton = nullptr; RID RendererSceneRenderRD::get_reflection_probe_buffer() { return cluster.reflection_buffer; } RID RendererSceneRenderRD::get_omni_light_buffer() { return cluster.omni_light_buffer; } RID RendererSceneRenderRD::get_spot_light_buffer() { return cluster.spot_light_buffer; } RID RendererSceneRenderRD::get_directional_light_buffer() { return cluster.directional_light_buffer; } RID RendererSceneRenderRD::get_decal_buffer() { return cluster.decal_buffer; } int RendererSceneRenderRD::get_max_directional_lights() const { return cluster.max_directional_lights; } bool RendererSceneRenderRD::is_dynamic_gi_supported() const { // usable by default (unless low end = true) return true; } bool RendererSceneRenderRD::is_clustered_enabled() const { // used by default. return true; } bool RendererSceneRenderRD::is_volumetric_supported() const { // usable by default (unless low end = true) return true; } uint32_t RendererSceneRenderRD::get_max_elements() const { return GLOBAL_GET("rendering/limits/cluster_builder/max_clustered_elements"); } RendererSceneRenderRD::RendererSceneRenderRD(RendererStorageRD *p_storage) { max_cluster_elements = get_max_elements(); storage = p_storage; singleton = this; directional_shadow.size = GLOBAL_GET("rendering/shadows/directional_shadow/size"); directional_shadow.use_16_bits = GLOBAL_GET("rendering/shadows/directional_shadow/16_bits"); /* SKY SHADER */ sky.init(storage); /* GI */ if (is_dynamic_gi_supported()) { gi.init(storage, &sky); } { //decals cluster.max_decals = max_cluster_elements; uint32_t decal_buffer_size = cluster.max_decals * sizeof(Cluster::DecalData); cluster.decals = memnew_arr(Cluster::DecalData, cluster.max_decals); cluster.decal_sort = memnew_arr(Cluster::InstanceSort, cluster.max_decals); cluster.decal_buffer = RD::get_singleton()->storage_buffer_create(decal_buffer_size); } { //reflections cluster.max_reflections = max_cluster_elements; cluster.reflections = memnew_arr(Cluster::ReflectionData, cluster.max_reflections); cluster.reflection_sort = memnew_arr(Cluster::InstanceSort, cluster.max_reflections); cluster.reflection_buffer = RD::get_singleton()->storage_buffer_create(sizeof(Cluster::ReflectionData) * cluster.max_reflections); } { //lights cluster.max_lights = max_cluster_elements; uint32_t light_buffer_size = cluster.max_lights * sizeof(Cluster::LightData); cluster.omni_lights = memnew_arr(Cluster::LightData, cluster.max_lights); cluster.omni_light_buffer = RD::get_singleton()->storage_buffer_create(light_buffer_size); cluster.omni_light_sort = memnew_arr(Cluster::InstanceSort, cluster.max_lights); cluster.spot_lights = memnew_arr(Cluster::LightData, cluster.max_lights); cluster.spot_light_buffer = RD::get_singleton()->storage_buffer_create(light_buffer_size); cluster.spot_light_sort = memnew_arr(Cluster::InstanceSort, cluster.max_lights); //defines += "\n#define MAX_LIGHT_DATA_STRUCTS " + itos(cluster.max_lights) + "\n"; cluster.max_directional_lights = MAX_DIRECTIONAL_LIGHTS; uint32_t directional_light_buffer_size = cluster.max_directional_lights * sizeof(Cluster::DirectionalLightData); cluster.directional_lights = memnew_arr(Cluster::DirectionalLightData, cluster.max_directional_lights); cluster.directional_light_buffer = RD::get_singleton()->uniform_buffer_create(directional_light_buffer_size); } if (is_volumetric_supported()) { String defines = "\n#define MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS " + itos(cluster.max_directional_lights) + "\n"; Vector volumetric_fog_modes; volumetric_fog_modes.push_back("\n#define MODE_DENSITY\n"); volumetric_fog_modes.push_back("\n#define MODE_DENSITY\n#define ENABLE_SDFGI\n"); volumetric_fog_modes.push_back("\n#define MODE_FILTER\n"); volumetric_fog_modes.push_back("\n#define MODE_FOG\n"); volumetric_fog.shader.initialize(volumetric_fog_modes, defines); volumetric_fog.shader_version = volumetric_fog.shader.version_create(); for (int i = 0; i < VOLUMETRIC_FOG_SHADER_MAX; i++) { volumetric_fog.pipelines[i] = RD::get_singleton()->compute_pipeline_create(volumetric_fog.shader.version_get_shader(volumetric_fog.shader_version, i)); } volumetric_fog.params_ubo = RD::get_singleton()->uniform_buffer_create(sizeof(VolumetricFogShader::ParamsUBO)); } { RD::SamplerState sampler; sampler.mag_filter = RD::SAMPLER_FILTER_NEAREST; sampler.min_filter = RD::SAMPLER_FILTER_NEAREST; sampler.enable_compare = true; sampler.compare_op = RD::COMPARE_OP_LESS; shadow_sampler = RD::get_singleton()->sampler_create(sampler); } camera_effects_set_dof_blur_bokeh_shape(RS::DOFBokehShape(int(GLOBAL_GET("rendering/camera/depth_of_field/depth_of_field_bokeh_shape")))); camera_effects_set_dof_blur_quality(RS::DOFBlurQuality(int(GLOBAL_GET("rendering/camera/depth_of_field/depth_of_field_bokeh_quality"))), GLOBAL_GET("rendering/camera/depth_of_field/depth_of_field_use_jitter")); environment_set_ssao_quality(RS::EnvironmentSSAOQuality(int(GLOBAL_GET("rendering/environment/ssao/quality"))), GLOBAL_GET("rendering/environment/ssao/half_size"), GLOBAL_GET("rendering/environment/ssao/adaptive_target"), GLOBAL_GET("rendering/environment/ssao/blur_passes"), GLOBAL_GET("rendering/environment/ssao/fadeout_from"), GLOBAL_GET("rendering/environment/ssao/fadeout_to")); screen_space_roughness_limiter = GLOBAL_GET("rendering/anti_aliasing/screen_space_roughness_limiter/enabled"); screen_space_roughness_limiter_amount = GLOBAL_GET("rendering/anti_aliasing/screen_space_roughness_limiter/amount"); screen_space_roughness_limiter_limit = GLOBAL_GET("rendering/anti_aliasing/screen_space_roughness_limiter/limit"); glow_bicubic_upscale = int(GLOBAL_GET("rendering/environment/glow/upscale_mode")) > 0; glow_high_quality = GLOBAL_GET("rendering/environment/glow/use_high_quality"); ssr_roughness_quality = RS::EnvironmentSSRRoughnessQuality(int(GLOBAL_GET("rendering/environment/screen_space_reflection/roughness_quality"))); sss_quality = RS::SubSurfaceScatteringQuality(int(GLOBAL_GET("rendering/environment/subsurface_scattering/subsurface_scattering_quality"))); sss_scale = GLOBAL_GET("rendering/environment/subsurface_scattering/subsurface_scattering_scale"); sss_depth_scale = GLOBAL_GET("rendering/environment/subsurface_scattering/subsurface_scattering_depth_scale"); directional_penumbra_shadow_kernel = memnew_arr(float, 128); directional_soft_shadow_kernel = memnew_arr(float, 128); penumbra_shadow_kernel = memnew_arr(float, 128); soft_shadow_kernel = memnew_arr(float, 128); shadows_quality_set(RS::ShadowQuality(int(GLOBAL_GET("rendering/shadows/shadows/soft_shadow_quality")))); directional_shadow_quality_set(RS::ShadowQuality(int(GLOBAL_GET("rendering/shadows/directional_shadow/soft_shadow_quality")))); environment_set_volumetric_fog_volume_size(GLOBAL_GET("rendering/environment/volumetric_fog/volume_size"), GLOBAL_GET("rendering/environment/volumetric_fog/volume_depth")); environment_set_volumetric_fog_filter_active(GLOBAL_GET("rendering/environment/volumetric_fog/use_filter")); cull_argument.set_page_pool(&cull_argument_pool); } RendererSceneRenderRD::~RendererSceneRenderRD() { for (Map::Element *E = shadow_cubemaps.front(); E; E = E->next()) { RD::get_singleton()->free(E->get().cubemap); } if (sky.sky_scene_state.uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(sky.sky_scene_state.uniform_set)) { RD::get_singleton()->free(sky.sky_scene_state.uniform_set); } if (is_dynamic_gi_supported()) { gi.free(); volumetric_fog.shader.version_free(volumetric_fog.shader_version); RD::get_singleton()->free(volumetric_fog.params_ubo); } RendererSceneSkyRD::SkyMaterialData *md = (RendererSceneSkyRD::SkyMaterialData *)storage->material_get_data(sky.sky_shader.default_material, RendererStorageRD::SHADER_TYPE_SKY); sky.sky_shader.shader.version_free(md->shader_data->version); RD::get_singleton()->free(sky.sky_scene_state.directional_light_buffer); RD::get_singleton()->free(sky.sky_scene_state.uniform_buffer); memdelete_arr(sky.sky_scene_state.directional_lights); memdelete_arr(sky.sky_scene_state.last_frame_directional_lights); storage->free(sky.sky_shader.default_shader); storage->free(sky.sky_shader.default_material); storage->free(sky.sky_scene_state.fog_shader); storage->free(sky.sky_scene_state.fog_material); memdelete_arr(directional_penumbra_shadow_kernel); memdelete_arr(directional_soft_shadow_kernel); memdelete_arr(penumbra_shadow_kernel); memdelete_arr(soft_shadow_kernel); { RD::get_singleton()->free(cluster.directional_light_buffer); RD::get_singleton()->free(cluster.omni_light_buffer); RD::get_singleton()->free(cluster.spot_light_buffer); RD::get_singleton()->free(cluster.reflection_buffer); RD::get_singleton()->free(cluster.decal_buffer); memdelete_arr(cluster.directional_lights); memdelete_arr(cluster.omni_lights); memdelete_arr(cluster.spot_lights); memdelete_arr(cluster.omni_light_sort); memdelete_arr(cluster.spot_light_sort); memdelete_arr(cluster.reflections); memdelete_arr(cluster.reflection_sort); memdelete_arr(cluster.decals); memdelete_arr(cluster.decal_sort); } RD::get_singleton()->free(shadow_sampler); directional_shadow_atlas_set_size(0); cull_argument.reset(); //avoid exit error }