/*************************************************************************/ /* renderer_scene_render_rd.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "renderer_scene_render_rd.h" #include "core/config/project_settings.h" #include "core/os/os.h" #include "renderer_compositor_rd.h" #include "servers/rendering/renderer_rd/environment/fog.h" #include "servers/rendering/renderer_rd/storage_rd/material_storage.h" #include "servers/rendering/renderer_rd/storage_rd/texture_storage.h" #include "servers/rendering/rendering_server_default.h" #include "servers/rendering/storage/camera_attributes_storage.h" void get_vogel_disk(float *r_kernel, int p_sample_count) { const float golden_angle = 2.4; for (int i = 0; i < p_sample_count; i++) { float r = Math::sqrt(float(i) + 0.5) / Math::sqrt(float(p_sample_count)); float theta = float(i) * golden_angle; r_kernel[i * 4] = Math::cos(theta) * r; r_kernel[i * 4 + 1] = Math::sin(theta) * r; } } void RendererSceneRenderRD::sdfgi_update(const Ref &p_render_buffers, RID p_environment, const Vector3 &p_world_position) { Ref rb = p_render_buffers; ERR_FAIL_COND(rb.is_null()); Ref sdfgi; if (rb->has_custom_data(RB_SCOPE_SDFGI)) { sdfgi = rb->get_custom_data(RB_SCOPE_SDFGI); } bool needs_sdfgi = p_environment.is_valid() && environment_get_sdfgi_enabled(p_environment); if (!needs_sdfgi) { if (sdfgi.is_valid()) { // delete it sdfgi.unref(); rb->set_custom_data(RB_SCOPE_SDFGI, sdfgi); } return; } static const uint32_t history_frames_to_converge[RS::ENV_SDFGI_CONVERGE_MAX] = { 5, 10, 15, 20, 25, 30 }; uint32_t requested_history_size = history_frames_to_converge[gi.sdfgi_frames_to_converge]; if (sdfgi.is_valid() && (sdfgi->num_cascades != environment_get_sdfgi_cascades(p_environment) || sdfgi->min_cell_size != environment_get_sdfgi_min_cell_size(p_environment) || requested_history_size != sdfgi->history_size || sdfgi->uses_occlusion != environment_get_sdfgi_use_occlusion(p_environment) || sdfgi->y_scale_mode != environment_get_sdfgi_y_scale(p_environment))) { //configuration changed, erase sdfgi.unref(); rb->set_custom_data(RB_SCOPE_SDFGI, sdfgi); } if (sdfgi.is_null()) { // re-create sdfgi = gi.create_sdfgi(p_environment, p_world_position, requested_history_size); rb->set_custom_data(RB_SCOPE_SDFGI, sdfgi); } else { //check for updates sdfgi->update(p_environment, p_world_position); } } int RendererSceneRenderRD::sdfgi_get_pending_region_count(const Ref &p_render_buffers) const { Ref rb = p_render_buffers; ERR_FAIL_COND_V(rb.is_null(), 0); if (!rb->has_custom_data(RB_SCOPE_SDFGI)) { return 0; } Ref sdfgi = rb->get_custom_data(RB_SCOPE_SDFGI); int dirty_count = 0; for (uint32_t i = 0; i < sdfgi->cascades.size(); i++) { const RendererRD::GI::SDFGI::Cascade &c = sdfgi->cascades[i]; if (c.dirty_regions == RendererRD::GI::SDFGI::Cascade::DIRTY_ALL) { dirty_count++; } else { for (int j = 0; j < 3; j++) { if (c.dirty_regions[j] != 0) { dirty_count++; } } } } return dirty_count; } AABB RendererSceneRenderRD::sdfgi_get_pending_region_bounds(const Ref &p_render_buffers, int p_region) const { AABB bounds; Vector3i from; Vector3i size; Ref rb = p_render_buffers; ERR_FAIL_COND_V(rb.is_null(), AABB()); Ref sdfgi = rb->get_custom_data(RB_SCOPE_SDFGI); ERR_FAIL_COND_V(sdfgi.is_null(), AABB()); int c = sdfgi->get_pending_region_data(p_region, from, size, bounds); ERR_FAIL_COND_V(c == -1, AABB()); return bounds; } uint32_t RendererSceneRenderRD::sdfgi_get_pending_region_cascade(const Ref &p_render_buffers, int p_region) const { AABB bounds; Vector3i from; Vector3i size; Ref rb = p_render_buffers; ERR_FAIL_COND_V(rb.is_null(), -1); Ref sdfgi = rb->get_custom_data(RB_SCOPE_SDFGI); ERR_FAIL_COND_V(sdfgi.is_null(), -1); return sdfgi->get_pending_region_data(p_region, from, size, bounds); } RID RendererSceneRenderRD::sky_allocate() { return sky.allocate_sky_rid(); } void RendererSceneRenderRD::sky_initialize(RID p_rid) { sky.initialize_sky_rid(p_rid); } void RendererSceneRenderRD::sky_set_radiance_size(RID p_sky, int p_radiance_size) { sky.sky_set_radiance_size(p_sky, p_radiance_size); } void RendererSceneRenderRD::sky_set_mode(RID p_sky, RS::SkyMode p_mode) { sky.sky_set_mode(p_sky, p_mode); } void RendererSceneRenderRD::sky_set_material(RID p_sky, RID p_material) { sky.sky_set_material(p_sky, p_material); } Ref RendererSceneRenderRD::sky_bake_panorama(RID p_sky, float p_energy, bool p_bake_irradiance, const Size2i &p_size) { return sky.sky_bake_panorama(p_sky, p_energy, p_bake_irradiance, p_size); } void RendererSceneRenderRD::environment_glow_set_use_bicubic_upscale(bool p_enable) { glow_bicubic_upscale = p_enable; } void RendererSceneRenderRD::environment_glow_set_use_high_quality(bool p_enable) { glow_high_quality = p_enable; } void RendererSceneRenderRD::environment_set_volumetric_fog_volume_size(int p_size, int p_depth) { volumetric_fog_size = p_size; volumetric_fog_depth = p_depth; } void RendererSceneRenderRD::environment_set_volumetric_fog_filter_active(bool p_enable) { volumetric_fog_filter_active = p_enable; } void RendererSceneRenderRD::environment_set_sdfgi_ray_count(RS::EnvironmentSDFGIRayCount p_ray_count) { gi.sdfgi_ray_count = p_ray_count; } void RendererSceneRenderRD::environment_set_sdfgi_frames_to_converge(RS::EnvironmentSDFGIFramesToConverge p_frames) { gi.sdfgi_frames_to_converge = p_frames; } void RendererSceneRenderRD::environment_set_sdfgi_frames_to_update_light(RS::EnvironmentSDFGIFramesToUpdateLight p_update) { gi.sdfgi_frames_to_update_light = p_update; } void RendererSceneRenderRD::environment_set_ssr_roughness_quality(RS::EnvironmentSSRRoughnessQuality p_quality) { ssr_roughness_quality = p_quality; } RS::EnvironmentSSRRoughnessQuality RendererSceneRenderRD::environment_get_ssr_roughness_quality() const { return ssr_roughness_quality; } void RendererSceneRenderRD::environment_set_ssao_quality(RS::EnvironmentSSAOQuality p_quality, bool p_half_size, float p_adaptive_target, int p_blur_passes, float p_fadeout_from, float p_fadeout_to) { ssao_quality = p_quality; ssao_half_size = p_half_size; ssao_adaptive_target = p_adaptive_target; ssao_blur_passes = p_blur_passes; ssao_fadeout_from = p_fadeout_from; ssao_fadeout_to = p_fadeout_to; } void RendererSceneRenderRD::environment_set_ssil_quality(RS::EnvironmentSSILQuality p_quality, bool p_half_size, float p_adaptive_target, int p_blur_passes, float p_fadeout_from, float p_fadeout_to) { ssil_quality = p_quality; ssil_half_size = p_half_size; ssil_adaptive_target = p_adaptive_target; ssil_blur_passes = p_blur_passes; ssil_fadeout_from = p_fadeout_from; ssil_fadeout_to = p_fadeout_to; } Ref RendererSceneRenderRD::environment_bake_panorama(RID p_env, bool p_bake_irradiance, const Size2i &p_size) { ERR_FAIL_COND_V(p_env.is_null(), Ref()); RS::EnvironmentBG environment_background = environment_get_background(p_env); if (environment_background == RS::ENV_BG_CAMERA_FEED || environment_background == RS::ENV_BG_CANVAS || environment_background == RS::ENV_BG_KEEP) { return Ref(); //nothing to bake } RS::EnvironmentAmbientSource ambient_source = environment_get_ambient_source(p_env); bool use_ambient_light = false; bool use_cube_map = false; if (ambient_source == RS::ENV_AMBIENT_SOURCE_BG && (environment_background == RS::ENV_BG_CLEAR_COLOR || environment_background == RS::ENV_BG_COLOR)) { use_ambient_light = true; } else { use_cube_map = (ambient_source == RS::ENV_AMBIENT_SOURCE_BG && environment_background == RS::ENV_BG_SKY) || ambient_source == RS::ENV_AMBIENT_SOURCE_SKY; use_ambient_light = use_cube_map || ambient_source == RS::ENV_AMBIENT_SOURCE_COLOR; } use_cube_map = use_cube_map || (environment_background == RS::ENV_BG_SKY && environment_get_sky(p_env).is_valid()); Color ambient_color; float ambient_color_sky_mix = 0.0; if (use_ambient_light) { ambient_color_sky_mix = environment_get_ambient_sky_contribution(p_env); const float ambient_energy = environment_get_ambient_light_energy(p_env); ambient_color = environment_get_ambient_light(p_env); ambient_color = ambient_color.srgb_to_linear(); ambient_color.r *= ambient_energy; ambient_color.g *= ambient_energy; ambient_color.b *= ambient_energy; } if (use_cube_map) { Ref panorama = sky_bake_panorama(environment_get_sky(p_env), environment_get_bg_energy_multiplier(p_env), p_bake_irradiance, p_size); if (use_ambient_light) { for (int x = 0; x < p_size.width; x++) { for (int y = 0; y < p_size.height; y++) { panorama->set_pixel(x, y, ambient_color.lerp(panorama->get_pixel(x, y), ambient_color_sky_mix)); } } } return panorama; } else { const float bg_energy_multiplier = environment_get_bg_energy_multiplier(p_env); Color panorama_color = ((environment_background == RS::ENV_BG_CLEAR_COLOR) ? RSG::texture_storage->get_default_clear_color() : environment_get_bg_color(p_env)); panorama_color = panorama_color.srgb_to_linear(); panorama_color.r *= bg_energy_multiplier; panorama_color.g *= bg_energy_multiplier; panorama_color.b *= bg_energy_multiplier; if (use_ambient_light) { panorama_color = ambient_color.lerp(panorama_color, ambient_color_sky_mix); } Ref panorama; panorama.instantiate(); panorama->create(p_size.width, p_size.height, false, Image::FORMAT_RGBAF); panorama->fill(panorama_color); return panorama; } } //////////////////////////////////////////////////////////// RID RendererSceneRenderRD::fog_volume_instance_create(RID p_fog_volume) { return RendererRD::Fog::get_singleton()->fog_volume_instance_create(p_fog_volume); } void RendererSceneRenderRD::fog_volume_instance_set_transform(RID p_fog_volume_instance, const Transform3D &p_transform) { RendererRD::Fog::FogVolumeInstance *fvi = RendererRD::Fog::get_singleton()->get_fog_volume_instance(p_fog_volume_instance); ERR_FAIL_COND(!fvi); fvi->transform = p_transform; } void RendererSceneRenderRD::fog_volume_instance_set_active(RID p_fog_volume_instance, bool p_active) { RendererRD::Fog::FogVolumeInstance *fvi = RendererRD::Fog::get_singleton()->get_fog_volume_instance(p_fog_volume_instance); ERR_FAIL_COND(!fvi); fvi->active = p_active; } RID RendererSceneRenderRD::fog_volume_instance_get_volume(RID p_fog_volume_instance) const { RendererRD::Fog::FogVolumeInstance *fvi = RendererRD::Fog::get_singleton()->get_fog_volume_instance(p_fog_volume_instance); ERR_FAIL_COND_V(!fvi, RID()); return fvi->volume; } Vector3 RendererSceneRenderRD::fog_volume_instance_get_position(RID p_fog_volume_instance) const { RendererRD::Fog::FogVolumeInstance *fvi = RendererRD::Fog::get_singleton()->get_fog_volume_instance(p_fog_volume_instance); ERR_FAIL_COND_V(!fvi, Vector3()); return fvi->transform.get_origin(); } //////////////////////////////////////////////////////////// RID RendererSceneRenderRD::reflection_atlas_create() { ReflectionAtlas ra; ra.count = GLOBAL_GET("rendering/reflections/reflection_atlas/reflection_count"); ra.size = GLOBAL_GET("rendering/reflections/reflection_atlas/reflection_size"); if (is_clustered_enabled()) { ra.cluster_builder = memnew(ClusterBuilderRD); ra.cluster_builder->set_shared(&cluster_builder_shared); ra.cluster_builder->setup(Size2i(ra.size, ra.size), max_cluster_elements, RID(), RID(), RID()); } else { ra.cluster_builder = nullptr; } return reflection_atlas_owner.make_rid(ra); } void RendererSceneRenderRD::reflection_atlas_set_size(RID p_ref_atlas, int p_reflection_size, int p_reflection_count) { ReflectionAtlas *ra = reflection_atlas_owner.get_or_null(p_ref_atlas); ERR_FAIL_COND(!ra); if (ra->size == p_reflection_size && ra->count == p_reflection_count) { return; //no changes } if (ra->cluster_builder) { // only if we're using our cluster ra->cluster_builder->setup(Size2i(ra->size, ra->size), max_cluster_elements, RID(), RID(), RID()); } ra->size = p_reflection_size; ra->count = p_reflection_count; if (ra->reflection.is_valid()) { //clear and invalidate everything RD::get_singleton()->free(ra->reflection); ra->reflection = RID(); RD::get_singleton()->free(ra->depth_buffer); ra->depth_buffer = RID(); for (int i = 0; i < ra->reflections.size(); i++) { ra->reflections.write[i].data.clear_reflection_data(); if (ra->reflections[i].owner.is_null()) { continue; } reflection_probe_release_atlas_index(ra->reflections[i].owner); //rp->atlasindex clear } ra->reflections.clear(); } } int RendererSceneRenderRD::reflection_atlas_get_size(RID p_ref_atlas) const { ReflectionAtlas *ra = reflection_atlas_owner.get_or_null(p_ref_atlas); ERR_FAIL_COND_V(!ra, 0); return ra->size; } //////////////////////// RID RendererSceneRenderRD::reflection_probe_instance_create(RID p_probe) { ReflectionProbeInstance rpi; rpi.probe = p_probe; rpi.forward_id = _allocate_forward_id(FORWARD_ID_TYPE_REFLECTION_PROBE); return reflection_probe_instance_owner.make_rid(rpi); } void RendererSceneRenderRD::reflection_probe_instance_set_transform(RID p_instance, const Transform3D &p_transform) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance); ERR_FAIL_COND(!rpi); rpi->transform = p_transform; rpi->dirty = true; } void RendererSceneRenderRD::reflection_probe_release_atlas_index(RID p_instance) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance); ERR_FAIL_COND(!rpi); if (rpi->atlas.is_null()) { return; //nothing to release } ReflectionAtlas *atlas = reflection_atlas_owner.get_or_null(rpi->atlas); ERR_FAIL_COND(!atlas); ERR_FAIL_INDEX(rpi->atlas_index, atlas->reflections.size()); atlas->reflections.write[rpi->atlas_index].owner = RID(); rpi->atlas_index = -1; rpi->atlas = RID(); } bool RendererSceneRenderRD::reflection_probe_instance_needs_redraw(RID p_instance) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance); ERR_FAIL_COND_V(!rpi, false); if (rpi->rendering) { return false; } if (rpi->dirty) { return true; } if (RSG::light_storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS) { return true; } return rpi->atlas_index == -1; } bool RendererSceneRenderRD::reflection_probe_instance_has_reflection(RID p_instance) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance); ERR_FAIL_COND_V(!rpi, false); return rpi->atlas.is_valid(); } bool RendererSceneRenderRD::reflection_probe_instance_begin_render(RID p_instance, RID p_reflection_atlas) { ReflectionAtlas *atlas = reflection_atlas_owner.get_or_null(p_reflection_atlas); ERR_FAIL_COND_V(!atlas, false); ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance); ERR_FAIL_COND_V(!rpi, false); RD::get_singleton()->draw_command_begin_label("Reflection probe render"); if (RSG::light_storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS && atlas->reflection.is_valid() && atlas->size != 256) { WARN_PRINT("ReflectionProbes set to UPDATE_ALWAYS must have an atlas size of 256. Please update the atlas size in the ProjectSettings."); reflection_atlas_set_size(p_reflection_atlas, 256, atlas->count); } if (RSG::light_storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS && atlas->reflection.is_valid() && atlas->reflections[0].data.layers[0].mipmaps.size() != 8) { // Invalidate reflection atlas, need to regenerate RD::get_singleton()->free(atlas->reflection); atlas->reflection = RID(); for (int i = 0; i < atlas->reflections.size(); i++) { if (atlas->reflections[i].owner.is_null()) { continue; } reflection_probe_release_atlas_index(atlas->reflections[i].owner); } atlas->reflections.clear(); } if (atlas->reflection.is_null()) { int mipmaps = MIN(sky.roughness_layers, Image::get_image_required_mipmaps(atlas->size, atlas->size, Image::FORMAT_RGBAH) + 1); mipmaps = RSG::light_storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS ? 8 : mipmaps; // always use 8 mipmaps with real time filtering { //reflection atlas was unused, create: RD::TextureFormat tf; tf.array_layers = 6 * atlas->count; tf.format = _render_buffers_get_color_format(); tf.texture_type = RD::TEXTURE_TYPE_CUBE_ARRAY; tf.mipmaps = mipmaps; tf.width = atlas->size; tf.height = atlas->size; tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT | (_render_buffers_can_be_storage() ? RD::TEXTURE_USAGE_STORAGE_BIT : 0); atlas->reflection = RD::get_singleton()->texture_create(tf, RD::TextureView()); } { RD::TextureFormat tf; tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32; tf.width = atlas->size; tf.height = atlas->size; tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT; atlas->depth_buffer = RD::get_singleton()->texture_create(tf, RD::TextureView()); } atlas->reflections.resize(atlas->count); for (int i = 0; i < atlas->count; i++) { atlas->reflections.write[i].data.update_reflection_data(atlas->size, mipmaps, false, atlas->reflection, i * 6, RSG::light_storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS, sky.roughness_layers, _render_buffers_get_color_format()); for (int j = 0; j < 6; j++) { atlas->reflections.write[i].fbs[j] = reflection_probe_create_framebuffer(atlas->reflections.write[i].data.layers[0].mipmaps[0].views[j], atlas->depth_buffer); } } Vector fb; fb.push_back(atlas->depth_buffer); atlas->depth_fb = RD::get_singleton()->framebuffer_create(fb); } if (rpi->atlas_index == -1) { for (int i = 0; i < atlas->reflections.size(); i++) { if (atlas->reflections[i].owner.is_null()) { rpi->atlas_index = i; break; } } //find the one used last if (rpi->atlas_index == -1) { //everything is in use, find the one least used via LRU uint64_t pass_min = 0; for (int i = 0; i < atlas->reflections.size(); i++) { ReflectionProbeInstance *rpi2 = reflection_probe_instance_owner.get_or_null(atlas->reflections[i].owner); if (rpi2->last_pass < pass_min) { pass_min = rpi2->last_pass; rpi->atlas_index = i; } } } } if (rpi->atlas_index != -1) { // should we fail if this is still -1 ? atlas->reflections.write[rpi->atlas_index].owner = p_instance; } rpi->atlas = p_reflection_atlas; rpi->rendering = true; rpi->dirty = false; rpi->processing_layer = 1; rpi->processing_side = 0; RD::get_singleton()->draw_command_end_label(); return true; } RID RendererSceneRenderRD::reflection_probe_create_framebuffer(RID p_color, RID p_depth) { Vector fb; fb.push_back(p_color); fb.push_back(p_depth); return RD::get_singleton()->framebuffer_create(fb); } bool RendererSceneRenderRD::reflection_probe_instance_postprocess_step(RID p_instance) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance); ERR_FAIL_COND_V(!rpi, false); ERR_FAIL_COND_V(!rpi->rendering, false); ERR_FAIL_COND_V(rpi->atlas.is_null(), false); ReflectionAtlas *atlas = reflection_atlas_owner.get_or_null(rpi->atlas); if (!atlas || rpi->atlas_index == -1) { //does not belong to an atlas anymore, cancel (was removed from atlas or atlas changed while rendering) rpi->rendering = false; return false; } if (RSG::light_storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS) { // Using real time reflections, all roughness is done in one step atlas->reflections.write[rpi->atlas_index].data.create_reflection_fast_filter(false); rpi->rendering = false; rpi->processing_side = 0; rpi->processing_layer = 1; return true; } if (rpi->processing_layer > 1) { atlas->reflections.write[rpi->atlas_index].data.create_reflection_importance_sample(false, 10, rpi->processing_layer, sky.sky_ggx_samples_quality); rpi->processing_layer++; if (rpi->processing_layer == atlas->reflections[rpi->atlas_index].data.layers[0].mipmaps.size()) { rpi->rendering = false; rpi->processing_side = 0; rpi->processing_layer = 1; return true; } return false; } else { atlas->reflections.write[rpi->atlas_index].data.create_reflection_importance_sample(false, rpi->processing_side, rpi->processing_layer, sky.sky_ggx_samples_quality); } rpi->processing_side++; if (rpi->processing_side == 6) { rpi->processing_side = 0; rpi->processing_layer++; } return false; } uint32_t RendererSceneRenderRD::reflection_probe_instance_get_resolution(RID p_instance) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance); ERR_FAIL_COND_V(!rpi, 0); ReflectionAtlas *atlas = reflection_atlas_owner.get_or_null(rpi->atlas); ERR_FAIL_COND_V(!atlas, 0); return atlas->size; } RID RendererSceneRenderRD::reflection_probe_instance_get_framebuffer(RID p_instance, int p_index) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance); ERR_FAIL_COND_V(!rpi, RID()); ERR_FAIL_INDEX_V(p_index, 6, RID()); ReflectionAtlas *atlas = reflection_atlas_owner.get_or_null(rpi->atlas); ERR_FAIL_COND_V(!atlas, RID()); return atlas->reflections[rpi->atlas_index].fbs[p_index]; } RID RendererSceneRenderRD::reflection_probe_instance_get_depth_framebuffer(RID p_instance, int p_index) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance); ERR_FAIL_COND_V(!rpi, RID()); ERR_FAIL_INDEX_V(p_index, 6, RID()); ReflectionAtlas *atlas = reflection_atlas_owner.get_or_null(rpi->atlas); ERR_FAIL_COND_V(!atlas, RID()); return atlas->depth_fb; } /////////////////////////////////////////////////////////// RID RendererSceneRenderRD::shadow_atlas_create() { return shadow_atlas_owner.make_rid(ShadowAtlas()); } void RendererSceneRenderRD::_update_shadow_atlas(ShadowAtlas *shadow_atlas) { if (shadow_atlas->size > 0 && shadow_atlas->depth.is_null()) { RD::TextureFormat tf; tf.format = shadow_atlas->use_16_bits ? RD::DATA_FORMAT_D16_UNORM : RD::DATA_FORMAT_D32_SFLOAT; tf.width = shadow_atlas->size; tf.height = shadow_atlas->size; tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT; shadow_atlas->depth = RD::get_singleton()->texture_create(tf, RD::TextureView()); Vector fb_tex; fb_tex.push_back(shadow_atlas->depth); shadow_atlas->fb = RD::get_singleton()->framebuffer_create(fb_tex); } } void RendererSceneRenderRD::shadow_atlas_set_size(RID p_atlas, int p_size, bool p_16_bits) { ShadowAtlas *shadow_atlas = shadow_atlas_owner.get_or_null(p_atlas); ERR_FAIL_COND(!shadow_atlas); ERR_FAIL_COND(p_size < 0); p_size = next_power_of_2(p_size); if (p_size == shadow_atlas->size && p_16_bits == shadow_atlas->use_16_bits) { return; } // erasing atlas if (shadow_atlas->depth.is_valid()) { RD::get_singleton()->free(shadow_atlas->depth); shadow_atlas->depth = RID(); } for (int i = 0; i < 4; i++) { //clear subdivisions shadow_atlas->quadrants[i].shadows.clear(); shadow_atlas->quadrants[i].shadows.resize(1 << shadow_atlas->quadrants[i].subdivision); } //erase shadow atlas reference from lights for (const KeyValue &E : shadow_atlas->shadow_owners) { LightInstance *li = light_instance_owner.get_or_null(E.key); ERR_CONTINUE(!li); li->shadow_atlases.erase(p_atlas); } //clear owners shadow_atlas->shadow_owners.clear(); shadow_atlas->size = p_size; shadow_atlas->use_16_bits = p_16_bits; } void RendererSceneRenderRD::shadow_atlas_set_quadrant_subdivision(RID p_atlas, int p_quadrant, int p_subdivision) { ShadowAtlas *shadow_atlas = shadow_atlas_owner.get_or_null(p_atlas); ERR_FAIL_COND(!shadow_atlas); ERR_FAIL_INDEX(p_quadrant, 4); ERR_FAIL_INDEX(p_subdivision, 16384); uint32_t subdiv = next_power_of_2(p_subdivision); if (subdiv & 0xaaaaaaaa) { //sqrt(subdiv) must be integer subdiv <<= 1; } subdiv = int(Math::sqrt((float)subdiv)); //obtain the number that will be x*x if (shadow_atlas->quadrants[p_quadrant].subdivision == subdiv) { return; } //erase all data from quadrant for (int i = 0; i < shadow_atlas->quadrants[p_quadrant].shadows.size(); i++) { if (shadow_atlas->quadrants[p_quadrant].shadows[i].owner.is_valid()) { shadow_atlas->shadow_owners.erase(shadow_atlas->quadrants[p_quadrant].shadows[i].owner); LightInstance *li = light_instance_owner.get_or_null(shadow_atlas->quadrants[p_quadrant].shadows[i].owner); ERR_CONTINUE(!li); li->shadow_atlases.erase(p_atlas); } } shadow_atlas->quadrants[p_quadrant].shadows.clear(); shadow_atlas->quadrants[p_quadrant].shadows.resize(subdiv * subdiv); shadow_atlas->quadrants[p_quadrant].subdivision = subdiv; //cache the smallest subdiv (for faster allocation in light update) shadow_atlas->smallest_subdiv = 1 << 30; for (int i = 0; i < 4; i++) { if (shadow_atlas->quadrants[i].subdivision) { shadow_atlas->smallest_subdiv = MIN(shadow_atlas->smallest_subdiv, shadow_atlas->quadrants[i].subdivision); } } if (shadow_atlas->smallest_subdiv == 1 << 30) { shadow_atlas->smallest_subdiv = 0; } //resort the size orders, simple bublesort for 4 elements.. int swaps = 0; do { swaps = 0; for (int i = 0; i < 3; i++) { if (shadow_atlas->quadrants[shadow_atlas->size_order[i]].subdivision < shadow_atlas->quadrants[shadow_atlas->size_order[i + 1]].subdivision) { SWAP(shadow_atlas->size_order[i], shadow_atlas->size_order[i + 1]); swaps++; } } } while (swaps > 0); } bool RendererSceneRenderRD::_shadow_atlas_find_shadow(ShadowAtlas *shadow_atlas, int *p_in_quadrants, int p_quadrant_count, int p_current_subdiv, uint64_t p_tick, int &r_quadrant, int &r_shadow) { for (int i = p_quadrant_count - 1; i >= 0; i--) { int qidx = p_in_quadrants[i]; if (shadow_atlas->quadrants[qidx].subdivision == (uint32_t)p_current_subdiv) { return false; } //look for an empty space int sc = shadow_atlas->quadrants[qidx].shadows.size(); const ShadowAtlas::Quadrant::Shadow *sarr = shadow_atlas->quadrants[qidx].shadows.ptr(); int found_free_idx = -1; //found a free one int found_used_idx = -1; //found existing one, must steal it uint64_t min_pass = 0; // pass of the existing one, try to use the least recently used one (LRU fashion) for (int j = 0; j < sc; j++) { if (!sarr[j].owner.is_valid()) { found_free_idx = j; break; } LightInstance *sli = light_instance_owner.get_or_null(sarr[j].owner); ERR_CONTINUE(!sli); if (sli->last_scene_pass != scene_pass) { //was just allocated, don't kill it so soon, wait a bit.. if (p_tick - sarr[j].alloc_tick < shadow_atlas_realloc_tolerance_msec) { continue; } if (found_used_idx == -1 || sli->last_scene_pass < min_pass) { found_used_idx = j; min_pass = sli->last_scene_pass; } } } if (found_free_idx == -1 && found_used_idx == -1) { continue; //nothing found } if (found_free_idx == -1 && found_used_idx != -1) { found_free_idx = found_used_idx; } r_quadrant = qidx; r_shadow = found_free_idx; return true; } return false; } bool RendererSceneRenderRD::_shadow_atlas_find_omni_shadows(ShadowAtlas *shadow_atlas, int *p_in_quadrants, int p_quadrant_count, int p_current_subdiv, uint64_t p_tick, int &r_quadrant, int &r_shadow) { for (int i = p_quadrant_count - 1; i >= 0; i--) { int qidx = p_in_quadrants[i]; if (shadow_atlas->quadrants[qidx].subdivision == (uint32_t)p_current_subdiv) { return false; } //look for an empty space int sc = shadow_atlas->quadrants[qidx].shadows.size(); const ShadowAtlas::Quadrant::Shadow *sarr = shadow_atlas->quadrants[qidx].shadows.ptr(); int found_idx = -1; uint64_t min_pass = 0; // sum of currently selected spots, try to get the least recently used pair for (int j = 0; j < sc - 1; j++) { uint64_t pass = 0; if (sarr[j].owner.is_valid()) { LightInstance *sli = light_instance_owner.get_or_null(sarr[j].owner); ERR_CONTINUE(!sli); if (sli->last_scene_pass == scene_pass) { continue; } //was just allocated, don't kill it so soon, wait a bit.. if (p_tick - sarr[j].alloc_tick < shadow_atlas_realloc_tolerance_msec) { continue; } pass += sli->last_scene_pass; } if (sarr[j + 1].owner.is_valid()) { LightInstance *sli = light_instance_owner.get_or_null(sarr[j + 1].owner); ERR_CONTINUE(!sli); if (sli->last_scene_pass == scene_pass) { continue; } //was just allocated, don't kill it so soon, wait a bit.. if (p_tick - sarr[j + 1].alloc_tick < shadow_atlas_realloc_tolerance_msec) { continue; } pass += sli->last_scene_pass; } if (found_idx == -1 || pass < min_pass) { found_idx = j; min_pass = pass; // we found two empty spots, no need to check the rest if (pass == 0) { break; } } } if (found_idx == -1) { continue; //nothing found } r_quadrant = qidx; r_shadow = found_idx; return true; } return false; } bool RendererSceneRenderRD::shadow_atlas_update_light(RID p_atlas, RID p_light_instance, float p_coverage, uint64_t p_light_version) { ShadowAtlas *shadow_atlas = shadow_atlas_owner.get_or_null(p_atlas); ERR_FAIL_COND_V(!shadow_atlas, false); LightInstance *li = light_instance_owner.get_or_null(p_light_instance); ERR_FAIL_COND_V(!li, false); if (shadow_atlas->size == 0 || shadow_atlas->smallest_subdiv == 0) { return false; } uint32_t quad_size = shadow_atlas->size >> 1; int desired_fit = MIN(quad_size / shadow_atlas->smallest_subdiv, next_power_of_2(quad_size * p_coverage)); int valid_quadrants[4]; int valid_quadrant_count = 0; int best_size = -1; //best size found int best_subdiv = -1; //subdiv for the best size //find the quadrants this fits into, and the best possible size it can fit into for (int i = 0; i < 4; i++) { int q = shadow_atlas->size_order[i]; int sd = shadow_atlas->quadrants[q].subdivision; if (sd == 0) { continue; //unused } int max_fit = quad_size / sd; if (best_size != -1 && max_fit > best_size) { break; //too large } valid_quadrants[valid_quadrant_count++] = q; best_subdiv = sd; if (max_fit >= desired_fit) { best_size = max_fit; } } ERR_FAIL_COND_V(valid_quadrant_count == 0, false); uint64_t tick = OS::get_singleton()->get_ticks_msec(); uint32_t old_key = ShadowAtlas::SHADOW_INVALID; uint32_t old_quadrant = ShadowAtlas::SHADOW_INVALID; uint32_t old_shadow = ShadowAtlas::SHADOW_INVALID; int old_subdivision = -1; bool should_realloc = false; bool should_redraw = false; if (shadow_atlas->shadow_owners.has(p_light_instance)) { old_key = shadow_atlas->shadow_owners[p_light_instance]; old_quadrant = (old_key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3; old_shadow = old_key & ShadowAtlas::SHADOW_INDEX_MASK; should_realloc = shadow_atlas->quadrants[old_quadrant].subdivision != (uint32_t)best_subdiv && (shadow_atlas->quadrants[old_quadrant].shadows[old_shadow].alloc_tick - tick > shadow_atlas_realloc_tolerance_msec); should_redraw = shadow_atlas->quadrants[old_quadrant].shadows[old_shadow].version != p_light_version; if (!should_realloc) { shadow_atlas->quadrants[old_quadrant].shadows.write[old_shadow].version = p_light_version; //already existing, see if it should redraw or it's just OK return should_redraw; } old_subdivision = shadow_atlas->quadrants[old_quadrant].subdivision; } bool is_omni = li->light_type == RS::LIGHT_OMNI; bool found_shadow = false; int new_quadrant = -1; int new_shadow = -1; if (is_omni) { found_shadow = _shadow_atlas_find_omni_shadows(shadow_atlas, valid_quadrants, valid_quadrant_count, old_subdivision, tick, new_quadrant, new_shadow); } else { found_shadow = _shadow_atlas_find_shadow(shadow_atlas, valid_quadrants, valid_quadrant_count, old_subdivision, tick, new_quadrant, new_shadow); } if (found_shadow) { if (old_quadrant != ShadowAtlas::SHADOW_INVALID) { shadow_atlas->quadrants[old_quadrant].shadows.write[old_shadow].version = 0; shadow_atlas->quadrants[old_quadrant].shadows.write[old_shadow].owner = RID(); if (old_key & ShadowAtlas::OMNI_LIGHT_FLAG) { shadow_atlas->quadrants[old_quadrant].shadows.write[old_shadow + 1].version = 0; shadow_atlas->quadrants[old_quadrant].shadows.write[old_shadow + 1].owner = RID(); } } uint32_t new_key = new_quadrant << ShadowAtlas::QUADRANT_SHIFT; new_key |= new_shadow; ShadowAtlas::Quadrant::Shadow *sh = &shadow_atlas->quadrants[new_quadrant].shadows.write[new_shadow]; _shadow_atlas_invalidate_shadow(sh, p_atlas, shadow_atlas, new_quadrant, new_shadow); sh->owner = p_light_instance; sh->alloc_tick = tick; sh->version = p_light_version; if (is_omni) { new_key |= ShadowAtlas::OMNI_LIGHT_FLAG; int new_omni_shadow = new_shadow + 1; ShadowAtlas::Quadrant::Shadow *extra_sh = &shadow_atlas->quadrants[new_quadrant].shadows.write[new_omni_shadow]; _shadow_atlas_invalidate_shadow(extra_sh, p_atlas, shadow_atlas, new_quadrant, new_omni_shadow); extra_sh->owner = p_light_instance; extra_sh->alloc_tick = tick; extra_sh->version = p_light_version; } li->shadow_atlases.insert(p_atlas); //update it in map shadow_atlas->shadow_owners[p_light_instance] = new_key; //make it dirty, as it should redraw anyway return true; } return should_redraw; } void RendererSceneRenderRD::_shadow_atlas_invalidate_shadow(RendererSceneRenderRD::ShadowAtlas::Quadrant::Shadow *p_shadow, RID p_atlas, RendererSceneRenderRD::ShadowAtlas *p_shadow_atlas, uint32_t p_quadrant, uint32_t p_shadow_idx) { if (p_shadow->owner.is_valid()) { LightInstance *sli = light_instance_owner.get_or_null(p_shadow->owner); uint32_t old_key = p_shadow_atlas->shadow_owners[p_shadow->owner]; if (old_key & ShadowAtlas::OMNI_LIGHT_FLAG) { uint32_t s = old_key & ShadowAtlas::SHADOW_INDEX_MASK; uint32_t omni_shadow_idx = p_shadow_idx + (s == (uint32_t)p_shadow_idx ? 1 : -1); RendererSceneRenderRD::ShadowAtlas::Quadrant::Shadow *omni_shadow = &p_shadow_atlas->quadrants[p_quadrant].shadows.write[omni_shadow_idx]; omni_shadow->version = 0; omni_shadow->owner = RID(); } p_shadow_atlas->shadow_owners.erase(p_shadow->owner); p_shadow->version = 0; p_shadow->owner = RID(); sli->shadow_atlases.erase(p_atlas); } } void RendererSceneRenderRD::_update_directional_shadow_atlas() { if (directional_shadow.depth.is_null() && directional_shadow.size > 0) { RD::TextureFormat tf; tf.format = directional_shadow.use_16_bits ? RD::DATA_FORMAT_D16_UNORM : RD::DATA_FORMAT_D32_SFLOAT; tf.width = directional_shadow.size; tf.height = directional_shadow.size; tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT; directional_shadow.depth = RD::get_singleton()->texture_create(tf, RD::TextureView()); Vector fb_tex; fb_tex.push_back(directional_shadow.depth); directional_shadow.fb = RD::get_singleton()->framebuffer_create(fb_tex); } } void RendererSceneRenderRD::directional_shadow_atlas_set_size(int p_size, bool p_16_bits) { p_size = nearest_power_of_2_templated(p_size); if (directional_shadow.size == p_size && directional_shadow.use_16_bits == p_16_bits) { return; } directional_shadow.size = p_size; directional_shadow.use_16_bits = p_16_bits; if (directional_shadow.depth.is_valid()) { RD::get_singleton()->free(directional_shadow.depth); directional_shadow.depth = RID(); _base_uniforms_changed(); } } void RendererSceneRenderRD::set_directional_shadow_count(int p_count) { directional_shadow.light_count = p_count; directional_shadow.current_light = 0; } static Rect2i _get_directional_shadow_rect(int p_size, int p_shadow_count, int p_shadow_index) { int split_h = 1; int split_v = 1; while (split_h * split_v < p_shadow_count) { if (split_h == split_v) { split_h <<= 1; } else { split_v <<= 1; } } Rect2i rect(0, 0, p_size, p_size); rect.size.width /= split_h; rect.size.height /= split_v; rect.position.x = rect.size.width * (p_shadow_index % split_h); rect.position.y = rect.size.height * (p_shadow_index / split_h); return rect; } int RendererSceneRenderRD::get_directional_light_shadow_size(RID p_light_intance) { ERR_FAIL_COND_V(directional_shadow.light_count == 0, 0); Rect2i r = _get_directional_shadow_rect(directional_shadow.size, directional_shadow.light_count, 0); LightInstance *light_instance = light_instance_owner.get_or_null(p_light_intance); ERR_FAIL_COND_V(!light_instance, 0); switch (RSG::light_storage->light_directional_get_shadow_mode(light_instance->light)) { case RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL: break; //none case RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS: r.size.height /= 2; break; case RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS: r.size /= 2; break; } return MAX(r.size.width, r.size.height); } ////////////////////////////////////////////////// RID RendererSceneRenderRD::light_instance_create(RID p_light) { RID li = light_instance_owner.make_rid(LightInstance()); LightInstance *light_instance = light_instance_owner.get_or_null(li); light_instance->self = li; light_instance->light = p_light; light_instance->light_type = RSG::light_storage->light_get_type(p_light); if (light_instance->light_type != RS::LIGHT_DIRECTIONAL) { light_instance->forward_id = _allocate_forward_id(light_instance->light_type == RS::LIGHT_OMNI ? FORWARD_ID_TYPE_OMNI_LIGHT : FORWARD_ID_TYPE_SPOT_LIGHT); } return li; } void RendererSceneRenderRD::light_instance_set_transform(RID p_light_instance, const Transform3D &p_transform) { LightInstance *light_instance = light_instance_owner.get_or_null(p_light_instance); ERR_FAIL_COND(!light_instance); light_instance->transform = p_transform; } void RendererSceneRenderRD::light_instance_set_aabb(RID p_light_instance, const AABB &p_aabb) { LightInstance *light_instance = light_instance_owner.get_or_null(p_light_instance); ERR_FAIL_COND(!light_instance); light_instance->aabb = p_aabb; } void RendererSceneRenderRD::light_instance_set_shadow_transform(RID p_light_instance, const Projection &p_projection, const Transform3D &p_transform, float p_far, float p_split, int p_pass, float p_shadow_texel_size, float p_bias_scale, float p_range_begin, const Vector2 &p_uv_scale) { LightInstance *light_instance = light_instance_owner.get_or_null(p_light_instance); ERR_FAIL_COND(!light_instance); ERR_FAIL_INDEX(p_pass, 6); light_instance->shadow_transform[p_pass].camera = p_projection; light_instance->shadow_transform[p_pass].transform = p_transform; light_instance->shadow_transform[p_pass].farplane = p_far; light_instance->shadow_transform[p_pass].split = p_split; light_instance->shadow_transform[p_pass].bias_scale = p_bias_scale; light_instance->shadow_transform[p_pass].range_begin = p_range_begin; light_instance->shadow_transform[p_pass].shadow_texel_size = p_shadow_texel_size; light_instance->shadow_transform[p_pass].uv_scale = p_uv_scale; } void RendererSceneRenderRD::light_instance_mark_visible(RID p_light_instance) { LightInstance *light_instance = light_instance_owner.get_or_null(p_light_instance); ERR_FAIL_COND(!light_instance); light_instance->last_scene_pass = scene_pass; } RendererSceneRenderRD::ShadowCubemap *RendererSceneRenderRD::_get_shadow_cubemap(int p_size) { if (!shadow_cubemaps.has(p_size)) { ShadowCubemap sc; { RD::TextureFormat tf; tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32; tf.width = p_size; tf.height = p_size; tf.texture_type = RD::TEXTURE_TYPE_CUBE; tf.array_layers = 6; tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT; sc.cubemap = RD::get_singleton()->texture_create(tf, RD::TextureView()); } for (int i = 0; i < 6; i++) { RID side_texture = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), sc.cubemap, i, 0); Vector fbtex; fbtex.push_back(side_texture); sc.side_fb[i] = RD::get_singleton()->framebuffer_create(fbtex); } shadow_cubemaps[p_size] = sc; } return &shadow_cubemaps[p_size]; } ////////////////////////// RID RendererSceneRenderRD::decal_instance_create(RID p_decal) { DecalInstance di; di.decal = p_decal; di.forward_id = _allocate_forward_id(FORWARD_ID_TYPE_DECAL); return decal_instance_owner.make_rid(di); } void RendererSceneRenderRD::decal_instance_set_transform(RID p_decal, const Transform3D &p_transform) { DecalInstance *di = decal_instance_owner.get_or_null(p_decal); ERR_FAIL_COND(!di); di->transform = p_transform; } ///////////////////////////////// RID RendererSceneRenderRD::lightmap_instance_create(RID p_lightmap) { LightmapInstance li; li.lightmap = p_lightmap; return lightmap_instance_owner.make_rid(li); } void RendererSceneRenderRD::lightmap_instance_set_transform(RID p_lightmap, const Transform3D &p_transform) { LightmapInstance *li = lightmap_instance_owner.get_or_null(p_lightmap); ERR_FAIL_COND(!li); li->transform = p_transform; } ///////////////////////////////// RID RendererSceneRenderRD::voxel_gi_instance_create(RID p_base) { return gi.voxel_gi_instance_create(p_base); } void RendererSceneRenderRD::voxel_gi_instance_set_transform_to_data(RID p_probe, const Transform3D &p_xform) { gi.voxel_gi_instance_set_transform_to_data(p_probe, p_xform); } bool RendererSceneRenderRD::voxel_gi_needs_update(RID p_probe) const { if (!is_dynamic_gi_supported()) { return false; } return gi.voxel_gi_needs_update(p_probe); } void RendererSceneRenderRD::voxel_gi_update(RID p_probe, bool p_update_light_instances, const Vector &p_light_instances, const PagedArray &p_dynamic_objects) { if (!is_dynamic_gi_supported()) { return; } gi.voxel_gi_update(p_probe, p_update_light_instances, p_light_instances, p_dynamic_objects, this); } void RendererSceneRenderRD::_debug_sdfgi_probes(Ref p_render_buffers, RID p_framebuffer, const uint32_t p_view_count, const Projection *p_camera_with_transforms, bool p_will_continue_color, bool p_will_continue_depth) { ERR_FAIL_COND(p_render_buffers.is_null()); if (!p_render_buffers->has_custom_data(RB_SCOPE_SDFGI)) { return; //nothing to debug } Ref sdfgi = p_render_buffers->get_custom_data(RB_SCOPE_SDFGI); sdfgi->debug_probes(p_framebuffer, p_view_count, p_camera_with_transforms, p_will_continue_color, p_will_continue_depth); } //////////////////////////////// Ref RendererSceneRenderRD::render_buffers_create() { Ref rb; rb.instantiate(); rb->set_can_be_storage(_render_buffers_can_be_storage()); rb->set_max_cluster_elements(max_cluster_elements); rb->set_base_data_format(_render_buffers_get_color_format()); if (ss_effects) { rb->set_sseffects(ss_effects); } if (vrs) { rb->set_vrs(vrs); } setup_render_buffer_data(rb); return rb; } void RendererSceneRenderRD::_allocate_luminance_textures(Ref rb) { ERR_FAIL_COND(!rb->luminance.current.is_null()); Size2i internal_size = rb->get_internal_size(); int w = internal_size.x; int h = internal_size.y; while (true) { w = MAX(w / 8, 1); h = MAX(h / 8, 1); RD::TextureFormat tf; tf.format = RD::DATA_FORMAT_R32_SFLOAT; tf.width = w; tf.height = h; bool final = w == 1 && h == 1; if (_render_buffers_can_be_storage()) { tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT; if (final) { tf.usage_bits |= RD::TEXTURE_USAGE_SAMPLING_BIT; } } else { tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT; } RID texture = RD::get_singleton()->texture_create(tf, RD::TextureView()); rb->luminance.reduce.push_back(texture); if (!_render_buffers_can_be_storage()) { Vector fb; fb.push_back(texture); rb->luminance.fb.push_back(RD::get_singleton()->framebuffer_create(fb)); } if (final) { rb->luminance.current = RD::get_singleton()->texture_create(tf, RD::TextureView()); if (!_render_buffers_can_be_storage()) { Vector fb; fb.push_back(rb->luminance.current); rb->luminance.current_fb = RD::get_singleton()->framebuffer_create(fb); } break; } } } void RendererSceneRenderRD::_process_sss(Ref p_render_buffers, const Projection &p_camera) { ERR_FAIL_COND(p_render_buffers.is_null()); Size2i internal_size = p_render_buffers->get_internal_size(); bool can_use_effects = internal_size.x >= 8 && internal_size.y >= 8; if (!can_use_effects) { //just copy return; } p_render_buffers->allocate_blur_textures(); for (uint32_t v = 0; v < p_render_buffers->get_view_count(); v++) { RID internal_texture = p_render_buffers->get_internal_texture(v); RID depth_texture = p_render_buffers->get_depth_texture(v); ss_effects->sub_surface_scattering(p_render_buffers, internal_texture, depth_texture, p_camera, internal_size, sss_scale, sss_depth_scale, sss_quality); } } void RendererSceneRenderRD::_process_ssr(Ref p_render_buffers, RID p_dest_framebuffer, const RID *p_normal_slices, RID p_specular_buffer, const RID *p_metallic_slices, RID p_environment, const Projection *p_projections, const Vector3 *p_eye_offsets, bool p_use_additive) { ERR_FAIL_NULL(ss_effects); ERR_FAIL_COND(p_render_buffers.is_null()); Size2i internal_size = p_render_buffers->get_internal_size(); bool can_use_effects = internal_size.x >= 8 && internal_size.y >= 8; uint32_t view_count = p_render_buffers->get_view_count(); if (!can_use_effects) { //just copy copy_effects->merge_specular(p_dest_framebuffer, p_specular_buffer, p_use_additive ? RID() : p_render_buffers->get_internal_texture(), RID(), view_count); return; } ERR_FAIL_COND(p_environment.is_null()); ERR_FAIL_COND(!environment_get_ssr_enabled(p_environment)); Size2i half_size = Size2i(internal_size.x / 2, internal_size.y / 2); if (p_render_buffers->ssr.output.is_null()) { ss_effects->ssr_allocate_buffers(p_render_buffers->ssr, _render_buffers_get_color_format(), ssr_roughness_quality, half_size, view_count); } RID texture_slices[RendererSceneRender::MAX_RENDER_VIEWS]; RID depth_slices[RendererSceneRender::MAX_RENDER_VIEWS]; for (uint32_t v = 0; v < view_count; v++) { texture_slices[v] = p_render_buffers->get_internal_texture(v); depth_slices[v] = p_render_buffers->get_depth_texture(v); } ss_effects->screen_space_reflection(p_render_buffers->ssr, texture_slices, p_normal_slices, ssr_roughness_quality, p_metallic_slices, depth_slices, half_size, environment_get_ssr_max_steps(p_environment), environment_get_ssr_fade_in(p_environment), environment_get_ssr_fade_out(p_environment), environment_get_ssr_depth_tolerance(p_environment), view_count, p_projections, p_eye_offsets); copy_effects->merge_specular(p_dest_framebuffer, p_specular_buffer, p_use_additive ? RID() : p_render_buffers->get_internal_texture(), p_render_buffers->ssr.output, view_count); } void RendererSceneRenderRD::_process_ssao(Ref p_render_buffers, RID p_environment, RID p_normal_buffer, const Projection &p_projection) { ERR_FAIL_NULL(ss_effects); ERR_FAIL_COND(p_render_buffers.is_null()); ERR_FAIL_COND(p_environment.is_null()); RENDER_TIMESTAMP("Process SSAO"); RendererRD::SSEffects::SSAOSettings settings; settings.radius = environment_get_ssao_radius(p_environment); settings.intensity = environment_get_ssao_intensity(p_environment); settings.power = environment_get_ssao_power(p_environment); settings.detail = environment_get_ssao_detail(p_environment); settings.horizon = environment_get_ssao_horizon(p_environment); settings.sharpness = environment_get_ssao_sharpness(p_environment); settings.quality = ssao_quality; settings.half_size = ssao_half_size; settings.adaptive_target = ssao_adaptive_target; settings.blur_passes = ssao_blur_passes; settings.fadeout_from = ssao_fadeout_from; settings.fadeout_to = ssao_fadeout_to; settings.full_screen_size = p_render_buffers->get_internal_size(); ss_effects->ssao_allocate_buffers(p_render_buffers->ss_effects.ssao, settings, p_render_buffers->ss_effects.linear_depth); ss_effects->generate_ssao(p_render_buffers->ss_effects.ssao, p_normal_buffer, p_projection, settings); } void RendererSceneRenderRD::_process_ssil(Ref p_render_buffers, RID p_environment, RID p_normal_buffer, const Projection &p_projection, const Transform3D &p_transform) { ERR_FAIL_NULL(ss_effects); ERR_FAIL_COND(p_render_buffers.is_null()); ERR_FAIL_COND(p_environment.is_null()); RENDER_TIMESTAMP("Process SSIL"); RendererRD::SSEffects::SSILSettings settings; settings.radius = environment_get_ssil_radius(p_environment); settings.intensity = environment_get_ssil_intensity(p_environment); settings.sharpness = environment_get_ssil_sharpness(p_environment); settings.normal_rejection = environment_get_ssil_normal_rejection(p_environment); settings.quality = ssil_quality; settings.half_size = ssil_half_size; settings.adaptive_target = ssil_adaptive_target; settings.blur_passes = ssil_blur_passes; settings.fadeout_from = ssil_fadeout_from; settings.fadeout_to = ssil_fadeout_to; settings.full_screen_size = p_render_buffers->get_internal_size(); Projection correction; correction.set_depth_correction(true); Projection projection = correction * p_projection; Transform3D transform = p_transform; transform.set_origin(Vector3(0.0, 0.0, 0.0)); Projection last_frame_projection = p_render_buffers->ss_effects.last_frame_projection * Projection(p_render_buffers->ss_effects.last_frame_transform.affine_inverse()) * Projection(transform) * projection.inverse(); ss_effects->ssil_allocate_buffers(p_render_buffers->ss_effects.ssil, settings, p_render_buffers->ss_effects.linear_depth); ss_effects->screen_space_indirect_lighting(p_render_buffers->ss_effects.ssil, p_normal_buffer, p_projection, last_frame_projection, settings); p_render_buffers->ss_effects.last_frame_projection = projection; p_render_buffers->ss_effects.last_frame_transform = transform; } void RendererSceneRenderRD::_copy_framebuffer_to_ssil(Ref p_render_buffers) { ERR_FAIL_COND(p_render_buffers.is_null()); if (p_render_buffers->ss_effects.ssil.last_frame.is_valid()) { Size2i size = p_render_buffers->get_internal_size(); RID texture = p_render_buffers->get_internal_texture(); copy_effects->copy_to_rect(texture, p_render_buffers->ss_effects.ssil.last_frame, Rect2i(0, 0, size.x, size.y)); int width = size.x; int height = size.y; for (int i = 0; i < p_render_buffers->ss_effects.ssil.last_frame_slices.size() - 1; i++) { width = MAX(1, width >> 1); height = MAX(1, height >> 1); copy_effects->make_mipmap(p_render_buffers->ss_effects.ssil.last_frame_slices[i], p_render_buffers->ss_effects.ssil.last_frame_slices[i + 1], Size2i(width, height)); } } } void RendererSceneRenderRD::_render_buffers_copy_screen_texture(const RenderDataRD *p_render_data) { Ref rb = p_render_data->render_buffers; ERR_FAIL_COND(rb.is_null()); RD::get_singleton()->draw_command_begin_label("Copy screen texture"); rb->allocate_blur_textures(); bool can_use_storage = _render_buffers_can_be_storage(); Size2i size = rb->get_internal_size(); for (uint32_t v = 0; v < rb->get_view_count(); v++) { RID texture = rb->get_internal_texture(v); int mipmaps = int(rb->get_texture_format(RB_SCOPE_BUFFERS, RB_TEX_BLUR_0).mipmaps); RID dest = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BLUR_0, v, 0); if (can_use_storage) { copy_effects->copy_to_rect(texture, dest, Rect2i(0, 0, size.x, size.y)); } else { RID fb = FramebufferCacheRD::get_singleton()->get_cache(dest); copy_effects->copy_to_fb_rect(texture, fb, Rect2i(0, 0, size.x, size.y)); } for (int i = 1; i < mipmaps; i++) { RID source = dest; dest = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BLUR_0, v, i); Size2i msize = rb->get_texture_slice_size(RB_SCOPE_BUFFERS, RB_TEX_BLUR_0, v, i); if (can_use_storage) { copy_effects->make_mipmap(source, dest, msize); } else { copy_effects->make_mipmap_raster(source, dest, msize); } } } RD::get_singleton()->draw_command_end_label(); } void RendererSceneRenderRD::_render_buffers_copy_depth_texture(const RenderDataRD *p_render_data) { Ref rb = p_render_data->render_buffers; ERR_FAIL_COND(rb.is_null()); RD::get_singleton()->draw_command_begin_label("Copy depth texture"); // note, this only creates our back depth texture if we haven't already created it. uint32_t usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT; usage_bits |= RD::TEXTURE_USAGE_CAN_COPY_TO_BIT | RD::TEXTURE_USAGE_STORAGE_BIT; usage_bits |= RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT; // set this as color attachment because we're copying data into it, it's not actually used as a depth buffer rb->create_texture(RB_SCOPE_BUFFERS, RB_TEX_BACK_DEPTH, RD::DATA_FORMAT_R32_SFLOAT, usage_bits, RD::TEXTURE_SAMPLES_1); bool can_use_storage = _render_buffers_can_be_storage(); Size2i size = rb->get_internal_size(); for (uint32_t v = 0; v < p_render_data->scene_data->view_count; v++) { RID depth_texture = rb->get_depth_texture(v); RID depth_back_texture = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BACK_DEPTH, v, 0); if (can_use_storage) { copy_effects->copy_to_rect(depth_texture, depth_back_texture, Rect2i(0, 0, size.x, size.y)); } else { RID depth_back_fb = FramebufferCacheRD::get_singleton()->get_cache(depth_back_texture); copy_effects->copy_to_fb_rect(depth_texture, depth_back_fb, Rect2i(0, 0, size.x, size.y)); } } RD::get_singleton()->draw_command_end_label(); } void RendererSceneRenderRD::_render_buffers_post_process_and_tonemap(const RenderDataRD *p_render_data) { RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton(); Ref rb = p_render_data->render_buffers; ERR_FAIL_COND(rb.is_null()); // Glow, auto exposure and DoF (if enabled). Size2i internal_size = rb->get_internal_size(); Size2i target_size = rb->get_target_size(); bool can_use_effects = target_size.x >= 8 && target_size.y >= 8; // FIXME I think this should check internal size, we do all our post processing at this size... bool can_use_storage = _render_buffers_can_be_storage(); RID render_target = rb->get_render_target(); RID internal_texture = rb->get_internal_texture(); if (can_use_effects && RSG::camera_attributes->camera_attributes_uses_dof(p_render_data->camera_attributes)) { RENDER_TIMESTAMP("Depth of Field"); RD::get_singleton()->draw_command_begin_label("DOF"); rb->allocate_blur_textures(); RendererRD::BokehDOF::BokehBuffers buffers; // Textures we use buffers.base_texture_size = rb->get_internal_size(); buffers.secondary_texture = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BLUR_0, 0, 0); buffers.half_texture[0] = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1, 0, 0); buffers.half_texture[1] = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BLUR_0, 0, 1); if (can_use_storage) { for (uint32_t i = 0; i < rb->get_view_count(); i++) { buffers.base_texture = rb->get_internal_texture(i); buffers.depth_texture = rb->get_depth_texture(i); // In stereo p_render_data->z_near and p_render_data->z_far can be offset for our combined frustrum float z_near = p_render_data->scene_data->view_projection[i].get_z_near(); float z_far = p_render_data->scene_data->view_projection[i].get_z_far(); bokeh_dof->bokeh_dof_compute(buffers, p_render_data->camera_attributes, z_near, z_far, p_render_data->scene_data->cam_orthogonal); }; } else { // Set framebuffers. buffers.secondary_fb = rb->weight_buffers[1].fb; buffers.half_fb[0] = rb->weight_buffers[2].fb; buffers.half_fb[1] = rb->weight_buffers[3].fb; buffers.weight_texture[0] = rb->weight_buffers[0].weight; buffers.weight_texture[1] = rb->weight_buffers[1].weight; buffers.weight_texture[2] = rb->weight_buffers[2].weight; buffers.weight_texture[3] = rb->weight_buffers[3].weight; // Set weight buffers. buffers.base_weight_fb = rb->weight_buffers[0].fb; for (uint32_t i = 0; i < rb->get_view_count(); i++) { buffers.base_texture = rb->get_internal_texture(i); buffers.depth_texture = rb->get_depth_texture(i); buffers.base_fb = FramebufferCacheRD::get_singleton()->get_cache(buffers.base_texture); // TODO move this into bokeh_dof_raster, we can do this internally // In stereo p_render_data->z_near and p_render_data->z_far can be offset for our combined frustrum float z_near = p_render_data->scene_data->view_projection[i].get_z_near(); float z_far = p_render_data->scene_data->view_projection[i].get_z_far(); bokeh_dof->bokeh_dof_raster(buffers, p_render_data->camera_attributes, z_near, z_far, p_render_data->scene_data->cam_orthogonal); } } RD::get_singleton()->draw_command_end_label(); } float auto_exposure_scale = 1.0; if (can_use_effects && RSG::camera_attributes->camera_attributes_uses_auto_exposure(p_render_data->camera_attributes)) { RENDER_TIMESTAMP("Auto exposure"); RD::get_singleton()->draw_command_begin_label("Auto exposure"); if (rb->luminance.current.is_null()) { _allocate_luminance_textures(rb); } uint64_t auto_exposure_version = RSG::camera_attributes->camera_attributes_get_auto_exposure_version(p_render_data->camera_attributes); bool set_immediate = auto_exposure_version != rb->get_auto_exposure_version(); rb->set_auto_exposure_version(auto_exposure_version); double step = RSG::camera_attributes->camera_attributes_get_auto_exposure_adjust_speed(p_render_data->camera_attributes) * time_step; float auto_exposure_min_sensitivity = RSG::camera_attributes->camera_attributes_get_auto_exposure_min_sensitivity(p_render_data->camera_attributes); float auto_exposure_max_sensitivity = RSG::camera_attributes->camera_attributes_get_auto_exposure_max_sensitivity(p_render_data->camera_attributes); if (can_use_storage) { RendererCompositorRD::singleton->get_effects()->luminance_reduction(internal_texture, internal_size, rb->luminance.reduce, rb->luminance.current, auto_exposure_min_sensitivity, auto_exposure_max_sensitivity, step, set_immediate); } else { RendererCompositorRD::singleton->get_effects()->luminance_reduction_raster(internal_texture, internal_size, rb->luminance.reduce, rb->luminance.fb, rb->luminance.current, auto_exposure_min_sensitivity, auto_exposure_max_sensitivity, step, set_immediate); } // Swap final reduce with prev luminance. SWAP(rb->luminance.current, rb->luminance.reduce.write[rb->luminance.reduce.size() - 1]); if (!can_use_storage) { SWAP(rb->luminance.current_fb, rb->luminance.fb.write[rb->luminance.fb.size() - 1]); } auto_exposure_scale = RSG::camera_attributes->camera_attributes_get_auto_exposure_scale(p_render_data->camera_attributes); RenderingServerDefault::redraw_request(); // Redraw all the time if auto exposure rendering is on. RD::get_singleton()->draw_command_end_label(); } int max_glow_level = -1; if (can_use_effects && p_render_data->environment.is_valid() && environment_get_glow_enabled(p_render_data->environment)) { RENDER_TIMESTAMP("Glow"); RD::get_singleton()->draw_command_begin_label("Gaussian Glow"); rb->allocate_blur_textures(); for (int i = 0; i < RS::MAX_GLOW_LEVELS; i++) { if (environment_get_glow_levels(p_render_data->environment)[i] > 0.0) { int mipmaps = int(rb->get_texture_format(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1).mipmaps); if (i >= mipmaps) { max_glow_level = mipmaps - 1; } else { max_glow_level = i; } } } float luminance_multiplier = _render_buffers_get_luminance_multiplier(); for (uint32_t l = 0; l < rb->get_view_count(); l++) { for (int i = 0; i < (max_glow_level + 1); i++) { Size2i vp_size = rb->get_texture_slice_size(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1, l, i); if (i == 0) { RID luminance_texture; if (RSG::camera_attributes->camera_attributes_uses_auto_exposure(p_render_data->camera_attributes) && rb->luminance.current.is_valid()) { luminance_texture = rb->luminance.current; } RID source = rb->get_internal_texture(l); RID dest = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1, l, i); if (can_use_storage) { copy_effects->gaussian_glow(source, dest, vp_size, environment_get_glow_strength(p_render_data->environment), glow_high_quality, true, environment_get_glow_hdr_luminance_cap(p_render_data->environment), environment_get_exposure(p_render_data->environment), environment_get_glow_bloom(p_render_data->environment), environment_get_glow_hdr_bleed_threshold(p_render_data->environment), environment_get_glow_hdr_bleed_scale(p_render_data->environment), luminance_texture, auto_exposure_scale); } else { RID half = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_HALF_BLUR, 0, i); // we can reuse this for each view copy_effects->gaussian_glow_raster(source, half, dest, luminance_multiplier, vp_size, environment_get_glow_strength(p_render_data->environment), glow_high_quality, true, environment_get_glow_hdr_luminance_cap(p_render_data->environment), environment_get_exposure(p_render_data->environment), environment_get_glow_bloom(p_render_data->environment), environment_get_glow_hdr_bleed_threshold(p_render_data->environment), environment_get_glow_hdr_bleed_scale(p_render_data->environment), luminance_texture, auto_exposure_scale); } } else { RID source = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1, l, i - 1); RID dest = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1, l, i); if (can_use_storage) { copy_effects->gaussian_glow(source, dest, vp_size, environment_get_glow_strength(p_render_data->environment), glow_high_quality); } else { RID half = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_HALF_BLUR, 0, i); // we can reuse this for each view copy_effects->gaussian_glow_raster(source, half, dest, luminance_multiplier, vp_size, environment_get_glow_strength(p_render_data->environment), glow_high_quality); } } } } RD::get_singleton()->draw_command_end_label(); } { RENDER_TIMESTAMP("Tonemap"); RD::get_singleton()->draw_command_begin_label("Tonemap"); RendererRD::ToneMapper::TonemapSettings tonemap; if (can_use_effects && RSG::camera_attributes->camera_attributes_uses_auto_exposure(p_render_data->camera_attributes) && rb->luminance.current.is_valid()) { tonemap.use_auto_exposure = true; tonemap.exposure_texture = rb->luminance.current; tonemap.auto_exposure_scale = auto_exposure_scale; } else { tonemap.exposure_texture = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_WHITE); } if (can_use_effects && p_render_data->environment.is_valid() && environment_get_glow_enabled(p_render_data->environment)) { tonemap.use_glow = true; tonemap.glow_mode = RendererRD::ToneMapper::TonemapSettings::GlowMode(environment_get_glow_blend_mode(p_render_data->environment)); tonemap.glow_intensity = environment_get_glow_blend_mode(p_render_data->environment) == RS::ENV_GLOW_BLEND_MODE_MIX ? environment_get_glow_mix(p_render_data->environment) : environment_get_glow_intensity(p_render_data->environment); for (int i = 0; i < RS::MAX_GLOW_LEVELS; i++) { tonemap.glow_levels[i] = environment_get_glow_levels(p_render_data->environment)[i]; } Size2i msize = rb->get_texture_slice_size(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1, 0, 0); tonemap.glow_texture_size.x = msize.width; tonemap.glow_texture_size.y = msize.height; tonemap.glow_use_bicubic_upscale = glow_bicubic_upscale; tonemap.glow_texture = rb->get_texture(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1); if (environment_get_glow_map(p_render_data->environment).is_valid()) { tonemap.glow_map_strength = environment_get_glow_map_strength(p_render_data->environment); tonemap.glow_map = texture_storage->texture_get_rd_texture(environment_get_glow_map(p_render_data->environment)); } else { tonemap.glow_map_strength = 0.0f; tonemap.glow_map = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_WHITE); } } else { tonemap.glow_texture = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_BLACK); tonemap.glow_map = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_WHITE); } if (rb->get_screen_space_aa() == RS::VIEWPORT_SCREEN_SPACE_AA_FXAA) { tonemap.use_fxaa = true; } tonemap.use_debanding = rb->get_use_debanding(); tonemap.texture_size = Vector2i(rb->get_internal_size().x, rb->get_internal_size().y); if (p_render_data->environment.is_valid()) { tonemap.tonemap_mode = environment_get_tone_mapper(p_render_data->environment); tonemap.white = environment_get_white(p_render_data->environment); tonemap.exposure = environment_get_exposure(p_render_data->environment); } tonemap.use_color_correction = false; tonemap.use_1d_color_correction = false; tonemap.color_correction_texture = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE); if (can_use_effects && p_render_data->environment.is_valid()) { tonemap.use_bcs = environment_get_adjustments_enabled(p_render_data->environment); tonemap.brightness = environment_get_adjustments_brightness(p_render_data->environment); tonemap.contrast = environment_get_adjustments_contrast(p_render_data->environment); tonemap.saturation = environment_get_adjustments_saturation(p_render_data->environment); if (environment_get_adjustments_enabled(p_render_data->environment) && environment_get_color_correction(p_render_data->environment).is_valid()) { tonemap.use_color_correction = true; tonemap.use_1d_color_correction = environment_get_use_1d_color_correction(p_render_data->environment); tonemap.color_correction_texture = texture_storage->texture_get_rd_texture(environment_get_color_correction(p_render_data->environment)); } } tonemap.luminance_multiplier = _render_buffers_get_luminance_multiplier(); tonemap.view_count = rb->get_view_count(); RID dest_fb; if (fsr && can_use_effects && (internal_size.x != target_size.x || internal_size.y != target_size.y)) { // If we use FSR to upscale we need to write our result into an intermediate buffer. // Note that this is cached so we only create the texture the first time. RID dest_texture = rb->create_texture(SNAME("Tonemapper"), SNAME("destination"), _render_buffers_get_color_format(), RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT); dest_fb = FramebufferCacheRD::get_singleton()->get_cache(dest_texture); } else { // If we do a bilinear upscale we just render into our render target and our shader will upscale automatically. // Target size in this case is lying as we never get our real target size communicated. // Bit nasty but... dest_fb = texture_storage->render_target_get_rd_framebuffer(render_target); } tone_mapper->tonemapper(internal_texture, dest_fb, tonemap); RD::get_singleton()->draw_command_end_label(); } if (fsr && can_use_effects && (internal_size.x != target_size.x || internal_size.y != target_size.y)) { // TODO Investigate? Does this work? We never write into our render target and we've already done so up above in our tonemapper. // I think FSR should either work before our tonemapper or as an alternative of our tonemapper. RD::get_singleton()->draw_command_begin_label("FSR 1.0 Upscale"); for (uint32_t v = 0; v < rb->get_view_count(); v++) { RID source_texture = rb->get_texture_slice(SNAME("Tonemapper"), SNAME("destination"), v, 0); RID dest_texture = texture_storage->render_target_get_rd_texture_slice(render_target, v); fsr->fsr_upscale(rb, source_texture, dest_texture); } RD::get_singleton()->draw_command_end_label(); } texture_storage->render_target_disable_clear_request(render_target); } void RendererSceneRenderRD::_post_process_subpass(RID p_source_texture, RID p_framebuffer, const RenderDataRD *p_render_data) { RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton(); RD::get_singleton()->draw_command_begin_label("Post Process Subpass"); Ref rb = p_render_data->render_buffers; ERR_FAIL_COND(rb.is_null()); // FIXME: Our input it our internal_texture, shouldn't this be using internal_size ?? // Seeing we don't support FSR in our mobile renderer right now target_size = internal_size... Size2i target_size = rb->get_target_size(); bool can_use_effects = target_size.x >= 8 && target_size.y >= 8; RD::DrawListID draw_list = RD::get_singleton()->draw_list_switch_to_next_pass(); RendererRD::ToneMapper::TonemapSettings tonemap; if (p_render_data->environment.is_valid()) { tonemap.tonemap_mode = environment_get_tone_mapper(p_render_data->environment); tonemap.exposure = environment_get_exposure(p_render_data->environment); tonemap.white = environment_get_white(p_render_data->environment); } // We don't support glow or auto exposure here, if they are needed, don't use subpasses! // The problem is that we need to use the result so far and process them before we can // apply this to our results. if (can_use_effects && p_render_data->environment.is_valid() && environment_get_glow_enabled(p_render_data->environment)) { ERR_FAIL_MSG("Glow is not supported when using subpasses."); } if (can_use_effects && RSG::camera_attributes->camera_attributes_uses_auto_exposure(p_render_data->camera_attributes)) { ERR_FAIL_MSG("Auto Exposure is not supported when using subpasses."); } tonemap.use_glow = false; tonemap.glow_texture = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_BLACK); tonemap.glow_map = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_WHITE); tonemap.use_auto_exposure = false; tonemap.exposure_texture = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_WHITE); tonemap.use_color_correction = false; tonemap.use_1d_color_correction = false; tonemap.color_correction_texture = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE); if (can_use_effects && p_render_data->environment.is_valid()) { tonemap.use_bcs = environment_get_adjustments_enabled(p_render_data->environment); tonemap.brightness = environment_get_adjustments_brightness(p_render_data->environment); tonemap.contrast = environment_get_adjustments_contrast(p_render_data->environment); tonemap.saturation = environment_get_adjustments_saturation(p_render_data->environment); if (environment_get_adjustments_enabled(p_render_data->environment) && environment_get_color_correction(p_render_data->environment).is_valid()) { tonemap.use_color_correction = true; tonemap.use_1d_color_correction = environment_get_use_1d_color_correction(p_render_data->environment); tonemap.color_correction_texture = texture_storage->texture_get_rd_texture(environment_get_color_correction(p_render_data->environment)); } } tonemap.use_debanding = rb->get_use_debanding(); tonemap.texture_size = Vector2i(target_size.x, target_size.y); tonemap.luminance_multiplier = _render_buffers_get_luminance_multiplier(); tonemap.view_count = rb->get_view_count(); tone_mapper->tonemapper(draw_list, p_source_texture, RD::get_singleton()->framebuffer_get_format(p_framebuffer), tonemap); RD::get_singleton()->draw_command_end_label(); } void RendererSceneRenderRD::_disable_clear_request(const RenderDataRD *p_render_data) { ERR_FAIL_COND(p_render_data->render_buffers.is_null()); RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton(); texture_storage->render_target_disable_clear_request(p_render_data->render_buffers->get_render_target()); } void RendererSceneRenderRD::_render_buffers_debug_draw(Ref p_render_buffers, RID p_shadow_atlas, RID p_occlusion_buffer) { RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton(); ERR_FAIL_COND(p_render_buffers.is_null()); RID render_target = p_render_buffers->get_render_target(); if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SHADOW_ATLAS) { if (p_shadow_atlas.is_valid()) { RID shadow_atlas_texture = shadow_atlas_get_texture(p_shadow_atlas); if (shadow_atlas_texture.is_null()) { shadow_atlas_texture = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_BLACK); } Size2 rtsize = texture_storage->render_target_get_size(render_target); copy_effects->copy_to_fb_rect(shadow_atlas_texture, texture_storage->render_target_get_rd_framebuffer(render_target), Rect2i(Vector2(), rtsize / 2), false, true); } } if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_DIRECTIONAL_SHADOW_ATLAS) { if (directional_shadow_get_texture().is_valid()) { RID shadow_atlas_texture = directional_shadow_get_texture(); Size2 rtsize = texture_storage->render_target_get_size(render_target); copy_effects->copy_to_fb_rect(shadow_atlas_texture, texture_storage->render_target_get_rd_framebuffer(render_target), Rect2i(Vector2(), rtsize / 2), false, true); } } if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_DECAL_ATLAS) { RID decal_atlas = RendererRD::TextureStorage::get_singleton()->decal_atlas_get_texture(); if (decal_atlas.is_valid()) { Size2 rtsize = texture_storage->render_target_get_size(render_target); copy_effects->copy_to_fb_rect(decal_atlas, texture_storage->render_target_get_rd_framebuffer(render_target), Rect2i(Vector2(), rtsize / 2), false, false, true); } } if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SCENE_LUMINANCE) { if (p_render_buffers->luminance.current.is_valid()) { Size2 rtsize = texture_storage->render_target_get_size(render_target); copy_effects->copy_to_fb_rect(p_render_buffers->luminance.current, texture_storage->render_target_get_rd_framebuffer(render_target), Rect2(Vector2(), rtsize / 8), false, true); } } if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SSAO && p_render_buffers->ss_effects.ssao.ao_final.is_valid()) { Size2 rtsize = texture_storage->render_target_get_size(render_target); copy_effects->copy_to_fb_rect(p_render_buffers->ss_effects.ssao.ao_final, texture_storage->render_target_get_rd_framebuffer(render_target), Rect2(Vector2(), rtsize), false, true); } if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SSIL && p_render_buffers->ss_effects.ssil.ssil_final.is_valid()) { Size2 rtsize = texture_storage->render_target_get_size(render_target); copy_effects->copy_to_fb_rect(p_render_buffers->ss_effects.ssil.ssil_final, texture_storage->render_target_get_rd_framebuffer(render_target), Rect2(Vector2(), rtsize), false, false); } if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_NORMAL_BUFFER && _render_buffers_get_normal_texture(p_render_buffers).is_valid()) { Size2 rtsize = texture_storage->render_target_get_size(render_target); copy_effects->copy_to_fb_rect(_render_buffers_get_normal_texture(p_render_buffers), texture_storage->render_target_get_rd_framebuffer(render_target), Rect2(Vector2(), rtsize), false, false); } if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_GI_BUFFER && p_render_buffers->has_texture(RB_SCOPE_GI, RB_TEX_AMBIENT)) { Size2 rtsize = texture_storage->render_target_get_size(render_target); RID ambient_texture = p_render_buffers->get_texture(RB_SCOPE_GI, RB_TEX_AMBIENT); RID reflection_texture = p_render_buffers->get_texture(RB_SCOPE_GI, RB_TEX_REFLECTION); copy_effects->copy_to_fb_rect(ambient_texture, texture_storage->render_target_get_rd_framebuffer(render_target), Rect2(Vector2(), rtsize), false, false, false, true, reflection_texture, p_render_buffers->get_view_count() > 1); } if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_OCCLUDERS) { if (p_occlusion_buffer.is_valid()) { Size2 rtsize = texture_storage->render_target_get_size(render_target); copy_effects->copy_to_fb_rect(texture_storage->texture_get_rd_texture(p_occlusion_buffer), texture_storage->render_target_get_rd_framebuffer(render_target), Rect2i(Vector2(), rtsize), true, false); } } if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_MOTION_VECTORS && _render_buffers_get_velocity_texture(p_render_buffers).is_valid()) { Size2 rtsize = texture_storage->render_target_get_size(render_target); copy_effects->copy_to_fb_rect(_render_buffers_get_velocity_texture(p_render_buffers), texture_storage->render_target_get_rd_framebuffer(render_target), Rect2(Vector2(), rtsize), false, false); } } RID RendererSceneRenderRD::render_buffers_get_default_voxel_gi_buffer() { return gi.default_voxel_gi_buffer; } float RendererSceneRenderRD::_render_buffers_get_luminance_multiplier() { return 1.0; } RD::DataFormat RendererSceneRenderRD::_render_buffers_get_color_format() { return RD::DATA_FORMAT_R16G16B16A16_SFLOAT; } bool RendererSceneRenderRD::_render_buffers_can_be_storage() { return true; } void RendererSceneRenderRD::gi_set_use_half_resolution(bool p_enable) { gi.half_resolution = p_enable; } void RendererSceneRenderRD::sub_surface_scattering_set_quality(RS::SubSurfaceScatteringQuality p_quality) { sss_quality = p_quality; } RS::SubSurfaceScatteringQuality RendererSceneRenderRD::sub_surface_scattering_get_quality() const { return sss_quality; } void RendererSceneRenderRD::sub_surface_scattering_set_scale(float p_scale, float p_depth_scale) { sss_scale = p_scale; sss_depth_scale = p_depth_scale; } void RendererSceneRenderRD::positional_soft_shadow_filter_set_quality(RS::ShadowQuality p_quality) { ERR_FAIL_INDEX_MSG(p_quality, RS::SHADOW_QUALITY_MAX, "Shadow quality too high, please see RenderingServer's ShadowQuality enum"); if (shadows_quality != p_quality) { shadows_quality = p_quality; switch (shadows_quality) { case RS::SHADOW_QUALITY_HARD: { penumbra_shadow_samples = 4; soft_shadow_samples = 0; shadows_quality_radius = 1.0; } break; case RS::SHADOW_QUALITY_SOFT_VERY_LOW: { penumbra_shadow_samples = 4; soft_shadow_samples = 1; shadows_quality_radius = 1.5; } break; case RS::SHADOW_QUALITY_SOFT_LOW: { penumbra_shadow_samples = 8; soft_shadow_samples = 4; shadows_quality_radius = 2.0; } break; case RS::SHADOW_QUALITY_SOFT_MEDIUM: { penumbra_shadow_samples = 12; soft_shadow_samples = 8; shadows_quality_radius = 2.0; } break; case RS::SHADOW_QUALITY_SOFT_HIGH: { penumbra_shadow_samples = 24; soft_shadow_samples = 16; shadows_quality_radius = 3.0; } break; case RS::SHADOW_QUALITY_SOFT_ULTRA: { penumbra_shadow_samples = 32; soft_shadow_samples = 32; shadows_quality_radius = 4.0; } break; case RS::SHADOW_QUALITY_MAX: break; } get_vogel_disk(penumbra_shadow_kernel, penumbra_shadow_samples); get_vogel_disk(soft_shadow_kernel, soft_shadow_samples); } _update_shader_quality_settings(); } void RendererSceneRenderRD::directional_soft_shadow_filter_set_quality(RS::ShadowQuality p_quality) { ERR_FAIL_INDEX_MSG(p_quality, RS::SHADOW_QUALITY_MAX, "Shadow quality too high, please see RenderingServer's ShadowQuality enum"); if (directional_shadow_quality != p_quality) { directional_shadow_quality = p_quality; switch (directional_shadow_quality) { case RS::SHADOW_QUALITY_HARD: { directional_penumbra_shadow_samples = 4; directional_soft_shadow_samples = 0; directional_shadow_quality_radius = 1.0; } break; case RS::SHADOW_QUALITY_SOFT_VERY_LOW: { directional_penumbra_shadow_samples = 4; directional_soft_shadow_samples = 1; directional_shadow_quality_radius = 1.5; } break; case RS::SHADOW_QUALITY_SOFT_LOW: { directional_penumbra_shadow_samples = 8; directional_soft_shadow_samples = 4; directional_shadow_quality_radius = 2.0; } break; case RS::SHADOW_QUALITY_SOFT_MEDIUM: { directional_penumbra_shadow_samples = 12; directional_soft_shadow_samples = 8; directional_shadow_quality_radius = 2.0; } break; case RS::SHADOW_QUALITY_SOFT_HIGH: { directional_penumbra_shadow_samples = 24; directional_soft_shadow_samples = 16; directional_shadow_quality_radius = 3.0; } break; case RS::SHADOW_QUALITY_SOFT_ULTRA: { directional_penumbra_shadow_samples = 32; directional_soft_shadow_samples = 32; directional_shadow_quality_radius = 4.0; } break; case RS::SHADOW_QUALITY_MAX: break; } get_vogel_disk(directional_penumbra_shadow_kernel, directional_penumbra_shadow_samples); get_vogel_disk(directional_soft_shadow_kernel, directional_soft_shadow_samples); } _update_shader_quality_settings(); } void RendererSceneRenderRD::decals_set_filter(RenderingServer::DecalFilter p_filter) { if (decals_filter == p_filter) { return; } decals_filter = p_filter; _update_shader_quality_settings(); } void RendererSceneRenderRD::light_projectors_set_filter(RenderingServer::LightProjectorFilter p_filter) { if (light_projectors_filter == p_filter) { return; } light_projectors_filter = p_filter; _update_shader_quality_settings(); } int RendererSceneRenderRD::get_roughness_layers() const { return sky.roughness_layers; } bool RendererSceneRenderRD::is_using_radiance_cubemap_array() const { return sky.sky_use_cubemap_array; } void RendererSceneRenderRD::_setup_reflections(RenderDataRD *p_render_data, const PagedArray &p_reflections, const Transform3D &p_camera_inverse_transform, RID p_environment) { RendererRD::LightStorage *light_storage = RendererRD::LightStorage::get_singleton(); cluster.reflection_count = 0; for (uint32_t i = 0; i < (uint32_t)p_reflections.size(); i++) { if (cluster.reflection_count == cluster.max_reflections) { break; } ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_reflections[i]); if (!rpi) { continue; } cluster.reflection_sort[cluster.reflection_count].instance = rpi; cluster.reflection_sort[cluster.reflection_count].depth = -p_camera_inverse_transform.xform(rpi->transform.origin).z; cluster.reflection_count++; } if (cluster.reflection_count > 0) { SortArray> sort_array; sort_array.sort(cluster.reflection_sort, cluster.reflection_count); } bool using_forward_ids = _uses_forward_ids(); for (uint32_t i = 0; i < cluster.reflection_count; i++) { ReflectionProbeInstance *rpi = cluster.reflection_sort[i].instance; if (using_forward_ids) { _map_forward_id(FORWARD_ID_TYPE_REFLECTION_PROBE, rpi->forward_id, i); } RID base_probe = rpi->probe; Cluster::ReflectionData &reflection_ubo = cluster.reflections[i]; Vector3 extents = light_storage->reflection_probe_get_extents(base_probe); rpi->cull_mask = light_storage->reflection_probe_get_cull_mask(base_probe); reflection_ubo.box_extents[0] = extents.x; reflection_ubo.box_extents[1] = extents.y; reflection_ubo.box_extents[2] = extents.z; reflection_ubo.index = rpi->atlas_index; Vector3 origin_offset = light_storage->reflection_probe_get_origin_offset(base_probe); reflection_ubo.box_offset[0] = origin_offset.x; reflection_ubo.box_offset[1] = origin_offset.y; reflection_ubo.box_offset[2] = origin_offset.z; reflection_ubo.mask = light_storage->reflection_probe_get_cull_mask(base_probe); reflection_ubo.intensity = light_storage->reflection_probe_get_intensity(base_probe); reflection_ubo.ambient_mode = light_storage->reflection_probe_get_ambient_mode(base_probe); reflection_ubo.exterior = !light_storage->reflection_probe_is_interior(base_probe); reflection_ubo.box_project = light_storage->reflection_probe_is_box_projection(base_probe); reflection_ubo.exposure_normalization = 1.0; if (p_render_data->camera_attributes.is_valid()) { float exposure = RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_render_data->camera_attributes); reflection_ubo.exposure_normalization = exposure / light_storage->reflection_probe_get_baked_exposure(base_probe); } Color ambient_linear = light_storage->reflection_probe_get_ambient_color(base_probe).srgb_to_linear(); float interior_ambient_energy = light_storage->reflection_probe_get_ambient_color_energy(base_probe); reflection_ubo.ambient[0] = ambient_linear.r * interior_ambient_energy; reflection_ubo.ambient[1] = ambient_linear.g * interior_ambient_energy; reflection_ubo.ambient[2] = ambient_linear.b * interior_ambient_energy; Transform3D transform = rpi->transform; Transform3D proj = (p_camera_inverse_transform * transform).inverse(); RendererRD::MaterialStorage::store_transform(proj, reflection_ubo.local_matrix); if (current_cluster_builder != nullptr) { current_cluster_builder->add_box(ClusterBuilderRD::BOX_TYPE_REFLECTION_PROBE, transform, extents); } rpi->last_pass = RSG::rasterizer->get_frame_number(); } if (cluster.reflection_count) { RD::get_singleton()->buffer_update(cluster.reflection_buffer, 0, cluster.reflection_count * sizeof(Cluster::ReflectionData), cluster.reflections, RD::BARRIER_MASK_RASTER | RD::BARRIER_MASK_COMPUTE); } } void RendererSceneRenderRD::_setup_lights(RenderDataRD *p_render_data, const PagedArray &p_lights, const Transform3D &p_camera_transform, RID p_shadow_atlas, bool p_using_shadows, uint32_t &r_directional_light_count, uint32_t &r_positional_light_count, bool &r_directional_light_soft_shadows) { RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton(); RendererRD::LightStorage *light_storage = RendererRD::LightStorage::get_singleton(); Transform3D inverse_transform = p_camera_transform.affine_inverse(); r_directional_light_count = 0; r_positional_light_count = 0; Plane camera_plane(-p_camera_transform.basis.get_column(Vector3::AXIS_Z).normalized(), p_camera_transform.origin); cluster.omni_light_count = 0; cluster.spot_light_count = 0; r_directional_light_soft_shadows = false; for (int i = 0; i < (int)p_lights.size(); i++) { LightInstance *li = light_instance_owner.get_or_null(p_lights[i]); if (!li) { continue; } RID base = li->light; ERR_CONTINUE(base.is_null()); RS::LightType type = light_storage->light_get_type(base); switch (type) { case RS::LIGHT_DIRECTIONAL: { if (r_directional_light_count >= cluster.max_directional_lights || light_storage->light_directional_get_sky_mode(base) == RS::LIGHT_DIRECTIONAL_SKY_MODE_SKY_ONLY) { continue; } Cluster::DirectionalLightData &light_data = cluster.directional_lights[r_directional_light_count]; Transform3D light_transform = li->transform; Vector3 direction = inverse_transform.basis.xform(light_transform.basis.xform(Vector3(0, 0, 1))).normalized(); light_data.direction[0] = direction.x; light_data.direction[1] = direction.y; light_data.direction[2] = direction.z; float sign = light_storage->light_is_negative(base) ? -1 : 1; light_data.energy = sign * light_storage->light_get_param(base, RS::LIGHT_PARAM_ENERGY); if (is_using_physical_light_units()) { light_data.energy *= light_storage->light_get_param(base, RS::LIGHT_PARAM_INTENSITY); } else { light_data.energy *= Math_PI; } if (p_render_data->camera_attributes.is_valid()) { light_data.energy *= RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_render_data->camera_attributes); } Color linear_col = light_storage->light_get_color(base).srgb_to_linear(); light_data.color[0] = linear_col.r; light_data.color[1] = linear_col.g; light_data.color[2] = linear_col.b; light_data.specular = light_storage->light_get_param(base, RS::LIGHT_PARAM_SPECULAR); light_data.volumetric_fog_energy = light_storage->light_get_param(base, RS::LIGHT_PARAM_VOLUMETRIC_FOG_ENERGY); light_data.mask = light_storage->light_get_cull_mask(base); float size = light_storage->light_get_param(base, RS::LIGHT_PARAM_SIZE); light_data.size = 1.0 - Math::cos(Math::deg_to_rad(size)); //angle to cosine offset if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_PSSM_SPLITS) { WARN_PRINT_ONCE("The DirectionalLight3D PSSM splits debug draw mode is not reimplemented yet."); } light_data.shadow_opacity = (p_using_shadows && light_storage->light_has_shadow(base)) ? light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_OPACITY) : 0.0; float angular_diameter = light_storage->light_get_param(base, RS::LIGHT_PARAM_SIZE); if (angular_diameter > 0.0) { // I know tan(0) is 0, but let's not risk it with numerical precision. // technically this will keep expanding until reaching the sun, but all we care // is expand until we reach the radius of the near plane (there can't be more occluders than that) angular_diameter = Math::tan(Math::deg_to_rad(angular_diameter)); if (light_storage->light_has_shadow(base) && light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BLUR) > 0.0) { // Only enable PCSS-like soft shadows if blurring is enabled. // Otherwise, performance would decrease with no visual difference. r_directional_light_soft_shadows = true; } } else { angular_diameter = 0.0; } if (light_data.shadow_opacity > 0.001) { RS::LightDirectionalShadowMode smode = light_storage->light_directional_get_shadow_mode(base); int limit = smode == RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL ? 0 : (smode == RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS ? 1 : 3); light_data.blend_splits = (smode != RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL) && light_storage->light_directional_get_blend_splits(base); for (int j = 0; j < 4; j++) { Rect2 atlas_rect = li->shadow_transform[j].atlas_rect; Projection matrix = li->shadow_transform[j].camera; float split = li->shadow_transform[MIN(limit, j)].split; Projection bias; bias.set_light_bias(); Projection rectm; rectm.set_light_atlas_rect(atlas_rect); Transform3D modelview = (inverse_transform * li->shadow_transform[j].transform).inverse(); Projection shadow_mtx = rectm * bias * matrix * modelview; light_data.shadow_split_offsets[j] = split; float bias_scale = li->shadow_transform[j].bias_scale; light_data.shadow_bias[j] = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BIAS) / 100.0 * bias_scale; light_data.shadow_normal_bias[j] = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS) * li->shadow_transform[j].shadow_texel_size; light_data.shadow_transmittance_bias[j] = light_storage->light_get_transmittance_bias(base) * bias_scale; light_data.shadow_z_range[j] = li->shadow_transform[j].farplane; light_data.shadow_range_begin[j] = li->shadow_transform[j].range_begin; RendererRD::MaterialStorage::store_camera(shadow_mtx, light_data.shadow_matrices[j]); Vector2 uv_scale = li->shadow_transform[j].uv_scale; uv_scale *= atlas_rect.size; //adapt to atlas size switch (j) { case 0: { light_data.uv_scale1[0] = uv_scale.x; light_data.uv_scale1[1] = uv_scale.y; } break; case 1: { light_data.uv_scale2[0] = uv_scale.x; light_data.uv_scale2[1] = uv_scale.y; } break; case 2: { light_data.uv_scale3[0] = uv_scale.x; light_data.uv_scale3[1] = uv_scale.y; } break; case 3: { light_data.uv_scale4[0] = uv_scale.x; light_data.uv_scale4[1] = uv_scale.y; } break; } } float fade_start = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_FADE_START); light_data.fade_from = -light_data.shadow_split_offsets[3] * MIN(fade_start, 0.999); //using 1.0 would break smoothstep light_data.fade_to = -light_data.shadow_split_offsets[3]; light_data.soft_shadow_scale = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BLUR); light_data.softshadow_angle = angular_diameter; light_data.bake_mode = light_storage->light_get_bake_mode(base); if (angular_diameter <= 0.0) { light_data.soft_shadow_scale *= directional_shadow_quality_radius_get(); // Only use quality radius for PCF } } r_directional_light_count++; } break; case RS::LIGHT_OMNI: { if (cluster.omni_light_count >= cluster.max_lights) { continue; } const real_t distance = camera_plane.distance_to(li->transform.origin); if (light_storage->light_is_distance_fade_enabled(li->light)) { const float fade_begin = light_storage->light_get_distance_fade_begin(li->light); const float fade_length = light_storage->light_get_distance_fade_length(li->light); if (distance > fade_begin) { if (distance > fade_begin + fade_length) { // Out of range, don't draw this light to improve performance. continue; } } } cluster.omni_light_sort[cluster.omni_light_count].instance = li; cluster.omni_light_sort[cluster.omni_light_count].depth = distance; cluster.omni_light_count++; } break; case RS::LIGHT_SPOT: { if (cluster.spot_light_count >= cluster.max_lights) { continue; } const real_t distance = camera_plane.distance_to(li->transform.origin); if (light_storage->light_is_distance_fade_enabled(li->light)) { const float fade_begin = light_storage->light_get_distance_fade_begin(li->light); const float fade_length = light_storage->light_get_distance_fade_length(li->light); if (distance > fade_begin) { if (distance > fade_begin + fade_length) { // Out of range, don't draw this light to improve performance. continue; } } } cluster.spot_light_sort[cluster.spot_light_count].instance = li; cluster.spot_light_sort[cluster.spot_light_count].depth = distance; cluster.spot_light_count++; } break; } li->last_pass = RSG::rasterizer->get_frame_number(); } if (cluster.omni_light_count) { SortArray> sorter; sorter.sort(cluster.omni_light_sort, cluster.omni_light_count); } if (cluster.spot_light_count) { SortArray> sorter; sorter.sort(cluster.spot_light_sort, cluster.spot_light_count); } ShadowAtlas *shadow_atlas = nullptr; if (p_shadow_atlas.is_valid() && p_using_shadows) { shadow_atlas = shadow_atlas_owner.get_or_null(p_shadow_atlas); } bool using_forward_ids = _uses_forward_ids(); for (uint32_t i = 0; i < (cluster.omni_light_count + cluster.spot_light_count); i++) { uint32_t index = (i < cluster.omni_light_count) ? i : i - (cluster.omni_light_count); Cluster::LightData &light_data = (i < cluster.omni_light_count) ? cluster.omni_lights[index] : cluster.spot_lights[index]; RS::LightType type = (i < cluster.omni_light_count) ? RS::LIGHT_OMNI : RS::LIGHT_SPOT; LightInstance *li = (i < cluster.omni_light_count) ? cluster.omni_light_sort[index].instance : cluster.spot_light_sort[index].instance; RID base = li->light; if (using_forward_ids) { _map_forward_id(type == RS::LIGHT_OMNI ? FORWARD_ID_TYPE_OMNI_LIGHT : FORWARD_ID_TYPE_SPOT_LIGHT, li->forward_id, index); } Transform3D light_transform = li->transform; float sign = light_storage->light_is_negative(base) ? -1 : 1; Color linear_col = light_storage->light_get_color(base).srgb_to_linear(); light_data.attenuation = light_storage->light_get_param(base, RS::LIGHT_PARAM_ATTENUATION); // Reuse fade begin, fade length and distance for shadow LOD determination later. float fade_begin = 0.0; float fade_shadow = 0.0; float fade_length = 0.0; real_t distance = 0.0; float fade = 1.0; float shadow_opacity_fade = 1.0; if (light_storage->light_is_distance_fade_enabled(li->light)) { fade_begin = light_storage->light_get_distance_fade_begin(li->light); fade_shadow = light_storage->light_get_distance_fade_shadow(li->light); fade_length = light_storage->light_get_distance_fade_length(li->light); distance = camera_plane.distance_to(li->transform.origin); // Use `smoothstep()` to make opacity changes more gradual and less noticeable to the player. if (distance > fade_begin) { fade = Math::smoothstep(0.0f, 1.0f, 1.0f - float(distance - fade_begin) / fade_length); } if (distance > fade_shadow) { shadow_opacity_fade = Math::smoothstep(0.0f, 1.0f, 1.0f - float(distance - fade_shadow) / fade_length); } } float energy = sign * light_storage->light_get_param(base, RS::LIGHT_PARAM_ENERGY) * fade; if (is_using_physical_light_units()) { energy *= light_storage->light_get_param(base, RS::LIGHT_PARAM_INTENSITY); // Convert from Luminous Power to Luminous Intensity if (type == RS::LIGHT_OMNI) { energy *= 1.0 / (Math_PI * 4.0); } else { // Spot Lights are not physically accurate, Luminous Intensity should change in relation to the cone angle. // We make this assumption to keep them easy to control. energy *= 1.0 / Math_PI; } } else { energy *= Math_PI; } if (p_render_data->camera_attributes.is_valid()) { energy *= RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_render_data->camera_attributes); } light_data.color[0] = linear_col.r * energy; light_data.color[1] = linear_col.g * energy; light_data.color[2] = linear_col.b * energy; light_data.specular_amount = light_storage->light_get_param(base, RS::LIGHT_PARAM_SPECULAR) * 2.0; light_data.volumetric_fog_energy = light_storage->light_get_param(base, RS::LIGHT_PARAM_VOLUMETRIC_FOG_ENERGY); light_data.bake_mode = light_storage->light_get_bake_mode(base); float radius = MAX(0.001, light_storage->light_get_param(base, RS::LIGHT_PARAM_RANGE)); light_data.inv_radius = 1.0 / radius; Vector3 pos = inverse_transform.xform(light_transform.origin); light_data.position[0] = pos.x; light_data.position[1] = pos.y; light_data.position[2] = pos.z; Vector3 direction = inverse_transform.basis.xform(light_transform.basis.xform(Vector3(0, 0, -1))).normalized(); light_data.direction[0] = direction.x; light_data.direction[1] = direction.y; light_data.direction[2] = direction.z; float size = light_storage->light_get_param(base, RS::LIGHT_PARAM_SIZE); light_data.size = size; light_data.inv_spot_attenuation = 1.0f / light_storage->light_get_param(base, RS::LIGHT_PARAM_SPOT_ATTENUATION); float spot_angle = light_storage->light_get_param(base, RS::LIGHT_PARAM_SPOT_ANGLE); light_data.cos_spot_angle = Math::cos(Math::deg_to_rad(spot_angle)); light_data.mask = light_storage->light_get_cull_mask(base); light_data.atlas_rect[0] = 0; light_data.atlas_rect[1] = 0; light_data.atlas_rect[2] = 0; light_data.atlas_rect[3] = 0; RID projector = light_storage->light_get_projector(base); if (projector.is_valid()) { Rect2 rect = texture_storage->decal_atlas_get_texture_rect(projector); if (type == RS::LIGHT_SPOT) { light_data.projector_rect[0] = rect.position.x; light_data.projector_rect[1] = rect.position.y + rect.size.height; //flip because shadow is flipped light_data.projector_rect[2] = rect.size.width; light_data.projector_rect[3] = -rect.size.height; } else { light_data.projector_rect[0] = rect.position.x; light_data.projector_rect[1] = rect.position.y; light_data.projector_rect[2] = rect.size.width; light_data.projector_rect[3] = rect.size.height * 0.5; //used by dp, so needs to be half } } else { light_data.projector_rect[0] = 0; light_data.projector_rect[1] = 0; light_data.projector_rect[2] = 0; light_data.projector_rect[3] = 0; } const bool needs_shadow = shadow_atlas && shadow_atlas->shadow_owners.has(li->self) && p_using_shadows && light_storage->light_has_shadow(base); bool in_shadow_range = true; if (needs_shadow && light_storage->light_is_distance_fade_enabled(li->light)) { if (distance > light_storage->light_get_distance_fade_shadow(li->light) + light_storage->light_get_distance_fade_length(li->light)) { // Out of range, don't draw shadows to improve performance. in_shadow_range = false; } } if (needs_shadow && in_shadow_range) { // fill in the shadow information light_data.shadow_opacity = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_OPACITY) * shadow_opacity_fade; float shadow_texel_size = light_instance_get_shadow_texel_size(li->self, p_shadow_atlas); light_data.shadow_normal_bias = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS) * shadow_texel_size * 10.0; if (type == RS::LIGHT_SPOT) { light_data.shadow_bias = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BIAS) / 100.0; } else { //omni light_data.shadow_bias = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BIAS); } light_data.transmittance_bias = light_storage->light_get_transmittance_bias(base); Vector2i omni_offset; Rect2 rect = light_instance_get_shadow_atlas_rect(li->self, p_shadow_atlas, omni_offset); light_data.atlas_rect[0] = rect.position.x; light_data.atlas_rect[1] = rect.position.y; light_data.atlas_rect[2] = rect.size.width; light_data.atlas_rect[3] = rect.size.height; light_data.soft_shadow_scale = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BLUR); if (type == RS::LIGHT_OMNI) { Transform3D proj = (inverse_transform * light_transform).inverse(); RendererRD::MaterialStorage::store_transform(proj, light_data.shadow_matrix); if (size > 0.0 && light_data.soft_shadow_scale > 0.0) { // Only enable PCSS-like soft shadows if blurring is enabled. // Otherwise, performance would decrease with no visual difference. light_data.soft_shadow_size = size; } else { light_data.soft_shadow_size = 0.0; light_data.soft_shadow_scale *= shadows_quality_radius_get(); // Only use quality radius for PCF } light_data.direction[0] = omni_offset.x * float(rect.size.width); light_data.direction[1] = omni_offset.y * float(rect.size.height); } else if (type == RS::LIGHT_SPOT) { Transform3D modelview = (inverse_transform * light_transform).inverse(); Projection bias; bias.set_light_bias(); Projection shadow_mtx = bias * li->shadow_transform[0].camera * modelview; RendererRD::MaterialStorage::store_camera(shadow_mtx, light_data.shadow_matrix); if (size > 0.0 && light_data.soft_shadow_scale > 0.0) { // Only enable PCSS-like soft shadows if blurring is enabled. // Otherwise, performance would decrease with no visual difference. Projection cm = li->shadow_transform[0].camera; float half_np = cm.get_z_near() * Math::tan(Math::deg_to_rad(spot_angle)); light_data.soft_shadow_size = (size * 0.5 / radius) / (half_np / cm.get_z_near()) * rect.size.width; } else { light_data.soft_shadow_size = 0.0; light_data.soft_shadow_scale *= shadows_quality_radius_get(); // Only use quality radius for PCF } } } else { light_data.shadow_opacity = 0.0; } li->cull_mask = light_storage->light_get_cull_mask(base); if (current_cluster_builder != nullptr) { current_cluster_builder->add_light(type == RS::LIGHT_SPOT ? ClusterBuilderRD::LIGHT_TYPE_SPOT : ClusterBuilderRD::LIGHT_TYPE_OMNI, light_transform, radius, spot_angle); } r_positional_light_count++; } //update without barriers if (cluster.omni_light_count) { RD::get_singleton()->buffer_update(cluster.omni_light_buffer, 0, sizeof(Cluster::LightData) * cluster.omni_light_count, cluster.omni_lights, RD::BARRIER_MASK_RASTER | RD::BARRIER_MASK_COMPUTE); } if (cluster.spot_light_count) { RD::get_singleton()->buffer_update(cluster.spot_light_buffer, 0, sizeof(Cluster::LightData) * cluster.spot_light_count, cluster.spot_lights, RD::BARRIER_MASK_RASTER | RD::BARRIER_MASK_COMPUTE); } if (r_directional_light_count) { RD::get_singleton()->buffer_update(cluster.directional_light_buffer, 0, sizeof(Cluster::DirectionalLightData) * r_directional_light_count, cluster.directional_lights, RD::BARRIER_MASK_RASTER | RD::BARRIER_MASK_COMPUTE); } } void RendererSceneRenderRD::_setup_decals(const PagedArray &p_decals, const Transform3D &p_camera_inverse_xform) { RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton(); Transform3D uv_xform; uv_xform.basis.scale(Vector3(2.0, 1.0, 2.0)); uv_xform.origin = Vector3(-1.0, 0.0, -1.0); uint32_t decal_count = p_decals.size(); cluster.decal_count = 0; for (uint32_t i = 0; i < decal_count; i++) { if (cluster.decal_count == cluster.max_decals) { break; } DecalInstance *di = decal_instance_owner.get_or_null(p_decals[i]); if (!di) { continue; } RID decal = di->decal; Transform3D xform = di->transform; real_t distance = -p_camera_inverse_xform.xform(xform.origin).z; if (texture_storage->decal_is_distance_fade_enabled(decal)) { float fade_begin = texture_storage->decal_get_distance_fade_begin(decal); float fade_length = texture_storage->decal_get_distance_fade_length(decal); if (distance > fade_begin) { if (distance > fade_begin + fade_length) { continue; // do not use this decal, its invisible } } } cluster.decal_sort[cluster.decal_count].instance = di; cluster.decal_sort[cluster.decal_count].depth = distance; cluster.decal_count++; } if (cluster.decal_count > 0) { SortArray> sort_array; sort_array.sort(cluster.decal_sort, cluster.decal_count); } bool using_forward_ids = _uses_forward_ids(); for (uint32_t i = 0; i < cluster.decal_count; i++) { DecalInstance *di = cluster.decal_sort[i].instance; RID decal = di->decal; if (using_forward_ids) { _map_forward_id(FORWARD_ID_TYPE_DECAL, di->forward_id, i); } di->cull_mask = texture_storage->decal_get_cull_mask(decal); Transform3D xform = di->transform; float fade = 1.0; if (texture_storage->decal_is_distance_fade_enabled(decal)) { const real_t distance = -p_camera_inverse_xform.xform(xform.origin).z; const float fade_begin = texture_storage->decal_get_distance_fade_begin(decal); const float fade_length = texture_storage->decal_get_distance_fade_length(decal); if (distance > fade_begin) { // Use `smoothstep()` to make opacity changes more gradual and less noticeable to the player. fade = Math::smoothstep(0.0f, 1.0f, 1.0f - float(distance - fade_begin) / fade_length); } } Cluster::DecalData &dd = cluster.decals[i]; Vector3 decal_extents = texture_storage->decal_get_extents(decal); Transform3D scale_xform; scale_xform.basis.scale(decal_extents); Transform3D to_decal_xform = (p_camera_inverse_xform * di->transform * scale_xform * uv_xform).affine_inverse(); RendererRD::MaterialStorage::store_transform(to_decal_xform, dd.xform); Vector3 normal = xform.basis.get_column(Vector3::AXIS_Y).normalized(); normal = p_camera_inverse_xform.basis.xform(normal); //camera is normalized, so fine dd.normal[0] = normal.x; dd.normal[1] = normal.y; dd.normal[2] = normal.z; dd.normal_fade = texture_storage->decal_get_normal_fade(decal); RID albedo_tex = texture_storage->decal_get_texture(decal, RS::DECAL_TEXTURE_ALBEDO); RID emission_tex = texture_storage->decal_get_texture(decal, RS::DECAL_TEXTURE_EMISSION); if (albedo_tex.is_valid()) { Rect2 rect = texture_storage->decal_atlas_get_texture_rect(albedo_tex); dd.albedo_rect[0] = rect.position.x; dd.albedo_rect[1] = rect.position.y; dd.albedo_rect[2] = rect.size.x; dd.albedo_rect[3] = rect.size.y; } else { if (!emission_tex.is_valid()) { continue; //no albedo, no emission, no decal. } dd.albedo_rect[0] = 0; dd.albedo_rect[1] = 0; dd.albedo_rect[2] = 0; dd.albedo_rect[3] = 0; } RID normal_tex = texture_storage->decal_get_texture(decal, RS::DECAL_TEXTURE_NORMAL); if (normal_tex.is_valid()) { Rect2 rect = texture_storage->decal_atlas_get_texture_rect(normal_tex); dd.normal_rect[0] = rect.position.x; dd.normal_rect[1] = rect.position.y; dd.normal_rect[2] = rect.size.x; dd.normal_rect[3] = rect.size.y; Basis normal_xform = p_camera_inverse_xform.basis * xform.basis.orthonormalized(); RendererRD::MaterialStorage::store_basis_3x4(normal_xform, dd.normal_xform); } else { dd.normal_rect[0] = 0; dd.normal_rect[1] = 0; dd.normal_rect[2] = 0; dd.normal_rect[3] = 0; } RID orm_tex = texture_storage->decal_get_texture(decal, RS::DECAL_TEXTURE_ORM); if (orm_tex.is_valid()) { Rect2 rect = texture_storage->decal_atlas_get_texture_rect(orm_tex); dd.orm_rect[0] = rect.position.x; dd.orm_rect[1] = rect.position.y; dd.orm_rect[2] = rect.size.x; dd.orm_rect[3] = rect.size.y; } else { dd.orm_rect[0] = 0; dd.orm_rect[1] = 0; dd.orm_rect[2] = 0; dd.orm_rect[3] = 0; } if (emission_tex.is_valid()) { Rect2 rect = texture_storage->decal_atlas_get_texture_rect(emission_tex); dd.emission_rect[0] = rect.position.x; dd.emission_rect[1] = rect.position.y; dd.emission_rect[2] = rect.size.x; dd.emission_rect[3] = rect.size.y; } else { dd.emission_rect[0] = 0; dd.emission_rect[1] = 0; dd.emission_rect[2] = 0; dd.emission_rect[3] = 0; } Color modulate = texture_storage->decal_get_modulate(decal); dd.modulate[0] = modulate.r; dd.modulate[1] = modulate.g; dd.modulate[2] = modulate.b; dd.modulate[3] = modulate.a * fade; dd.emission_energy = texture_storage->decal_get_emission_energy(decal) * fade; dd.albedo_mix = texture_storage->decal_get_albedo_mix(decal); dd.mask = texture_storage->decal_get_cull_mask(decal); dd.upper_fade = texture_storage->decal_get_upper_fade(decal); dd.lower_fade = texture_storage->decal_get_lower_fade(decal); if (current_cluster_builder != nullptr) { current_cluster_builder->add_box(ClusterBuilderRD::BOX_TYPE_DECAL, xform, decal_extents); } } if (cluster.decal_count > 0) { RD::get_singleton()->buffer_update(cluster.decal_buffer, 0, sizeof(Cluster::DecalData) * cluster.decal_count, cluster.decals, RD::BARRIER_MASK_RASTER | RD::BARRIER_MASK_COMPUTE); } } //////////////////////////////////////////////////////////////////////////////// // FOG SHADER void RendererSceneRenderRD::_update_volumetric_fog(Ref p_render_buffers, RID p_environment, const Projection &p_cam_projection, const Transform3D &p_cam_transform, const Transform3D &p_prev_cam_inv_transform, RID p_shadow_atlas, int p_directional_light_count, bool p_use_directional_shadows, int p_positional_light_count, int p_voxel_gi_count, const PagedArray &p_fog_volumes) { ERR_FAIL_COND(!is_clustered_enabled()); // can't use volumetric fog without clustered ERR_FAIL_COND(p_render_buffers.is_null()); // These should be available for our clustered renderer, at some point _update_volumetric_fog should be called by the renderer implemetentation itself ERR_FAIL_COND(!p_render_buffers->has_custom_data(RB_SCOPE_GI)); Ref rbgi = p_render_buffers->get_custom_data(RB_SCOPE_GI); Ref sdfgi; if (p_render_buffers->has_custom_data(RB_SCOPE_SDFGI)) { sdfgi = p_render_buffers->get_custom_data(RB_SCOPE_SDFGI); } Size2i size = p_render_buffers->get_internal_size(); float ratio = float(size.x) / float((size.x + size.y) / 2); uint32_t target_width = uint32_t(float(volumetric_fog_size) * ratio); uint32_t target_height = uint32_t(float(volumetric_fog_size) / ratio); if (p_render_buffers->has_custom_data(RB_SCOPE_FOG)) { Ref fog = p_render_buffers->get_custom_data(RB_SCOPE_FOG); //validate if (p_environment.is_null() || !environment_get_volumetric_fog_enabled(p_environment) || fog->width != target_width || fog->height != target_height || fog->depth != volumetric_fog_depth) { p_render_buffers->set_custom_data(RB_SCOPE_FOG, Ref()); } } if (p_environment.is_null() || !environment_get_volumetric_fog_enabled(p_environment)) { //no reason to enable or update, bye return; } if (p_environment.is_valid() && environment_get_volumetric_fog_enabled(p_environment) && !p_render_buffers->has_custom_data(RB_SCOPE_FOG)) { //required volumetric fog but not existing, create Ref fog; fog.instantiate(); fog->init(Vector3i(target_width, target_height, volumetric_fog_depth), sky.sky_shader.default_shader_rd); p_render_buffers->set_custom_data(RB_SCOPE_FOG, fog); } if (p_render_buffers->has_custom_data(RB_SCOPE_FOG)) { Ref fog = p_render_buffers->get_custom_data(RB_SCOPE_FOG); RendererRD::Fog::VolumetricFogSettings settings; settings.rb_size = size; settings.time = time; settings.is_using_radiance_cubemap_array = is_using_radiance_cubemap_array(); settings.max_cluster_elements = max_cluster_elements; settings.volumetric_fog_filter_active = volumetric_fog_filter_active; settings.shadow_sampler = shadow_sampler; ShadowAtlas *shadow_atlas = shadow_atlas_owner.get_or_null(p_shadow_atlas); settings.shadow_atlas_depth = shadow_atlas ? shadow_atlas->depth : RID(); settings.voxel_gi_buffer = rbgi->get_voxel_gi_buffer(); settings.omni_light_buffer = get_omni_light_buffer(); settings.spot_light_buffer = get_spot_light_buffer(); settings.directional_shadow_depth = directional_shadow.depth; settings.directional_light_buffer = get_directional_light_buffer(); settings.vfog = fog; settings.cluster_builder = p_render_buffers->cluster_builder; settings.rbgi = rbgi; settings.sdfgi = sdfgi; settings.env = p_environment; settings.sky = &sky; settings.gi = &gi; RendererRD::Fog::get_singleton()->volumetric_fog_update(settings, p_cam_projection, p_cam_transform, p_prev_cam_inv_transform, p_shadow_atlas, p_directional_light_count, p_use_directional_shadows, p_positional_light_count, p_voxel_gi_count, p_fog_volumes); } } bool RendererSceneRenderRD::_needs_post_prepass_render(RenderDataRD *p_render_data, bool p_use_gi) { if (p_render_data->render_buffers.is_valid()) { if (p_render_data->render_buffers->has_custom_data(RB_SCOPE_SDFGI)) { return true; } } return false; } void RendererSceneRenderRD::_post_prepass_render(RenderDataRD *p_render_data, bool p_use_gi) { if (p_render_data->render_buffers.is_valid() && p_use_gi) { if (!p_render_data->render_buffers->has_custom_data(RB_SCOPE_SDFGI)) { return; } Ref sdfgi = p_render_data->render_buffers->get_custom_data(RB_SCOPE_SDFGI); sdfgi->update_probes(p_render_data->environment, sky.sky_owner.get_or_null(environment_get_sky(p_render_data->environment))); } } void RendererSceneRenderRD::_pre_resolve_render(RenderDataRD *p_render_data, bool p_use_gi) { if (p_render_data->render_buffers.is_valid()) { if (p_use_gi) { RD::get_singleton()->compute_list_end(); } } } void RendererSceneRenderRD::_pre_opaque_render(RenderDataRD *p_render_data, bool p_use_ssao, bool p_use_ssil, bool p_use_gi, const RID *p_normal_roughness_slices, RID p_voxel_gi_buffer) { // Render shadows while GI is rendering, due to how barriers are handled, this should happen at the same time RendererRD::LightStorage *light_storage = RendererRD::LightStorage::get_singleton(); if (p_render_data->render_buffers.is_valid() && p_use_gi && p_render_data->render_buffers->has_custom_data(RB_SCOPE_SDFGI)) { Ref sdfgi = p_render_data->render_buffers->get_custom_data(RB_SCOPE_SDFGI); sdfgi->store_probes(); } render_state.cube_shadows.clear(); render_state.shadows.clear(); render_state.directional_shadows.clear(); Plane camera_plane(-p_render_data->scene_data->cam_transform.basis.get_column(Vector3::AXIS_Z), p_render_data->scene_data->cam_transform.origin); float lod_distance_multiplier = p_render_data->scene_data->cam_projection.get_lod_multiplier(); { for (int i = 0; i < render_state.render_shadow_count; i++) { LightInstance *li = light_instance_owner.get_or_null(render_state.render_shadows[i].light); if (light_storage->light_get_type(li->light) == RS::LIGHT_DIRECTIONAL) { render_state.directional_shadows.push_back(i); } else if (light_storage->light_get_type(li->light) == RS::LIGHT_OMNI && light_storage->light_omni_get_shadow_mode(li->light) == RS::LIGHT_OMNI_SHADOW_CUBE) { render_state.cube_shadows.push_back(i); } else { render_state.shadows.push_back(i); } } //cube shadows are rendered in their own way for (uint32_t i = 0; i < render_state.cube_shadows.size(); i++) { _render_shadow_pass(render_state.render_shadows[render_state.cube_shadows[i]].light, p_render_data->shadow_atlas, render_state.render_shadows[render_state.cube_shadows[i]].pass, render_state.render_shadows[render_state.cube_shadows[i]].instances, camera_plane, lod_distance_multiplier, p_render_data->scene_data->screen_mesh_lod_threshold, true, true, true, p_render_data->render_info); } if (render_state.directional_shadows.size()) { //open the pass for directional shadows _update_directional_shadow_atlas(); RD::get_singleton()->draw_list_begin(directional_shadow.fb, RD::INITIAL_ACTION_DROP, RD::FINAL_ACTION_DISCARD, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_CONTINUE); RD::get_singleton()->draw_list_end(); } } // Render GI bool render_shadows = render_state.directional_shadows.size() || render_state.shadows.size(); bool render_gi = p_render_data->render_buffers.is_valid() && p_use_gi; if (render_shadows && render_gi) { RENDER_TIMESTAMP("Render GI + Render Shadows (Parallel)"); } else if (render_shadows) { RENDER_TIMESTAMP("Render Shadows"); } else if (render_gi) { RENDER_TIMESTAMP("Render GI"); } //prepare shadow rendering if (render_shadows) { _render_shadow_begin(); //render directional shadows for (uint32_t i = 0; i < render_state.directional_shadows.size(); i++) { _render_shadow_pass(render_state.render_shadows[render_state.directional_shadows[i]].light, p_render_data->shadow_atlas, render_state.render_shadows[render_state.directional_shadows[i]].pass, render_state.render_shadows[render_state.directional_shadows[i]].instances, camera_plane, lod_distance_multiplier, p_render_data->scene_data->screen_mesh_lod_threshold, false, i == render_state.directional_shadows.size() - 1, false, p_render_data->render_info); } //render positional shadows for (uint32_t i = 0; i < render_state.shadows.size(); i++) { _render_shadow_pass(render_state.render_shadows[render_state.shadows[i]].light, p_render_data->shadow_atlas, render_state.render_shadows[render_state.shadows[i]].pass, render_state.render_shadows[render_state.shadows[i]].instances, camera_plane, lod_distance_multiplier, p_render_data->scene_data->screen_mesh_lod_threshold, i == 0, i == render_state.shadows.size() - 1, true, p_render_data->render_info); } _render_shadow_process(); } //start GI if (render_gi) { gi.process_gi(p_render_data->render_buffers, p_normal_roughness_slices, p_voxel_gi_buffer, p_render_data->environment, p_render_data->scene_data->view_count, p_render_data->scene_data->view_projection, p_render_data->scene_data->view_eye_offset, p_render_data->scene_data->cam_transform, *p_render_data->voxel_gi_instances); } //Do shadow rendering (in parallel with GI) if (render_shadows) { _render_shadow_end(RD::BARRIER_MASK_NO_BARRIER); } if (render_gi) { RD::get_singleton()->compute_list_end(RD::BARRIER_MASK_NO_BARRIER); //use a later barrier } if (p_render_data->render_buffers.is_valid() && ss_effects) { if (p_use_ssao || p_use_ssil) { Ref rb = p_render_data->render_buffers; ERR_FAIL_COND(rb.is_null()); Size2i size = rb->get_internal_size(); bool invalidate_uniform_set = false; if (rb->ss_effects.linear_depth.is_null()) { RD::TextureFormat tf; tf.format = RD::DATA_FORMAT_R16_SFLOAT; tf.texture_type = RD::TEXTURE_TYPE_2D_ARRAY; tf.width = (size.x + 1) / 2; tf.height = (size.y + 1) / 2; tf.mipmaps = 5; tf.array_layers = 4; tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT; rb->ss_effects.linear_depth = RD::get_singleton()->texture_create(tf, RD::TextureView()); RD::get_singleton()->set_resource_name(rb->ss_effects.linear_depth, "SS Effects Depth"); for (uint32_t i = 0; i < tf.mipmaps; i++) { RID slice = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rb->ss_effects.linear_depth, 0, i, 1, RD::TEXTURE_SLICE_2D_ARRAY); rb->ss_effects.linear_depth_slices.push_back(slice); RD::get_singleton()->set_resource_name(slice, "SS Effects Depth Mip " + itos(i) + " "); } invalidate_uniform_set = true; } RID depth_texture = rb->get_depth_texture(); ss_effects->downsample_depth(depth_texture, rb->ss_effects.linear_depth_slices, ssao_quality, ssil_quality, invalidate_uniform_set, ssao_half_size, ssil_half_size, size, p_render_data->scene_data->cam_projection); } if (p_use_ssao) { // TODO make these proper stereo _process_ssao(p_render_data->render_buffers, p_render_data->environment, p_normal_roughness_slices[0], p_render_data->scene_data->cam_projection); } if (p_use_ssil) { // TODO make these proper stereo _process_ssil(p_render_data->render_buffers, p_render_data->environment, p_normal_roughness_slices[0], p_render_data->scene_data->cam_projection, p_render_data->scene_data->cam_transform); } } //full barrier here, we need raster, transfer and compute and it depends from the previous work RD::get_singleton()->barrier(RD::BARRIER_MASK_ALL, RD::BARRIER_MASK_ALL); if (current_cluster_builder) { current_cluster_builder->begin(p_render_data->scene_data->cam_transform, p_render_data->scene_data->cam_projection, !p_render_data->reflection_probe.is_valid()); } bool using_shadows = true; if (p_render_data->reflection_probe.is_valid()) { if (!RSG::light_storage->reflection_probe_renders_shadows(reflection_probe_instance_get_probe(p_render_data->reflection_probe))) { using_shadows = false; } } else { //do not render reflections when rendering a reflection probe _setup_reflections(p_render_data, *p_render_data->reflection_probes, p_render_data->scene_data->cam_transform.affine_inverse(), p_render_data->environment); } uint32_t directional_light_count = 0; uint32_t positional_light_count = 0; _setup_lights(p_render_data, *p_render_data->lights, p_render_data->scene_data->cam_transform, p_render_data->shadow_atlas, using_shadows, directional_light_count, positional_light_count, p_render_data->directional_light_soft_shadows); _setup_decals(*p_render_data->decals, p_render_data->scene_data->cam_transform.affine_inverse()); p_render_data->directional_light_count = directional_light_count; if (current_cluster_builder) { current_cluster_builder->bake_cluster(); } if (p_render_data->render_buffers.is_valid()) { bool directional_shadows = false; for (uint32_t i = 0; i < directional_light_count; i++) { if (cluster.directional_lights[i].shadow_opacity > 0.001) { directional_shadows = true; break; } } if (is_volumetric_supported()) { _update_volumetric_fog(p_render_data->render_buffers, p_render_data->environment, p_render_data->scene_data->cam_projection, p_render_data->scene_data->cam_transform, p_render_data->scene_data->prev_cam_transform.affine_inverse(), p_render_data->shadow_atlas, directional_light_count, directional_shadows, positional_light_count, render_state.voxel_gi_count, *p_render_data->fog_volumes); } } } void RendererSceneRenderRD::render_scene(const Ref &p_render_buffers, const CameraData *p_camera_data, const CameraData *p_prev_camera_data, const PagedArray &p_instances, const PagedArray &p_lights, const PagedArray &p_reflection_probes, const PagedArray &p_voxel_gi_instances, const PagedArray &p_decals, const PagedArray &p_lightmaps, const PagedArray &p_fog_volumes, RID p_environment, RID p_camera_attributes, RID p_shadow_atlas, RID p_occluder_debug_tex, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass, float p_screen_mesh_lod_threshold, const RenderShadowData *p_render_shadows, int p_render_shadow_count, const RenderSDFGIData *p_render_sdfgi_regions, int p_render_sdfgi_region_count, const RenderSDFGIUpdateData *p_sdfgi_update_data, RenderingMethod::RenderInfo *r_render_info) { RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton(); // getting this here now so we can direct call a bunch of things more easily Ref rb; if (p_render_buffers.is_valid()) { rb = p_render_buffers; // cast it... ERR_FAIL_COND(rb.is_null()); } // setup scene data RenderSceneDataRD scene_data; { // Our first camera is used by default scene_data.cam_transform = p_camera_data->main_transform; scene_data.cam_projection = p_camera_data->main_projection; scene_data.cam_orthogonal = p_camera_data->is_orthogonal; scene_data.taa_jitter = p_camera_data->taa_jitter; scene_data.view_count = p_camera_data->view_count; for (uint32_t v = 0; v < p_camera_data->view_count; v++) { scene_data.view_eye_offset[v] = p_camera_data->view_offset[v].origin; scene_data.view_projection[v] = p_camera_data->view_projection[v]; } scene_data.prev_cam_transform = p_prev_camera_data->main_transform; scene_data.prev_cam_projection = p_prev_camera_data->main_projection; scene_data.prev_taa_jitter = p_prev_camera_data->taa_jitter; for (uint32_t v = 0; v < p_camera_data->view_count; v++) { scene_data.prev_view_projection[v] = p_prev_camera_data->view_projection[v]; } scene_data.z_near = p_camera_data->main_projection.get_z_near(); scene_data.z_far = p_camera_data->main_projection.get_z_far(); // this should be the same for all cameras.. scene_data.lod_distance_multiplier = p_camera_data->main_projection.get_lod_multiplier(); scene_data.lod_camera_plane = Plane(-p_camera_data->main_transform.basis.get_column(Vector3::AXIS_Z), p_camera_data->main_transform.get_origin()); if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_DISABLE_LOD) { scene_data.screen_mesh_lod_threshold = 0.0; } else { scene_data.screen_mesh_lod_threshold = p_screen_mesh_lod_threshold; } if (p_shadow_atlas.is_valid()) { Vector2 sas = shadow_atlas_get_size(p_shadow_atlas); scene_data.shadow_atlas_pixel_size.x = 1.0 / sas.x; scene_data.shadow_atlas_pixel_size.y = 1.0 / sas.y; } { Vector2 dss = directional_shadow_get_size(); scene_data.directional_shadow_pixel_size.x = 1.0 / dss.x; scene_data.directional_shadow_pixel_size.y = 1.0 / dss.y; } scene_data.time = time; scene_data.time_step = time_step; } //assign render data RenderDataRD render_data; { render_data.render_buffers = rb; render_data.scene_data = &scene_data; render_data.instances = &p_instances; render_data.lights = &p_lights; render_data.reflection_probes = &p_reflection_probes; render_data.voxel_gi_instances = &p_voxel_gi_instances; render_data.decals = &p_decals; render_data.lightmaps = &p_lightmaps; render_data.fog_volumes = &p_fog_volumes; render_data.environment = p_environment; render_data.camera_attributes = p_camera_attributes; render_data.shadow_atlas = p_shadow_atlas; render_data.reflection_atlas = p_reflection_atlas; render_data.reflection_probe = p_reflection_probe; render_data.reflection_probe_pass = p_reflection_probe_pass; render_state.render_shadows = p_render_shadows; render_state.render_shadow_count = p_render_shadow_count; render_state.render_sdfgi_regions = p_render_sdfgi_regions; render_state.render_sdfgi_region_count = p_render_sdfgi_region_count; render_state.sdfgi_update_data = p_sdfgi_update_data; render_data.render_info = r_render_info; } PagedArray empty; if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_UNSHADED) { render_data.lights = ∅ render_data.reflection_probes = ∅ render_data.voxel_gi_instances = ∅ } // sdfgi first if (rb.is_valid() && rb->has_custom_data(RB_SCOPE_SDFGI)) { Ref sdfgi = rb->get_custom_data(RB_SCOPE_SDFGI); float exposure_normalization = 1.0; if (p_camera_attributes.is_valid()) { exposure_normalization = RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_camera_attributes); } for (int i = 0; i < render_state.render_sdfgi_region_count; i++) { sdfgi->render_region(rb, render_state.render_sdfgi_regions[i].region, render_state.render_sdfgi_regions[i].instances, this, exposure_normalization); } if (render_state.sdfgi_update_data->update_static) { sdfgi->render_static_lights(&render_data, rb, render_state.sdfgi_update_data->static_cascade_count, p_sdfgi_update_data->static_cascade_indices, render_state.sdfgi_update_data->static_positional_lights, this); } } Color clear_color; if (p_render_buffers.is_valid()) { clear_color = texture_storage->render_target_get_clear_request_color(rb->get_render_target()); } else { clear_color = RSG::texture_storage->get_default_clear_color(); } //assign render indices to voxel_gi_instances if (is_dynamic_gi_supported()) { for (uint32_t i = 0; i < (uint32_t)p_voxel_gi_instances.size(); i++) { gi.voxel_gi_instance_set_render_index(p_voxel_gi_instances[i], i); } } if (rb.is_valid()) { // render_data.render_buffers == p_render_buffers so we can use our already retrieved rb current_cluster_builder = rb->cluster_builder; } else if (reflection_probe_instance_owner.owns(render_data.reflection_probe)) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(render_data.reflection_probe); ReflectionAtlas *ra = reflection_atlas_owner.get_or_null(rpi->atlas); if (!ra) { ERR_PRINT("reflection probe has no reflection atlas! Bug?"); current_cluster_builder = nullptr; } else { current_cluster_builder = ra->cluster_builder; } if (p_camera_attributes.is_valid()) { RendererRD::LightStorage::get_singleton()->reflection_probe_set_baked_exposure(rpi->probe, RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_camera_attributes)); } } else { ERR_PRINT("No render buffer nor reflection atlas, bug"); //should never happen, will crash current_cluster_builder = nullptr; } render_state.voxel_gi_count = 0; if (rb.is_valid() && is_dynamic_gi_supported()) { if (rb->has_custom_data(RB_SCOPE_SDFGI)) { Ref sdfgi = rb->get_custom_data(RB_SCOPE_SDFGI); if (sdfgi.is_valid()) { sdfgi->update_cascades(); sdfgi->pre_process_gi(scene_data.cam_transform, &render_data, this); sdfgi->update_light(); } } gi.setup_voxel_gi_instances(&render_data, render_data.render_buffers, scene_data.cam_transform, *render_data.voxel_gi_instances, render_state.voxel_gi_count, this); } render_state.depth_prepass_used = false; //calls _pre_opaque_render between depth pre-pass and opaque pass if (current_cluster_builder != nullptr) { render_data.cluster_buffer = current_cluster_builder->get_cluster_buffer(); render_data.cluster_size = current_cluster_builder->get_cluster_size(); render_data.cluster_max_elements = current_cluster_builder->get_max_cluster_elements(); } if (rb.is_valid() && vrs) { RS::ViewportVRSMode vrs_mode = texture_storage->render_target_get_vrs_mode(rb->get_render_target()); if (vrs_mode != RS::VIEWPORT_VRS_DISABLED) { RID vrs_texture = rb->get_texture(RB_SCOPE_VRS, RB_TEXTURE); // We use get_cache_multipass instead of get_cache_multiview because the default behavior is for // our vrs_texture to be used as the VRS attachment. In this particular case we're writing to it // so it needs to be set as our color attachment Vector textures; textures.push_back(vrs_texture); Vector passes; RD::FramebufferPass pass; pass.color_attachments.push_back(0); passes.push_back(pass); RID vrs_fb = FramebufferCacheRD::get_singleton()->get_cache_multipass(textures, passes, rb->get_view_count()); vrs->update_vrs_texture(vrs_fb, rb->get_render_target()); } } _render_scene(&render_data, clear_color); if (rb.is_valid()) { _render_buffers_debug_draw(rb, p_shadow_atlas, p_occluder_debug_tex); if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SDFGI && rb->has_custom_data(RB_SCOPE_SDFGI)) { Ref sdfgi = rb->get_custom_data(RB_SCOPE_SDFGI); Vector view_rids; // SDFGI renders at internal resolution, need to check if our debug correctly supports outputting upscaled. Size2i size = rb->get_internal_size(); RID source_texture = rb->get_internal_texture(); for (uint32_t v = 0; v < rb->get_view_count(); v++) { view_rids.push_back(rb->get_internal_texture(v)); } sdfgi->debug_draw(scene_data.view_count, scene_data.view_projection, scene_data.cam_transform, size.x, size.y, rb->get_render_target(), source_texture, view_rids); } } } void RendererSceneRenderRD::_debug_draw_cluster(Ref p_render_buffers) { if (p_render_buffers.is_valid() && current_cluster_builder != nullptr) { RS::ViewportDebugDraw dd = get_debug_draw_mode(); if (dd == RS::VIEWPORT_DEBUG_DRAW_CLUSTER_OMNI_LIGHTS || dd == RS::VIEWPORT_DEBUG_DRAW_CLUSTER_SPOT_LIGHTS || dd == RS::VIEWPORT_DEBUG_DRAW_CLUSTER_DECALS || dd == RS::VIEWPORT_DEBUG_DRAW_CLUSTER_REFLECTION_PROBES) { ClusterBuilderRD::ElementType elem_type = ClusterBuilderRD::ELEMENT_TYPE_MAX; switch (dd) { case RS::VIEWPORT_DEBUG_DRAW_CLUSTER_OMNI_LIGHTS: elem_type = ClusterBuilderRD::ELEMENT_TYPE_OMNI_LIGHT; break; case RS::VIEWPORT_DEBUG_DRAW_CLUSTER_SPOT_LIGHTS: elem_type = ClusterBuilderRD::ELEMENT_TYPE_SPOT_LIGHT; break; case RS::VIEWPORT_DEBUG_DRAW_CLUSTER_DECALS: elem_type = ClusterBuilderRD::ELEMENT_TYPE_DECAL; break; case RS::VIEWPORT_DEBUG_DRAW_CLUSTER_REFLECTION_PROBES: elem_type = ClusterBuilderRD::ELEMENT_TYPE_REFLECTION_PROBE; break; default: { } } current_cluster_builder->debug(elem_type); } } } void RendererSceneRenderRD::_render_shadow_pass(RID p_light, RID p_shadow_atlas, int p_pass, const PagedArray &p_instances, const Plane &p_camera_plane, float p_lod_distance_multiplier, float p_screen_mesh_lod_threshold, bool p_open_pass, bool p_close_pass, bool p_clear_region, RenderingMethod::RenderInfo *p_render_info) { LightInstance *light_instance = light_instance_owner.get_or_null(p_light); ERR_FAIL_COND(!light_instance); Rect2i atlas_rect; uint32_t atlas_size = 1; RID atlas_fb; bool using_dual_paraboloid = false; bool using_dual_paraboloid_flip = false; Vector2i dual_paraboloid_offset; RID render_fb; RID render_texture; float zfar; bool use_pancake = false; bool render_cubemap = false; bool finalize_cubemap = false; bool flip_y = false; Projection light_projection; Transform3D light_transform; if (RSG::light_storage->light_get_type(light_instance->light) == RS::LIGHT_DIRECTIONAL) { //set pssm stuff if (light_instance->last_scene_shadow_pass != scene_pass) { light_instance->directional_rect = _get_directional_shadow_rect(directional_shadow.size, directional_shadow.light_count, directional_shadow.current_light); directional_shadow.current_light++; light_instance->last_scene_shadow_pass = scene_pass; } use_pancake = RSG::light_storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_SHADOW_PANCAKE_SIZE) > 0; light_projection = light_instance->shadow_transform[p_pass].camera; light_transform = light_instance->shadow_transform[p_pass].transform; atlas_rect = light_instance->directional_rect; if (RSG::light_storage->light_directional_get_shadow_mode(light_instance->light) == RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS) { atlas_rect.size.width /= 2; atlas_rect.size.height /= 2; if (p_pass == 1) { atlas_rect.position.x += atlas_rect.size.width; } else if (p_pass == 2) { atlas_rect.position.y += atlas_rect.size.height; } else if (p_pass == 3) { atlas_rect.position += atlas_rect.size; } } else if (RSG::light_storage->light_directional_get_shadow_mode(light_instance->light) == RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS) { atlas_rect.size.height /= 2; if (p_pass == 0) { } else { atlas_rect.position.y += atlas_rect.size.height; } } light_instance->shadow_transform[p_pass].atlas_rect = atlas_rect; light_instance->shadow_transform[p_pass].atlas_rect.position /= directional_shadow.size; light_instance->shadow_transform[p_pass].atlas_rect.size /= directional_shadow.size; zfar = RSG::light_storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_RANGE); render_fb = directional_shadow.fb; render_texture = RID(); flip_y = true; } else { //set from shadow atlas ShadowAtlas *shadow_atlas = shadow_atlas_owner.get_or_null(p_shadow_atlas); ERR_FAIL_COND(!shadow_atlas); ERR_FAIL_COND(!shadow_atlas->shadow_owners.has(p_light)); _update_shadow_atlas(shadow_atlas); uint32_t key = shadow_atlas->shadow_owners[p_light]; uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3; uint32_t shadow = key & ShadowAtlas::SHADOW_INDEX_MASK; ERR_FAIL_INDEX((int)shadow, shadow_atlas->quadrants[quadrant].shadows.size()); uint32_t quadrant_size = shadow_atlas->size >> 1; atlas_rect.position.x = (quadrant & 1) * quadrant_size; atlas_rect.position.y = (quadrant >> 1) * quadrant_size; uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision); atlas_rect.position.x += (shadow % shadow_atlas->quadrants[quadrant].subdivision) * shadow_size; atlas_rect.position.y += (shadow / shadow_atlas->quadrants[quadrant].subdivision) * shadow_size; atlas_rect.size.width = shadow_size; atlas_rect.size.height = shadow_size; zfar = RSG::light_storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_RANGE); if (RSG::light_storage->light_get_type(light_instance->light) == RS::LIGHT_OMNI) { bool wrap = (shadow + 1) % shadow_atlas->quadrants[quadrant].subdivision == 0; dual_paraboloid_offset = wrap ? Vector2i(1 - shadow_atlas->quadrants[quadrant].subdivision, 1) : Vector2i(1, 0); if (RSG::light_storage->light_omni_get_shadow_mode(light_instance->light) == RS::LIGHT_OMNI_SHADOW_CUBE) { ShadowCubemap *cubemap = _get_shadow_cubemap(shadow_size / 2); render_fb = cubemap->side_fb[p_pass]; render_texture = cubemap->cubemap; light_projection = light_instance->shadow_transform[p_pass].camera; light_transform = light_instance->shadow_transform[p_pass].transform; render_cubemap = true; finalize_cubemap = p_pass == 5; atlas_fb = shadow_atlas->fb; atlas_size = shadow_atlas->size; if (p_pass == 0) { _render_shadow_begin(); } } else { atlas_rect.position.x += 1; atlas_rect.position.y += 1; atlas_rect.size.x -= 2; atlas_rect.size.y -= 2; atlas_rect.position += p_pass * atlas_rect.size * dual_paraboloid_offset; light_projection = light_instance->shadow_transform[0].camera; light_transform = light_instance->shadow_transform[0].transform; using_dual_paraboloid = true; using_dual_paraboloid_flip = p_pass == 1; render_fb = shadow_atlas->fb; flip_y = true; } } else if (RSG::light_storage->light_get_type(light_instance->light) == RS::LIGHT_SPOT) { light_projection = light_instance->shadow_transform[0].camera; light_transform = light_instance->shadow_transform[0].transform; render_fb = shadow_atlas->fb; flip_y = true; } } if (render_cubemap) { //rendering to cubemap _render_shadow_append(render_fb, p_instances, light_projection, light_transform, zfar, 0, 0, false, false, use_pancake, p_camera_plane, p_lod_distance_multiplier, p_screen_mesh_lod_threshold, Rect2(), false, true, true, true, p_render_info); if (finalize_cubemap) { _render_shadow_process(); _render_shadow_end(); //reblit Rect2 atlas_rect_norm = atlas_rect; atlas_rect_norm.position /= float(atlas_size); atlas_rect_norm.size /= float(atlas_size); copy_effects->copy_cubemap_to_dp(render_texture, atlas_fb, atlas_rect_norm, atlas_rect.size, light_projection.get_z_near(), light_projection.get_z_far(), false); atlas_rect_norm.position += Vector2(dual_paraboloid_offset) * atlas_rect_norm.size; copy_effects->copy_cubemap_to_dp(render_texture, atlas_fb, atlas_rect_norm, atlas_rect.size, light_projection.get_z_near(), light_projection.get_z_far(), true); //restore transform so it can be properly used light_instance_set_shadow_transform(p_light, Projection(), light_instance->transform, zfar, 0, 0, 0); } } else { //render shadow _render_shadow_append(render_fb, p_instances, light_projection, light_transform, zfar, 0, 0, using_dual_paraboloid, using_dual_paraboloid_flip, use_pancake, p_camera_plane, p_lod_distance_multiplier, p_screen_mesh_lod_threshold, atlas_rect, flip_y, p_clear_region, p_open_pass, p_close_pass, p_render_info); } } void RendererSceneRenderRD::render_material(const Transform3D &p_cam_transform, const Projection &p_cam_projection, bool p_cam_orthogonal, const PagedArray &p_instances, RID p_framebuffer, const Rect2i &p_region) { _render_material(p_cam_transform, p_cam_projection, p_cam_orthogonal, p_instances, p_framebuffer, p_region, 1.0); } void RendererSceneRenderRD::render_particle_collider_heightfield(RID p_collider, const Transform3D &p_transform, const PagedArray &p_instances) { RendererRD::ParticlesStorage *particles_storage = RendererRD::ParticlesStorage::get_singleton(); ERR_FAIL_COND(!particles_storage->particles_collision_is_heightfield(p_collider)); Vector3 extents = particles_storage->particles_collision_get_extents(p_collider) * p_transform.basis.get_scale(); Projection cm; cm.set_orthogonal(-extents.x, extents.x, -extents.z, extents.z, 0, extents.y * 2.0); Vector3 cam_pos = p_transform.origin; cam_pos.y += extents.y; Transform3D cam_xform; cam_xform.set_look_at(cam_pos, cam_pos - p_transform.basis.get_column(Vector3::AXIS_Y), -p_transform.basis.get_column(Vector3::AXIS_Z).normalized()); RID fb = particles_storage->particles_collision_get_heightfield_framebuffer(p_collider); _render_particle_collider_heightfield(fb, cam_xform, cm, p_instances); } bool RendererSceneRenderRD::free(RID p_rid) { if (is_environment(p_rid)) { environment_free(p_rid); } else if (RSG::camera_attributes->owns_camera_attributes(p_rid)) { RSG::camera_attributes->camera_attributes_free(p_rid); } else if (reflection_atlas_owner.owns(p_rid)) { reflection_atlas_set_size(p_rid, 0, 0); ReflectionAtlas *ra = reflection_atlas_owner.get_or_null(p_rid); if (ra->cluster_builder) { memdelete(ra->cluster_builder); } reflection_atlas_owner.free(p_rid); } else if (reflection_probe_instance_owner.owns(p_rid)) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_rid); _free_forward_id(FORWARD_ID_TYPE_REFLECTION_PROBE, rpi->forward_id); reflection_probe_release_atlas_index(p_rid); reflection_probe_instance_owner.free(p_rid); } else if (decal_instance_owner.owns(p_rid)) { DecalInstance *di = decal_instance_owner.get_or_null(p_rid); _free_forward_id(FORWARD_ID_TYPE_DECAL, di->forward_id); decal_instance_owner.free(p_rid); } else if (lightmap_instance_owner.owns(p_rid)) { lightmap_instance_owner.free(p_rid); } else if (gi.voxel_gi_instance_owns(p_rid)) { gi.voxel_gi_instance_free(p_rid); } else if (sky.sky_owner.owns(p_rid)) { sky.update_dirty_skys(); sky.free_sky(p_rid); } else if (light_instance_owner.owns(p_rid)) { LightInstance *light_instance = light_instance_owner.get_or_null(p_rid); //remove from shadow atlases.. for (const RID &E : light_instance->shadow_atlases) { ShadowAtlas *shadow_atlas = shadow_atlas_owner.get_or_null(E); ERR_CONTINUE(!shadow_atlas->shadow_owners.has(p_rid)); uint32_t key = shadow_atlas->shadow_owners[p_rid]; uint32_t q = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3; uint32_t s = key & ShadowAtlas::SHADOW_INDEX_MASK; shadow_atlas->quadrants[q].shadows.write[s].owner = RID(); if (key & ShadowAtlas::OMNI_LIGHT_FLAG) { // Omni lights use two atlas spots, make sure to clear the other as well shadow_atlas->quadrants[q].shadows.write[s + 1].owner = RID(); } shadow_atlas->shadow_owners.erase(p_rid); } if (light_instance->light_type != RS::LIGHT_DIRECTIONAL) { _free_forward_id(light_instance->light_type == RS::LIGHT_OMNI ? FORWARD_ID_TYPE_OMNI_LIGHT : FORWARD_ID_TYPE_SPOT_LIGHT, light_instance->forward_id); } light_instance_owner.free(p_rid); } else if (shadow_atlas_owner.owns(p_rid)) { shadow_atlas_set_size(p_rid, 0); shadow_atlas_owner.free(p_rid); } else if (RendererRD::Fog::get_singleton()->owns_fog_volume_instance(p_rid)) { RendererRD::Fog::get_singleton()->fog_instance_free(p_rid); } else { return false; } return true; } void RendererSceneRenderRD::set_debug_draw_mode(RS::ViewportDebugDraw p_debug_draw) { debug_draw = p_debug_draw; } void RendererSceneRenderRD::update() { sky.update_dirty_skys(); } void RendererSceneRenderRD::set_time(double p_time, double p_step) { time = p_time; time_step = p_step; } void RendererSceneRenderRD::screen_space_roughness_limiter_set_active(bool p_enable, float p_amount, float p_limit) { screen_space_roughness_limiter = p_enable; screen_space_roughness_limiter_amount = p_amount; screen_space_roughness_limiter_limit = p_limit; } bool RendererSceneRenderRD::screen_space_roughness_limiter_is_active() const { return screen_space_roughness_limiter; } float RendererSceneRenderRD::screen_space_roughness_limiter_get_amount() const { return screen_space_roughness_limiter_amount; } float RendererSceneRenderRD::screen_space_roughness_limiter_get_limit() const { return screen_space_roughness_limiter_limit; } TypedArray RendererSceneRenderRD::bake_render_uv2(RID p_base, const TypedArray &p_material_overrides, const Size2i &p_image_size) { RD::TextureFormat tf; tf.format = RD::DATA_FORMAT_R8G8B8A8_UNORM; tf.width = p_image_size.width; // Always 64x64 tf.height = p_image_size.height; tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT; RID albedo_alpha_tex = RD::get_singleton()->texture_create(tf, RD::TextureView()); RID normal_tex = RD::get_singleton()->texture_create(tf, RD::TextureView()); RID orm_tex = RD::get_singleton()->texture_create(tf, RD::TextureView()); tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT; RID emission_tex = RD::get_singleton()->texture_create(tf, RD::TextureView()); tf.format = RD::DATA_FORMAT_R32_SFLOAT; RID depth_write_tex = RD::get_singleton()->texture_create(tf, RD::TextureView()); tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT; tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32; RID depth_tex = RD::get_singleton()->texture_create(tf, RD::TextureView()); Vector fb_tex; fb_tex.push_back(albedo_alpha_tex); fb_tex.push_back(normal_tex); fb_tex.push_back(orm_tex); fb_tex.push_back(emission_tex); fb_tex.push_back(depth_write_tex); fb_tex.push_back(depth_tex); RID fb = RD::get_singleton()->framebuffer_create(fb_tex); //RID sampled_light; RenderGeometryInstance *gi = geometry_instance_create(p_base); uint32_t sc = RSG::mesh_storage->mesh_get_surface_count(p_base); Vector materials; materials.resize(sc); for (uint32_t i = 0; i < sc; i++) { if (i < (uint32_t)p_material_overrides.size()) { materials.write[i] = p_material_overrides[i]; } } gi->set_surface_materials(materials); if (cull_argument.size() == 0) { cull_argument.push_back(nullptr); } cull_argument[0] = gi; _render_uv2(cull_argument, fb, Rect2i(0, 0, p_image_size.width, p_image_size.height)); geometry_instance_free(gi); TypedArray ret; { PackedByteArray data = RD::get_singleton()->texture_get_data(albedo_alpha_tex, 0); Ref img; img.instantiate(); img->create(p_image_size.width, p_image_size.height, false, Image::FORMAT_RGBA8, data); RD::get_singleton()->free(albedo_alpha_tex); ret.push_back(img); } { PackedByteArray data = RD::get_singleton()->texture_get_data(normal_tex, 0); Ref img; img.instantiate(); img->create(p_image_size.width, p_image_size.height, false, Image::FORMAT_RGBA8, data); RD::get_singleton()->free(normal_tex); ret.push_back(img); } { PackedByteArray data = RD::get_singleton()->texture_get_data(orm_tex, 0); Ref img; img.instantiate(); img->create(p_image_size.width, p_image_size.height, false, Image::FORMAT_RGBA8, data); RD::get_singleton()->free(orm_tex); ret.push_back(img); } { PackedByteArray data = RD::get_singleton()->texture_get_data(emission_tex, 0); Ref img; img.instantiate(); img->create(p_image_size.width, p_image_size.height, false, Image::FORMAT_RGBAH, data); RD::get_singleton()->free(emission_tex); ret.push_back(img); } RD::get_singleton()->free(depth_write_tex); RD::get_singleton()->free(depth_tex); return ret; } void RendererSceneRenderRD::sdfgi_set_debug_probe_select(const Vector3 &p_position, const Vector3 &p_dir) { gi.sdfgi_debug_probe_pos = p_position; gi.sdfgi_debug_probe_dir = p_dir; } RendererSceneRenderRD *RendererSceneRenderRD::singleton = nullptr; RID RendererSceneRenderRD::get_reflection_probe_buffer() { return cluster.reflection_buffer; } RID RendererSceneRenderRD::get_omni_light_buffer() { return cluster.omni_light_buffer; } RID RendererSceneRenderRD::get_spot_light_buffer() { return cluster.spot_light_buffer; } RID RendererSceneRenderRD::get_directional_light_buffer() { return cluster.directional_light_buffer; } RID RendererSceneRenderRD::get_decal_buffer() { return cluster.decal_buffer; } int RendererSceneRenderRD::get_max_directional_lights() const { return cluster.max_directional_lights; } bool RendererSceneRenderRD::is_vrs_supported() const { return RD::get_singleton()->has_feature(RD::SUPPORTS_ATTACHMENT_VRS); } bool RendererSceneRenderRD::is_dynamic_gi_supported() const { // usable by default (unless low end = true) return true; } bool RendererSceneRenderRD::is_clustered_enabled() const { // used by default. return true; } bool RendererSceneRenderRD::is_volumetric_supported() const { // usable by default (unless low end = true) return true; } uint32_t RendererSceneRenderRD::get_max_elements() const { return GLOBAL_GET("rendering/limits/cluster_builder/max_clustered_elements"); } RendererSceneRenderRD::RendererSceneRenderRD() { singleton = this; } void RendererSceneRenderRD::init() { max_cluster_elements = get_max_elements(); directional_shadow.size = GLOBAL_GET("rendering/lights_and_shadows/directional_shadow/size"); directional_shadow.use_16_bits = GLOBAL_GET("rendering/lights_and_shadows/directional_shadow/16_bits"); /* SKY SHADER */ sky.init(); /* GI */ if (is_dynamic_gi_supported()) { gi.init(&sky); } { //decals cluster.max_decals = max_cluster_elements; uint32_t decal_buffer_size = cluster.max_decals * sizeof(Cluster::DecalData); cluster.decals = memnew_arr(Cluster::DecalData, cluster.max_decals); cluster.decal_sort = memnew_arr(Cluster::InstanceSort, cluster.max_decals); cluster.decal_buffer = RD::get_singleton()->storage_buffer_create(decal_buffer_size); } { //reflections cluster.max_reflections = max_cluster_elements; cluster.reflections = memnew_arr(Cluster::ReflectionData, cluster.max_reflections); cluster.reflection_sort = memnew_arr(Cluster::InstanceSort, cluster.max_reflections); cluster.reflection_buffer = RD::get_singleton()->storage_buffer_create(sizeof(Cluster::ReflectionData) * cluster.max_reflections); } { //lights cluster.max_lights = max_cluster_elements; uint32_t light_buffer_size = cluster.max_lights * sizeof(Cluster::LightData); cluster.omni_lights = memnew_arr(Cluster::LightData, cluster.max_lights); cluster.omni_light_buffer = RD::get_singleton()->storage_buffer_create(light_buffer_size); cluster.omni_light_sort = memnew_arr(Cluster::InstanceSort, cluster.max_lights); cluster.spot_lights = memnew_arr(Cluster::LightData, cluster.max_lights); cluster.spot_light_buffer = RD::get_singleton()->storage_buffer_create(light_buffer_size); cluster.spot_light_sort = memnew_arr(Cluster::InstanceSort, cluster.max_lights); //defines += "\n#define MAX_LIGHT_DATA_STRUCTS " + itos(cluster.max_lights) + "\n"; cluster.max_directional_lights = MAX_DIRECTIONAL_LIGHTS; uint32_t directional_light_buffer_size = cluster.max_directional_lights * sizeof(Cluster::DirectionalLightData); cluster.directional_lights = memnew_arr(Cluster::DirectionalLightData, cluster.max_directional_lights); cluster.directional_light_buffer = RD::get_singleton()->uniform_buffer_create(directional_light_buffer_size); } if (is_volumetric_supported()) { RendererRD::Fog::get_singleton()->init_fog_shader(cluster.max_directional_lights, get_roughness_layers(), is_using_radiance_cubemap_array()); } { RD::SamplerState sampler; sampler.mag_filter = RD::SAMPLER_FILTER_NEAREST; sampler.min_filter = RD::SAMPLER_FILTER_NEAREST; sampler.enable_compare = true; sampler.compare_op = RD::COMPARE_OP_LESS; shadow_sampler = RD::get_singleton()->sampler_create(sampler); } RSG::camera_attributes->camera_attributes_set_dof_blur_bokeh_shape(RS::DOFBokehShape(int(GLOBAL_GET("rendering/camera/depth_of_field/depth_of_field_bokeh_shape")))); RSG::camera_attributes->camera_attributes_set_dof_blur_quality(RS::DOFBlurQuality(int(GLOBAL_GET("rendering/camera/depth_of_field/depth_of_field_bokeh_quality"))), GLOBAL_GET("rendering/camera/depth_of_field/depth_of_field_use_jitter")); use_physical_light_units = GLOBAL_GET("rendering/lights_and_shadows/use_physical_light_units"); environment_set_ssao_quality(RS::EnvironmentSSAOQuality(int(GLOBAL_GET("rendering/environment/ssao/quality"))), GLOBAL_GET("rendering/environment/ssao/half_size"), GLOBAL_GET("rendering/environment/ssao/adaptive_target"), GLOBAL_GET("rendering/environment/ssao/blur_passes"), GLOBAL_GET("rendering/environment/ssao/fadeout_from"), GLOBAL_GET("rendering/environment/ssao/fadeout_to")); screen_space_roughness_limiter = GLOBAL_GET("rendering/anti_aliasing/screen_space_roughness_limiter/enabled"); screen_space_roughness_limiter_amount = GLOBAL_GET("rendering/anti_aliasing/screen_space_roughness_limiter/amount"); screen_space_roughness_limiter_limit = GLOBAL_GET("rendering/anti_aliasing/screen_space_roughness_limiter/limit"); glow_bicubic_upscale = int(GLOBAL_GET("rendering/environment/glow/upscale_mode")) > 0; glow_high_quality = GLOBAL_GET("rendering/environment/glow/use_high_quality"); ssr_roughness_quality = RS::EnvironmentSSRRoughnessQuality(int(GLOBAL_GET("rendering/environment/screen_space_reflection/roughness_quality"))); sss_quality = RS::SubSurfaceScatteringQuality(int(GLOBAL_GET("rendering/environment/subsurface_scattering/subsurface_scattering_quality"))); sss_scale = GLOBAL_GET("rendering/environment/subsurface_scattering/subsurface_scattering_scale"); sss_depth_scale = GLOBAL_GET("rendering/environment/subsurface_scattering/subsurface_scattering_depth_scale"); environment_set_ssil_quality(RS::EnvironmentSSILQuality(int(GLOBAL_GET("rendering/environment/ssil/quality"))), GLOBAL_GET("rendering/environment/ssil/half_size"), GLOBAL_GET("rendering/environment/ssil/adaptive_target"), GLOBAL_GET("rendering/environment/ssil/blur_passes"), GLOBAL_GET("rendering/environment/ssil/fadeout_from"), GLOBAL_GET("rendering/environment/ssil/fadeout_to")); directional_penumbra_shadow_kernel = memnew_arr(float, 128); directional_soft_shadow_kernel = memnew_arr(float, 128); penumbra_shadow_kernel = memnew_arr(float, 128); soft_shadow_kernel = memnew_arr(float, 128); positional_soft_shadow_filter_set_quality(RS::ShadowQuality(int(GLOBAL_GET("rendering/lights_and_shadows/positional_shadow/soft_shadow_filter_quality")))); directional_soft_shadow_filter_set_quality(RS::ShadowQuality(int(GLOBAL_GET("rendering/lights_and_shadows/directional_shadow/soft_shadow_filter_quality")))); environment_set_volumetric_fog_volume_size(GLOBAL_GET("rendering/environment/volumetric_fog/volume_size"), GLOBAL_GET("rendering/environment/volumetric_fog/volume_depth")); environment_set_volumetric_fog_filter_active(GLOBAL_GET("rendering/environment/volumetric_fog/use_filter")); decals_set_filter(RS::DecalFilter(int(GLOBAL_GET("rendering/textures/decals/filter")))); light_projectors_set_filter(RS::LightProjectorFilter(int(GLOBAL_GET("rendering/textures/light_projectors/filter")))); cull_argument.set_page_pool(&cull_argument_pool); bool can_use_storage = _render_buffers_can_be_storage(); bokeh_dof = memnew(RendererRD::BokehDOF(!can_use_storage)); copy_effects = memnew(RendererRD::CopyEffects(!can_use_storage)); tone_mapper = memnew(RendererRD::ToneMapper); vrs = memnew(RendererRD::VRS); if (can_use_storage) { fsr = memnew(RendererRD::FSR); ss_effects = memnew(RendererRD::SSEffects); } } RendererSceneRenderRD::~RendererSceneRenderRD() { if (bokeh_dof) { memdelete(bokeh_dof); } if (copy_effects) { memdelete(copy_effects); } if (tone_mapper) { memdelete(tone_mapper); } if (vrs) { memdelete(vrs); } if (fsr) { memdelete(fsr); } if (ss_effects) { memdelete(ss_effects); } for (const KeyValue &E : shadow_cubemaps) { RD::get_singleton()->free(E.value.cubemap); } if (sky.sky_scene_state.uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(sky.sky_scene_state.uniform_set)) { RD::get_singleton()->free(sky.sky_scene_state.uniform_set); } if (is_dynamic_gi_supported()) { gi.free(); } if (is_volumetric_supported()) { RendererRD::Fog::get_singleton()->free_fog_shader(); } memdelete_arr(directional_penumbra_shadow_kernel); memdelete_arr(directional_soft_shadow_kernel); memdelete_arr(penumbra_shadow_kernel); memdelete_arr(soft_shadow_kernel); { RD::get_singleton()->free(cluster.directional_light_buffer); RD::get_singleton()->free(cluster.omni_light_buffer); RD::get_singleton()->free(cluster.spot_light_buffer); RD::get_singleton()->free(cluster.reflection_buffer); RD::get_singleton()->free(cluster.decal_buffer); memdelete_arr(cluster.directional_lights); memdelete_arr(cluster.omni_lights); memdelete_arr(cluster.spot_lights); memdelete_arr(cluster.omni_light_sort); memdelete_arr(cluster.spot_light_sort); memdelete_arr(cluster.reflections); memdelete_arr(cluster.reflection_sort); memdelete_arr(cluster.decals); memdelete_arr(cluster.decal_sort); } RD::get_singleton()->free(shadow_sampler); directional_shadow_atlas_set_size(0); cull_argument.reset(); //avoid exit error }