/*************************************************************************/ /* gi.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "gi.h" #include "core/config/project_settings.h" #include "servers/rendering/renderer_rd/renderer_compositor_rd.h" #include "servers/rendering/renderer_rd/renderer_scene_render_rd.h" #include "servers/rendering/renderer_rd/storage_rd/material_storage.h" #include "servers/rendering/renderer_rd/storage_rd/render_scene_buffers_rd.h" #include "servers/rendering/renderer_rd/storage_rd/texture_storage.h" #include "servers/rendering/rendering_server_default.h" using namespace RendererRD; const Vector3i GI::SDFGI::Cascade::DIRTY_ALL = Vector3i(0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF); GI *GI::singleton = nullptr; //////////////////////////////////////////////////////////////////////////////// // VOXEL GI STORAGE RID GI::voxel_gi_allocate() { return voxel_gi_owner.allocate_rid(); } void GI::voxel_gi_free(RID p_voxel_gi) { voxel_gi_allocate_data(p_voxel_gi, Transform3D(), AABB(), Vector3i(), Vector(), Vector(), Vector(), Vector()); //deallocate VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi); voxel_gi->dependency.deleted_notify(p_voxel_gi); voxel_gi_owner.free(p_voxel_gi); } void GI::voxel_gi_initialize(RID p_voxel_gi) { voxel_gi_owner.initialize_rid(p_voxel_gi, VoxelGI()); } void GI::voxel_gi_allocate_data(RID p_voxel_gi, const Transform3D &p_to_cell_xform, const AABB &p_aabb, const Vector3i &p_octree_size, const Vector &p_octree_cells, const Vector &p_data_cells, const Vector &p_distance_field, const Vector &p_level_counts) { VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi); ERR_FAIL_COND(!voxel_gi); if (voxel_gi->octree_buffer.is_valid()) { RD::get_singleton()->free(voxel_gi->octree_buffer); RD::get_singleton()->free(voxel_gi->data_buffer); if (voxel_gi->sdf_texture.is_valid()) { RD::get_singleton()->free(voxel_gi->sdf_texture); } voxel_gi->sdf_texture = RID(); voxel_gi->octree_buffer = RID(); voxel_gi->data_buffer = RID(); voxel_gi->octree_buffer_size = 0; voxel_gi->data_buffer_size = 0; voxel_gi->cell_count = 0; } voxel_gi->to_cell_xform = p_to_cell_xform; voxel_gi->bounds = p_aabb; voxel_gi->octree_size = p_octree_size; voxel_gi->level_counts = p_level_counts; if (p_octree_cells.size()) { ERR_FAIL_COND(p_octree_cells.size() % 32 != 0); //cells size must be a multiple of 32 uint32_t cell_count = p_octree_cells.size() / 32; ERR_FAIL_COND(p_data_cells.size() != (int)cell_count * 16); //see that data size matches voxel_gi->cell_count = cell_count; voxel_gi->octree_buffer = RD::get_singleton()->storage_buffer_create(p_octree_cells.size(), p_octree_cells); voxel_gi->octree_buffer_size = p_octree_cells.size(); voxel_gi->data_buffer = RD::get_singleton()->storage_buffer_create(p_data_cells.size(), p_data_cells); voxel_gi->data_buffer_size = p_data_cells.size(); if (p_distance_field.size()) { RD::TextureFormat tf; tf.format = RD::DATA_FORMAT_R8_UNORM; tf.width = voxel_gi->octree_size.x; tf.height = voxel_gi->octree_size.y; tf.depth = voxel_gi->octree_size.z; tf.texture_type = RD::TEXTURE_TYPE_3D; tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT; Vector> s; s.push_back(p_distance_field); voxel_gi->sdf_texture = RD::get_singleton()->texture_create(tf, RD::TextureView(), s); RD::get_singleton()->set_resource_name(voxel_gi->sdf_texture, "VoxelGI SDF Texture"); } #if 0 { RD::TextureFormat tf; tf.format = RD::DATA_FORMAT_R8_UNORM; tf.width = voxel_gi->octree_size.x; tf.height = voxel_gi->octree_size.y; tf.depth = voxel_gi->octree_size.z; tf.type = RD::TEXTURE_TYPE_3D; tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT; tf.shareable_formats.push_back(RD::DATA_FORMAT_R8_UNORM); tf.shareable_formats.push_back(RD::DATA_FORMAT_R8_UINT); voxel_gi->sdf_texture = RD::get_singleton()->texture_create(tf, RD::TextureView()); RD::get_singleton()->set_resource_name(voxel_gi->sdf_texture, "VoxelGI SDF Texture"); } RID shared_tex; { RD::TextureView tv; tv.format_override = RD::DATA_FORMAT_R8_UINT; shared_tex = RD::get_singleton()->texture_create_shared(tv, voxel_gi->sdf_texture); } //update SDF texture Vector uniforms; { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u.binding = 1; u.append_id(voxel_gi->octree_buffer); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u.binding = 2; u.append_id(voxel_gi->data_buffer); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_IMAGE; u.binding = 3; u.append_id(shared_tex); uniforms.push_back(u); } RID uniform_set = RD::get_singleton()->uniform_set_create(uniforms, voxel_gi_sdf_shader_version_shader, 0); { uint32_t push_constant[4] = { 0, 0, 0, 0 }; for (int i = 0; i < voxel_gi->level_counts.size() - 1; i++) { push_constant[0] += voxel_gi->level_counts[i]; } push_constant[1] = push_constant[0] + voxel_gi->level_counts[voxel_gi->level_counts.size() - 1]; print_line("offset: " + itos(push_constant[0])); print_line("size: " + itos(push_constant[1])); //create SDF RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin(); RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, voxel_gi_sdf_shader_pipeline); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set, 0); RD::get_singleton()->compute_list_set_push_constant(compute_list, push_constant, sizeof(uint32_t) * 4); RD::get_singleton()->compute_list_dispatch(compute_list, voxel_gi->octree_size.x / 4, voxel_gi->octree_size.y / 4, voxel_gi->octree_size.z / 4); RD::get_singleton()->compute_list_end(); } RD::get_singleton()->free(uniform_set); RD::get_singleton()->free(shared_tex); } #endif } voxel_gi->version++; voxel_gi->data_version++; voxel_gi->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB); } AABB GI::voxel_gi_get_bounds(RID p_voxel_gi) const { VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi); ERR_FAIL_COND_V(!voxel_gi, AABB()); return voxel_gi->bounds; } Vector3i GI::voxel_gi_get_octree_size(RID p_voxel_gi) const { VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi); ERR_FAIL_COND_V(!voxel_gi, Vector3i()); return voxel_gi->octree_size; } Vector GI::voxel_gi_get_octree_cells(RID p_voxel_gi) const { VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi); ERR_FAIL_COND_V(!voxel_gi, Vector()); if (voxel_gi->octree_buffer.is_valid()) { return RD::get_singleton()->buffer_get_data(voxel_gi->octree_buffer); } return Vector(); } Vector GI::voxel_gi_get_data_cells(RID p_voxel_gi) const { VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi); ERR_FAIL_COND_V(!voxel_gi, Vector()); if (voxel_gi->data_buffer.is_valid()) { return RD::get_singleton()->buffer_get_data(voxel_gi->data_buffer); } return Vector(); } Vector GI::voxel_gi_get_distance_field(RID p_voxel_gi) const { VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi); ERR_FAIL_COND_V(!voxel_gi, Vector()); if (voxel_gi->data_buffer.is_valid()) { return RD::get_singleton()->texture_get_data(voxel_gi->sdf_texture, 0); } return Vector(); } Vector GI::voxel_gi_get_level_counts(RID p_voxel_gi) const { VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi); ERR_FAIL_COND_V(!voxel_gi, Vector()); return voxel_gi->level_counts; } Transform3D GI::voxel_gi_get_to_cell_xform(RID p_voxel_gi) const { VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi); ERR_FAIL_COND_V(!voxel_gi, Transform3D()); return voxel_gi->to_cell_xform; } void GI::voxel_gi_set_dynamic_range(RID p_voxel_gi, float p_range) { VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi); ERR_FAIL_COND(!voxel_gi); voxel_gi->dynamic_range = p_range; voxel_gi->version++; } float GI::voxel_gi_get_dynamic_range(RID p_voxel_gi) const { VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi); ERR_FAIL_COND_V(!voxel_gi, 0); return voxel_gi->dynamic_range; } void GI::voxel_gi_set_propagation(RID p_voxel_gi, float p_range) { VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi); ERR_FAIL_COND(!voxel_gi); voxel_gi->propagation = p_range; voxel_gi->version++; } float GI::voxel_gi_get_propagation(RID p_voxel_gi) const { VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi); ERR_FAIL_COND_V(!voxel_gi, 0); return voxel_gi->propagation; } void GI::voxel_gi_set_energy(RID p_voxel_gi, float p_energy) { VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi); ERR_FAIL_COND(!voxel_gi); voxel_gi->energy = p_energy; } float GI::voxel_gi_get_energy(RID p_voxel_gi) const { VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi); ERR_FAIL_COND_V(!voxel_gi, 0); return voxel_gi->energy; } void GI::voxel_gi_set_baked_exposure_normalization(RID p_voxel_gi, float p_baked_exposure) { VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi); ERR_FAIL_COND(!voxel_gi); voxel_gi->baked_exposure = p_baked_exposure; } float GI::voxel_gi_get_baked_exposure_normalization(RID p_voxel_gi) const { VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi); ERR_FAIL_COND_V(!voxel_gi, 0); return voxel_gi->baked_exposure; } void GI::voxel_gi_set_bias(RID p_voxel_gi, float p_bias) { VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi); ERR_FAIL_COND(!voxel_gi); voxel_gi->bias = p_bias; } float GI::voxel_gi_get_bias(RID p_voxel_gi) const { VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi); ERR_FAIL_COND_V(!voxel_gi, 0); return voxel_gi->bias; } void GI::voxel_gi_set_normal_bias(RID p_voxel_gi, float p_normal_bias) { VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi); ERR_FAIL_COND(!voxel_gi); voxel_gi->normal_bias = p_normal_bias; } float GI::voxel_gi_get_normal_bias(RID p_voxel_gi) const { VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi); ERR_FAIL_COND_V(!voxel_gi, 0); return voxel_gi->normal_bias; } void GI::voxel_gi_set_interior(RID p_voxel_gi, bool p_enable) { VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi); ERR_FAIL_COND(!voxel_gi); voxel_gi->interior = p_enable; } void GI::voxel_gi_set_use_two_bounces(RID p_voxel_gi, bool p_enable) { VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi); ERR_FAIL_COND(!voxel_gi); voxel_gi->use_two_bounces = p_enable; voxel_gi->version++; } bool GI::voxel_gi_is_using_two_bounces(RID p_voxel_gi) const { VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi); ERR_FAIL_COND_V(!voxel_gi, false); return voxel_gi->use_two_bounces; } bool GI::voxel_gi_is_interior(RID p_voxel_gi) const { VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi); ERR_FAIL_COND_V(!voxel_gi, 0); return voxel_gi->interior; } uint32_t GI::voxel_gi_get_version(RID p_voxel_gi) const { VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi); ERR_FAIL_COND_V(!voxel_gi, 0); return voxel_gi->version; } uint32_t GI::voxel_gi_get_data_version(RID p_voxel_gi) { VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi); ERR_FAIL_COND_V(!voxel_gi, 0); return voxel_gi->data_version; } RID GI::voxel_gi_get_octree_buffer(RID p_voxel_gi) const { VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi); ERR_FAIL_COND_V(!voxel_gi, RID()); return voxel_gi->octree_buffer; } RID GI::voxel_gi_get_data_buffer(RID p_voxel_gi) const { VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi); ERR_FAIL_COND_V(!voxel_gi, RID()); return voxel_gi->data_buffer; } RID GI::voxel_gi_get_sdf_texture(RID p_voxel_gi) { VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi); ERR_FAIL_COND_V(!voxel_gi, RID()); return voxel_gi->sdf_texture; } Dependency *GI::voxel_gi_get_dependency(RID p_voxel_gi) const { VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi); ERR_FAIL_COND_V(!voxel_gi, nullptr); return &voxel_gi->dependency; } //////////////////////////////////////////////////////////////////////////////// // SDFGI void GI::SDFGI::create(RID p_env, const Vector3 &p_world_position, uint32_t p_requested_history_size, GI *p_gi) { RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton(); RendererRD::MaterialStorage *material_storage = RendererRD::MaterialStorage::get_singleton(); gi = p_gi; num_cascades = RendererSceneRenderRD::get_singleton()->environment_get_sdfgi_cascades(p_env); min_cell_size = RendererSceneRenderRD::get_singleton()->environment_get_sdfgi_min_cell_size(p_env); uses_occlusion = RendererSceneRenderRD::get_singleton()->environment_get_sdfgi_use_occlusion(p_env); y_scale_mode = RendererSceneRenderRD::get_singleton()->environment_get_sdfgi_y_scale(p_env); static const float y_scale[3] = { 2.0, 1.5, 1.0 }; y_mult = y_scale[y_scale_mode]; cascades.resize(num_cascades); probe_axis_count = SDFGI::PROBE_DIVISOR + 1; solid_cell_ratio = gi->sdfgi_solid_cell_ratio; solid_cell_count = uint32_t(float(cascade_size * cascade_size * cascade_size) * solid_cell_ratio); float base_cell_size = min_cell_size; RD::TextureFormat tf_sdf; tf_sdf.format = RD::DATA_FORMAT_R8_UNORM; tf_sdf.width = cascade_size; // Always 64x64 tf_sdf.height = cascade_size; tf_sdf.depth = cascade_size; tf_sdf.texture_type = RD::TEXTURE_TYPE_3D; tf_sdf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT; { RD::TextureFormat tf_render = tf_sdf; tf_render.format = RD::DATA_FORMAT_R16_UINT; render_albedo = RD::get_singleton()->texture_create(tf_render, RD::TextureView()); RD::get_singleton()->set_resource_name(render_albedo, "VoxelGI Render Albedo"); tf_render.format = RD::DATA_FORMAT_R32_UINT; render_emission = RD::get_singleton()->texture_create(tf_render, RD::TextureView()); RD::get_singleton()->set_resource_name(render_emission, "VoxelGI Render Emission"); render_emission_aniso = RD::get_singleton()->texture_create(tf_render, RD::TextureView()); RD::get_singleton()->set_resource_name(render_emission_aniso, "VoxelGI Render Emission Aniso"); tf_render.format = RD::DATA_FORMAT_R8_UNORM; //at least its easy to visualize for (int i = 0; i < 8; i++) { render_occlusion[i] = RD::get_singleton()->texture_create(tf_render, RD::TextureView()); RD::get_singleton()->set_resource_name(render_occlusion[i], String("VoxelGI Render Occlusion ") + itos(i)); } tf_render.format = RD::DATA_FORMAT_R32_UINT; render_geom_facing = RD::get_singleton()->texture_create(tf_render, RD::TextureView()); RD::get_singleton()->set_resource_name(render_geom_facing, "VoxelGI Render Geometry Facing"); tf_render.format = RD::DATA_FORMAT_R8G8B8A8_UINT; render_sdf[0] = RD::get_singleton()->texture_create(tf_render, RD::TextureView()); RD::get_singleton()->set_resource_name(render_sdf[0], "VoxelGI Render SDF 0"); render_sdf[1] = RD::get_singleton()->texture_create(tf_render, RD::TextureView()); RD::get_singleton()->set_resource_name(render_sdf[1], "VoxelGI Render SDF 1"); tf_render.width /= 2; tf_render.height /= 2; tf_render.depth /= 2; render_sdf_half[0] = RD::get_singleton()->texture_create(tf_render, RD::TextureView()); RD::get_singleton()->set_resource_name(render_sdf_half[0], "VoxelGI Render SDF Half 0"); render_sdf_half[1] = RD::get_singleton()->texture_create(tf_render, RD::TextureView()); RD::get_singleton()->set_resource_name(render_sdf_half[1], "VoxelGI Render SDF Half 1"); } RD::TextureFormat tf_occlusion = tf_sdf; tf_occlusion.format = RD::DATA_FORMAT_R16_UINT; tf_occlusion.shareable_formats.push_back(RD::DATA_FORMAT_R16_UINT); tf_occlusion.shareable_formats.push_back(RD::DATA_FORMAT_R4G4B4A4_UNORM_PACK16); tf_occlusion.depth *= cascades.size(); //use depth for occlusion slices tf_occlusion.width *= 2; //use width for the other half RD::TextureFormat tf_light = tf_sdf; tf_light.format = RD::DATA_FORMAT_R32_UINT; tf_light.shareable_formats.push_back(RD::DATA_FORMAT_R32_UINT); tf_light.shareable_formats.push_back(RD::DATA_FORMAT_E5B9G9R9_UFLOAT_PACK32); RD::TextureFormat tf_aniso0 = tf_sdf; tf_aniso0.format = RD::DATA_FORMAT_R8G8B8A8_UNORM; RD::TextureFormat tf_aniso1 = tf_sdf; tf_aniso1.format = RD::DATA_FORMAT_R8G8_UNORM; int passes = nearest_shift(cascade_size) - 1; //store lightprobe SH RD::TextureFormat tf_probes; tf_probes.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT; tf_probes.width = probe_axis_count * probe_axis_count; tf_probes.height = probe_axis_count * SDFGI::SH_SIZE; tf_probes.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT; tf_probes.texture_type = RD::TEXTURE_TYPE_2D_ARRAY; history_size = p_requested_history_size; RD::TextureFormat tf_probe_history = tf_probes; tf_probe_history.format = RD::DATA_FORMAT_R16G16B16A16_SINT; //signed integer because SH are signed tf_probe_history.array_layers = history_size; RD::TextureFormat tf_probe_average = tf_probes; tf_probe_average.format = RD::DATA_FORMAT_R32G32B32A32_SINT; //signed integer because SH are signed tf_probe_average.texture_type = RD::TEXTURE_TYPE_2D; lightprobe_history_scroll = RD::get_singleton()->texture_create(tf_probe_history, RD::TextureView()); RD::get_singleton()->set_resource_name(lightprobe_history_scroll, "VoxelGI LightProbe History Scroll"); lightprobe_average_scroll = RD::get_singleton()->texture_create(tf_probe_average, RD::TextureView()); RD::get_singleton()->set_resource_name(lightprobe_average_scroll, "VoxelGI LightProbe Average Scroll"); { //octahedral lightprobes RD::TextureFormat tf_octprobes = tf_probes; tf_octprobes.array_layers = cascades.size() * 2; tf_octprobes.format = RD::DATA_FORMAT_R32_UINT; //pack well with RGBE tf_octprobes.width = probe_axis_count * probe_axis_count * (SDFGI::LIGHTPROBE_OCT_SIZE + 2); tf_octprobes.height = probe_axis_count * (SDFGI::LIGHTPROBE_OCT_SIZE + 2); tf_octprobes.shareable_formats.push_back(RD::DATA_FORMAT_R32_UINT); tf_octprobes.shareable_formats.push_back(RD::DATA_FORMAT_E5B9G9R9_UFLOAT_PACK32); //lightprobe texture is an octahedral texture lightprobe_data = RD::get_singleton()->texture_create(tf_octprobes, RD::TextureView()); RD::get_singleton()->set_resource_name(lightprobe_data, "VoxelGI LightProbe Data"); RD::TextureView tv; tv.format_override = RD::DATA_FORMAT_E5B9G9R9_UFLOAT_PACK32; lightprobe_texture = RD::get_singleton()->texture_create_shared(tv, lightprobe_data); //texture handling ambient data, to integrate with volumetric foc RD::TextureFormat tf_ambient = tf_probes; tf_ambient.array_layers = cascades.size(); tf_ambient.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT; //pack well with RGBE tf_ambient.width = probe_axis_count * probe_axis_count; tf_ambient.height = probe_axis_count; tf_ambient.texture_type = RD::TEXTURE_TYPE_2D_ARRAY; //lightprobe texture is an octahedral texture ambient_texture = RD::get_singleton()->texture_create(tf_ambient, RD::TextureView()); RD::get_singleton()->set_resource_name(ambient_texture, "VoxelGI Ambient Texture"); } cascades_ubo = RD::get_singleton()->uniform_buffer_create(sizeof(SDFGI::Cascade::UBO) * SDFGI::MAX_CASCADES); occlusion_data = RD::get_singleton()->texture_create(tf_occlusion, RD::TextureView()); RD::get_singleton()->set_resource_name(occlusion_data, "VoxelGI Occlusion Data"); { RD::TextureView tv; tv.format_override = RD::DATA_FORMAT_R4G4B4A4_UNORM_PACK16; occlusion_texture = RD::get_singleton()->texture_create_shared(tv, occlusion_data); } for (uint32_t i = 0; i < cascades.size(); i++) { SDFGI::Cascade &cascade = cascades[i]; /* 3D Textures */ cascade.sdf_tex = RD::get_singleton()->texture_create(tf_sdf, RD::TextureView()); RD::get_singleton()->set_resource_name(cascade.sdf_tex, "VoxelGI Cascade SDF Texture"); cascade.light_data = RD::get_singleton()->texture_create(tf_light, RD::TextureView()); RD::get_singleton()->set_resource_name(cascade.light_data, "VoxelGI Cascade Light Data"); cascade.light_aniso_0_tex = RD::get_singleton()->texture_create(tf_aniso0, RD::TextureView()); RD::get_singleton()->set_resource_name(cascade.light_aniso_0_tex, "VoxelGI Cascade Light Aniso 0 Texture"); cascade.light_aniso_1_tex = RD::get_singleton()->texture_create(tf_aniso1, RD::TextureView()); RD::get_singleton()->set_resource_name(cascade.light_aniso_1_tex, "VoxelGI Cascade Light Aniso 1 Texture"); { RD::TextureView tv; tv.format_override = RD::DATA_FORMAT_E5B9G9R9_UFLOAT_PACK32; cascade.light_tex = RD::get_singleton()->texture_create_shared(tv, cascade.light_data); RD::get_singleton()->texture_clear(cascade.light_tex, Color(0, 0, 0, 0), 0, 1, 0, 1); RD::get_singleton()->texture_clear(cascade.light_aniso_0_tex, Color(0, 0, 0, 0), 0, 1, 0, 1); RD::get_singleton()->texture_clear(cascade.light_aniso_1_tex, Color(0, 0, 0, 0), 0, 1, 0, 1); } cascade.cell_size = base_cell_size; Vector3 world_position = p_world_position; world_position.y *= y_mult; int32_t probe_cells = cascade_size / SDFGI::PROBE_DIVISOR; Vector3 probe_size = Vector3(1, 1, 1) * cascade.cell_size * probe_cells; Vector3i probe_pos = Vector3i((world_position / probe_size + Vector3(0.5, 0.5, 0.5)).floor()); cascade.position = probe_pos * probe_cells; cascade.dirty_regions = SDFGI::Cascade::DIRTY_ALL; base_cell_size *= 2.0; /* Probe History */ cascade.lightprobe_history_tex = RD::get_singleton()->texture_create(tf_probe_history, RD::TextureView()); RD::get_singleton()->set_resource_name(cascade.lightprobe_history_tex, "VoxelGI Cascade LightProbe History Texture"); RD::get_singleton()->texture_clear(cascade.lightprobe_history_tex, Color(0, 0, 0, 0), 0, 1, 0, tf_probe_history.array_layers); //needs to be cleared for average to work cascade.lightprobe_average_tex = RD::get_singleton()->texture_create(tf_probe_average, RD::TextureView()); RD::get_singleton()->set_resource_name(cascade.lightprobe_average_tex, "VoxelGI Cascade LightProbe Average Texture"); RD::get_singleton()->texture_clear(cascade.lightprobe_average_tex, Color(0, 0, 0, 0), 0, 1, 0, 1); //needs to be cleared for average to work /* Buffers */ cascade.solid_cell_buffer = RD::get_singleton()->storage_buffer_create(sizeof(SDFGI::Cascade::SolidCell) * solid_cell_count); cascade.solid_cell_dispatch_buffer = RD::get_singleton()->storage_buffer_create(sizeof(uint32_t) * 4, Vector(), RD::STORAGE_BUFFER_USAGE_DISPATCH_INDIRECT); cascade.lights_buffer = RD::get_singleton()->storage_buffer_create(sizeof(SDFGIShader::Light) * MAX(SDFGI::MAX_STATIC_LIGHTS, SDFGI::MAX_DYNAMIC_LIGHTS)); { Vector uniforms; { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_IMAGE; u.binding = 1; u.append_id(render_sdf[(passes & 1) ? 1 : 0]); //if passes are even, we read from buffer 0, else we read from buffer 1 uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_IMAGE; u.binding = 2; u.append_id(render_albedo); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_IMAGE; u.binding = 3; for (int j = 0; j < 8; j++) { u.append_id(render_occlusion[j]); } uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_IMAGE; u.binding = 4; u.append_id(render_emission); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_IMAGE; u.binding = 5; u.append_id(render_emission_aniso); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_IMAGE; u.binding = 6; u.append_id(render_geom_facing); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_IMAGE; u.binding = 7; u.append_id(cascade.sdf_tex); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_IMAGE; u.binding = 8; u.append_id(occlusion_data); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u.binding = 10; u.append_id(cascade.solid_cell_dispatch_buffer); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u.binding = 11; u.append_id(cascade.solid_cell_buffer); uniforms.push_back(u); } cascade.sdf_store_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.preprocess.version_get_shader(gi->sdfgi_shader.preprocess_shader, SDFGIShader::PRE_PROCESS_STORE), 0); } { Vector uniforms; { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_IMAGE; u.binding = 1; u.append_id(render_albedo); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_IMAGE; u.binding = 2; u.append_id(render_geom_facing); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_IMAGE; u.binding = 3; u.append_id(render_emission); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_IMAGE; u.binding = 4; u.append_id(render_emission_aniso); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u.binding = 5; u.append_id(cascade.solid_cell_dispatch_buffer); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u.binding = 6; u.append_id(cascade.solid_cell_buffer); uniforms.push_back(u); } cascade.scroll_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.preprocess.version_get_shader(gi->sdfgi_shader.preprocess_shader, SDFGIShader::PRE_PROCESS_SCROLL), 0); } { Vector uniforms; { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_IMAGE; u.binding = 1; for (int j = 0; j < 8; j++) { u.append_id(render_occlusion[j]); } uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_IMAGE; u.binding = 2; u.append_id(occlusion_data); uniforms.push_back(u); } cascade.scroll_occlusion_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.preprocess.version_get_shader(gi->sdfgi_shader.preprocess_shader, SDFGIShader::PRE_PROCESS_SCROLL_OCCLUSION), 0); } } //direct light for (uint32_t i = 0; i < cascades.size(); i++) { SDFGI::Cascade &cascade = cascades[i]; Vector uniforms; { RD::Uniform u; u.binding = 1; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) { if (j < cascades.size()) { u.append_id(cascades[j].sdf_tex); } else { u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE)); } } uniforms.push_back(u); } { RD::Uniform u; u.binding = 2; u.uniform_type = RD::UNIFORM_TYPE_SAMPLER; u.append_id(material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED)); uniforms.push_back(u); } { RD::Uniform u; u.binding = 3; u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u.append_id(cascade.solid_cell_dispatch_buffer); uniforms.push_back(u); } { RD::Uniform u; u.binding = 4; u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u.append_id(cascade.solid_cell_buffer); uniforms.push_back(u); } { RD::Uniform u; u.binding = 5; u.uniform_type = RD::UNIFORM_TYPE_IMAGE; u.append_id(cascade.light_data); uniforms.push_back(u); } { RD::Uniform u; u.binding = 6; u.uniform_type = RD::UNIFORM_TYPE_IMAGE; u.append_id(cascade.light_aniso_0_tex); uniforms.push_back(u); } { RD::Uniform u; u.binding = 7; u.uniform_type = RD::UNIFORM_TYPE_IMAGE; u.append_id(cascade.light_aniso_1_tex); uniforms.push_back(u); } { RD::Uniform u; u.binding = 8; u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER; u.append_id(cascades_ubo); uniforms.push_back(u); } { RD::Uniform u; u.binding = 9; u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u.append_id(cascade.lights_buffer); uniforms.push_back(u); } { RD::Uniform u; u.binding = 10; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; u.append_id(lightprobe_texture); uniforms.push_back(u); } { RD::Uniform u; u.binding = 11; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; u.append_id(occlusion_texture); uniforms.push_back(u); } cascade.sdf_direct_light_static_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.direct_light.version_get_shader(gi->sdfgi_shader.direct_light_shader, SDFGIShader::DIRECT_LIGHT_MODE_STATIC), 0); cascade.sdf_direct_light_dynamic_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.direct_light.version_get_shader(gi->sdfgi_shader.direct_light_shader, SDFGIShader::DIRECT_LIGHT_MODE_DYNAMIC), 0); } //preprocess initialize uniform set { Vector uniforms; { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_IMAGE; u.binding = 1; u.append_id(render_albedo); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_IMAGE; u.binding = 2; u.append_id(render_sdf[0]); uniforms.push_back(u); } sdf_initialize_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.preprocess.version_get_shader(gi->sdfgi_shader.preprocess_shader, SDFGIShader::PRE_PROCESS_JUMP_FLOOD_INITIALIZE), 0); } { Vector uniforms; { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_IMAGE; u.binding = 1; u.append_id(render_albedo); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_IMAGE; u.binding = 2; u.append_id(render_sdf_half[0]); uniforms.push_back(u); } sdf_initialize_half_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.preprocess.version_get_shader(gi->sdfgi_shader.preprocess_shader, SDFGIShader::PRE_PROCESS_JUMP_FLOOD_INITIALIZE_HALF), 0); } //jump flood uniform set { Vector uniforms; { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_IMAGE; u.binding = 1; u.append_id(render_sdf[0]); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_IMAGE; u.binding = 2; u.append_id(render_sdf[1]); uniforms.push_back(u); } jump_flood_uniform_set[0] = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.preprocess.version_get_shader(gi->sdfgi_shader.preprocess_shader, SDFGIShader::PRE_PROCESS_JUMP_FLOOD), 0); RID aux0 = uniforms.write[0].get_id(0); RID aux1 = uniforms.write[1].get_id(0); uniforms.write[0].set_id(0, aux1); uniforms.write[1].set_id(0, aux0); jump_flood_uniform_set[1] = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.preprocess.version_get_shader(gi->sdfgi_shader.preprocess_shader, SDFGIShader::PRE_PROCESS_JUMP_FLOOD), 0); } //jump flood half uniform set { Vector uniforms; { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_IMAGE; u.binding = 1; u.append_id(render_sdf_half[0]); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_IMAGE; u.binding = 2; u.append_id(render_sdf_half[1]); uniforms.push_back(u); } jump_flood_half_uniform_set[0] = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.preprocess.version_get_shader(gi->sdfgi_shader.preprocess_shader, SDFGIShader::PRE_PROCESS_JUMP_FLOOD), 0); RID aux0 = uniforms.write[0].get_id(0); RID aux1 = uniforms.write[1].get_id(0); uniforms.write[0].set_id(0, aux1); uniforms.write[1].set_id(0, aux0); jump_flood_half_uniform_set[1] = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.preprocess.version_get_shader(gi->sdfgi_shader.preprocess_shader, SDFGIShader::PRE_PROCESS_JUMP_FLOOD), 0); } //upscale half size sdf { Vector uniforms; { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_IMAGE; u.binding = 1; u.append_id(render_albedo); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_IMAGE; u.binding = 2; u.append_id(render_sdf_half[(passes & 1) ? 0 : 1]); //reverse pass order because half size uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_IMAGE; u.binding = 3; u.append_id(render_sdf[(passes & 1) ? 0 : 1]); //reverse pass order because it needs an extra JFA pass uniforms.push_back(u); } upscale_jfa_uniform_set_index = (passes & 1) ? 0 : 1; sdf_upscale_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.preprocess.version_get_shader(gi->sdfgi_shader.preprocess_shader, SDFGIShader::PRE_PROCESS_JUMP_FLOOD_UPSCALE), 0); } //occlusion uniform set { Vector uniforms; { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_IMAGE; u.binding = 1; u.append_id(render_albedo); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_IMAGE; u.binding = 2; for (int i = 0; i < 8; i++) { u.append_id(render_occlusion[i]); } uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_IMAGE; u.binding = 3; u.append_id(render_geom_facing); uniforms.push_back(u); } occlusion_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.preprocess.version_get_shader(gi->sdfgi_shader.preprocess_shader, SDFGIShader::PRE_PROCESS_OCCLUSION), 0); } for (uint32_t i = 0; i < cascades.size(); i++) { //integrate uniform Vector uniforms; { RD::Uniform u; u.binding = 1; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) { if (j < cascades.size()) { u.append_id(cascades[j].sdf_tex); } else { u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE)); } } uniforms.push_back(u); } { RD::Uniform u; u.binding = 2; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) { if (j < cascades.size()) { u.append_id(cascades[j].light_tex); } else { u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE)); } } uniforms.push_back(u); } { RD::Uniform u; u.binding = 3; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) { if (j < cascades.size()) { u.append_id(cascades[j].light_aniso_0_tex); } else { u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE)); } } uniforms.push_back(u); } { RD::Uniform u; u.binding = 4; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) { if (j < cascades.size()) { u.append_id(cascades[j].light_aniso_1_tex); } else { u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE)); } } uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_SAMPLER; u.binding = 6; u.append_id(material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED)); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER; u.binding = 7; u.append_id(cascades_ubo); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_IMAGE; u.binding = 8; u.append_id(lightprobe_data); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_IMAGE; u.binding = 9; u.append_id(cascades[i].lightprobe_history_tex); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_IMAGE; u.binding = 10; u.append_id(cascades[i].lightprobe_average_tex); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_IMAGE; u.binding = 11; u.append_id(lightprobe_history_scroll); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_IMAGE; u.binding = 12; u.append_id(lightprobe_average_scroll); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_IMAGE; u.binding = 13; RID parent_average; if (cascades.size() == 1) { // If there is only one SDFGI cascade, we can't use the previous cascade for blending. parent_average = cascades[i].lightprobe_average_tex; } else if (i < cascades.size() - 1) { parent_average = cascades[i + 1].lightprobe_average_tex; } else { parent_average = cascades[i - 1].lightprobe_average_tex; //to use something, but it won't be used } u.append_id(parent_average); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_IMAGE; u.binding = 14; u.append_id(ambient_texture); uniforms.push_back(u); } cascades[i].integrate_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.integrate.version_get_shader(gi->sdfgi_shader.integrate_shader, 0), 0); } bounce_feedback = RendererSceneRenderRD::get_singleton()->environment_get_sdfgi_bounce_feedback(p_env); energy = RendererSceneRenderRD::get_singleton()->environment_get_sdfgi_energy(p_env); normal_bias = RendererSceneRenderRD::get_singleton()->environment_get_sdfgi_normal_bias(p_env); probe_bias = RendererSceneRenderRD::get_singleton()->environment_get_sdfgi_probe_bias(p_env); reads_sky = RendererSceneRenderRD::get_singleton()->environment_get_sdfgi_read_sky_light(p_env); } void GI::SDFGI::free_data() { // we don't free things here, we handle SDFGI differently at the moment destructing the object when it needs to change. } GI::SDFGI::~SDFGI() { for (uint32_t i = 0; i < cascades.size(); i++) { const SDFGI::Cascade &c = cascades[i]; RD::get_singleton()->free(c.light_data); RD::get_singleton()->free(c.light_aniso_0_tex); RD::get_singleton()->free(c.light_aniso_1_tex); RD::get_singleton()->free(c.sdf_tex); RD::get_singleton()->free(c.solid_cell_dispatch_buffer); RD::get_singleton()->free(c.solid_cell_buffer); RD::get_singleton()->free(c.lightprobe_history_tex); RD::get_singleton()->free(c.lightprobe_average_tex); RD::get_singleton()->free(c.lights_buffer); } RD::get_singleton()->free(render_albedo); RD::get_singleton()->free(render_emission); RD::get_singleton()->free(render_emission_aniso); RD::get_singleton()->free(render_sdf[0]); RD::get_singleton()->free(render_sdf[1]); RD::get_singleton()->free(render_sdf_half[0]); RD::get_singleton()->free(render_sdf_half[1]); for (int i = 0; i < 8; i++) { RD::get_singleton()->free(render_occlusion[i]); } RD::get_singleton()->free(render_geom_facing); RD::get_singleton()->free(lightprobe_data); RD::get_singleton()->free(lightprobe_history_scroll); RD::get_singleton()->free(lightprobe_average_scroll); RD::get_singleton()->free(occlusion_data); RD::get_singleton()->free(ambient_texture); RD::get_singleton()->free(cascades_ubo); for (uint32_t v = 0; v < RendererSceneRender::MAX_RENDER_VIEWS; v++) { if (RD::get_singleton()->uniform_set_is_valid(debug_uniform_set[v])) { RD::get_singleton()->free(debug_uniform_set[v]); } debug_uniform_set[v] = RID(); } if (RD::get_singleton()->uniform_set_is_valid(debug_probes_uniform_set)) { RD::get_singleton()->free(debug_probes_uniform_set); } debug_probes_uniform_set = RID(); if (debug_probes_scene_data_ubo.is_valid()) { RD::get_singleton()->free(debug_probes_scene_data_ubo); debug_probes_scene_data_ubo = RID(); } } void GI::SDFGI::update(RID p_env, const Vector3 &p_world_position) { bounce_feedback = RendererSceneRenderRD::get_singleton()->environment_get_sdfgi_bounce_feedback(p_env); energy = RendererSceneRenderRD::get_singleton()->environment_get_sdfgi_energy(p_env); normal_bias = RendererSceneRenderRD::get_singleton()->environment_get_sdfgi_normal_bias(p_env); probe_bias = RendererSceneRenderRD::get_singleton()->environment_get_sdfgi_probe_bias(p_env); reads_sky = RendererSceneRenderRD::get_singleton()->environment_get_sdfgi_read_sky_light(p_env); int32_t drag_margin = (cascade_size / SDFGI::PROBE_DIVISOR) / 2; for (uint32_t i = 0; i < cascades.size(); i++) { SDFGI::Cascade &cascade = cascades[i]; cascade.dirty_regions = Vector3i(); Vector3 probe_half_size = Vector3(1, 1, 1) * cascade.cell_size * float(cascade_size / SDFGI::PROBE_DIVISOR) * 0.5; probe_half_size = Vector3(0, 0, 0); Vector3 world_position = p_world_position; world_position.y *= y_mult; Vector3i pos_in_cascade = Vector3i((world_position + probe_half_size) / cascade.cell_size); for (int j = 0; j < 3; j++) { if (pos_in_cascade[j] < cascade.position[j]) { while (pos_in_cascade[j] < (cascade.position[j] - drag_margin)) { cascade.position[j] -= drag_margin * 2; cascade.dirty_regions[j] += drag_margin * 2; } } else if (pos_in_cascade[j] > cascade.position[j]) { while (pos_in_cascade[j] > (cascade.position[j] + drag_margin)) { cascade.position[j] += drag_margin * 2; cascade.dirty_regions[j] -= drag_margin * 2; } } if (cascade.dirty_regions[j] == 0) { continue; // not dirty } else if (uint32_t(ABS(cascade.dirty_regions[j])) >= cascade_size) { //moved too much, just redraw everything (make all dirty) cascade.dirty_regions = SDFGI::Cascade::DIRTY_ALL; break; } } if (cascade.dirty_regions != Vector3i() && cascade.dirty_regions != SDFGI::Cascade::DIRTY_ALL) { //see how much the total dirty volume represents from the total volume uint32_t total_volume = cascade_size * cascade_size * cascade_size; uint32_t safe_volume = 1; for (int j = 0; j < 3; j++) { safe_volume *= cascade_size - ABS(cascade.dirty_regions[j]); } uint32_t dirty_volume = total_volume - safe_volume; if (dirty_volume > (safe_volume / 2)) { //more than half the volume is dirty, make all dirty so its only rendered once cascade.dirty_regions = SDFGI::Cascade::DIRTY_ALL; } } } } void GI::SDFGI::update_light() { RD::get_singleton()->draw_command_begin_label("SDFGI Update dynamic Light"); /* Update dynamic light */ RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin(); RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.direct_light_pipeline[SDFGIShader::DIRECT_LIGHT_MODE_DYNAMIC]); SDFGIShader::DirectLightPushConstant push_constant; push_constant.grid_size[0] = cascade_size; push_constant.grid_size[1] = cascade_size; push_constant.grid_size[2] = cascade_size; push_constant.max_cascades = cascades.size(); push_constant.probe_axis_size = probe_axis_count; push_constant.bounce_feedback = bounce_feedback; push_constant.y_mult = y_mult; push_constant.use_occlusion = uses_occlusion; for (uint32_t i = 0; i < cascades.size(); i++) { SDFGI::Cascade &cascade = cascades[i]; push_constant.light_count = cascade_dynamic_light_count[i]; push_constant.cascade = i; if (cascades[i].all_dynamic_lights_dirty || gi->sdfgi_frames_to_update_light == RS::ENV_SDFGI_UPDATE_LIGHT_IN_1_FRAME) { push_constant.process_offset = 0; push_constant.process_increment = 1; } else { static const uint32_t frames_to_update_table[RS::ENV_SDFGI_UPDATE_LIGHT_MAX] = { 1, 2, 4, 8, 16 }; uint32_t frames_to_update = frames_to_update_table[gi->sdfgi_frames_to_update_light]; push_constant.process_offset = RSG::rasterizer->get_frame_number() % frames_to_update; push_constant.process_increment = frames_to_update; } cascades[i].all_dynamic_lights_dirty = false; RD::get_singleton()->compute_list_bind_uniform_set(compute_list, cascade.sdf_direct_light_dynamic_uniform_set, 0); RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::DirectLightPushConstant)); RD::get_singleton()->compute_list_dispatch_indirect(compute_list, cascade.solid_cell_dispatch_buffer, 0); } RD::get_singleton()->compute_list_end(RD::BARRIER_MASK_COMPUTE); RD::get_singleton()->draw_command_end_label(); } void GI::SDFGI::update_probes(RID p_env, SkyRD::Sky *p_sky) { RD::get_singleton()->draw_command_begin_label("SDFGI Update Probes"); SDFGIShader::IntegratePushConstant push_constant; push_constant.grid_size[1] = cascade_size; push_constant.grid_size[2] = cascade_size; push_constant.grid_size[0] = cascade_size; push_constant.max_cascades = cascades.size(); push_constant.probe_axis_size = probe_axis_count; push_constant.history_index = render_pass % history_size; push_constant.history_size = history_size; static const uint32_t ray_count[RS::ENV_SDFGI_RAY_COUNT_MAX] = { 4, 8, 16, 32, 64, 96, 128 }; push_constant.ray_count = ray_count[gi->sdfgi_ray_count]; push_constant.ray_bias = probe_bias; push_constant.image_size[0] = probe_axis_count * probe_axis_count; push_constant.image_size[1] = probe_axis_count; push_constant.store_ambient_texture = RendererSceneRenderRD::get_singleton()->environment_get_volumetric_fog_enabled(p_env); RID sky_uniform_set = gi->sdfgi_shader.integrate_default_sky_uniform_set; push_constant.sky_mode = SDFGIShader::IntegratePushConstant::SKY_MODE_DISABLED; push_constant.y_mult = y_mult; if (reads_sky && p_env.is_valid()) { push_constant.sky_energy = RendererSceneRenderRD::get_singleton()->environment_get_bg_energy_multiplier(p_env); if (RendererSceneRenderRD::get_singleton()->environment_get_background(p_env) == RS::ENV_BG_CLEAR_COLOR) { push_constant.sky_mode = SDFGIShader::IntegratePushConstant::SKY_MODE_COLOR; Color c = RSG::texture_storage->get_default_clear_color().srgb_to_linear(); push_constant.sky_color[0] = c.r; push_constant.sky_color[1] = c.g; push_constant.sky_color[2] = c.b; } else if (RendererSceneRenderRD::get_singleton()->environment_get_background(p_env) == RS::ENV_BG_COLOR) { push_constant.sky_mode = SDFGIShader::IntegratePushConstant::SKY_MODE_COLOR; Color c = RendererSceneRenderRD::get_singleton()->environment_get_bg_color(p_env); push_constant.sky_color[0] = c.r; push_constant.sky_color[1] = c.g; push_constant.sky_color[2] = c.b; } else if (RendererSceneRenderRD::get_singleton()->environment_get_background(p_env) == RS::ENV_BG_SKY) { if (p_sky && p_sky->radiance.is_valid()) { if (integrate_sky_uniform_set.is_null() || !RD::get_singleton()->uniform_set_is_valid(integrate_sky_uniform_set)) { Vector uniforms; { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 0; u.append_id(p_sky->radiance); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_SAMPLER; u.binding = 1; u.append_id(RendererRD::MaterialStorage::get_singleton()->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED)); uniforms.push_back(u); } integrate_sky_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.integrate.version_get_shader(gi->sdfgi_shader.integrate_shader, 0), 1); } sky_uniform_set = integrate_sky_uniform_set; push_constant.sky_mode = SDFGIShader::IntegratePushConstant::SKY_MODE_SKY; } } } render_pass++; RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin(true); RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.integrate_pipeline[SDFGIShader::INTEGRATE_MODE_PROCESS]); int32_t probe_divisor = cascade_size / SDFGI::PROBE_DIVISOR; for (uint32_t i = 0; i < cascades.size(); i++) { push_constant.cascade = i; push_constant.world_offset[0] = cascades[i].position.x / probe_divisor; push_constant.world_offset[1] = cascades[i].position.y / probe_divisor; push_constant.world_offset[2] = cascades[i].position.z / probe_divisor; RD::get_singleton()->compute_list_bind_uniform_set(compute_list, cascades[i].integrate_uniform_set, 0); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, sky_uniform_set, 1); RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::IntegratePushConstant)); RD::get_singleton()->compute_list_dispatch_threads(compute_list, probe_axis_count * probe_axis_count, probe_axis_count, 1); } //end later after raster to avoid barriering on layout changes //RD::get_singleton()->compute_list_end(RD::BARRIER_MASK_NO_BARRIER); RD::get_singleton()->draw_command_end_label(); } void GI::SDFGI::store_probes() { RD::get_singleton()->barrier(RD::BARRIER_MASK_COMPUTE, RD::BARRIER_MASK_COMPUTE); RD::get_singleton()->draw_command_begin_label("SDFGI Store Probes"); SDFGIShader::IntegratePushConstant push_constant; push_constant.grid_size[1] = cascade_size; push_constant.grid_size[2] = cascade_size; push_constant.grid_size[0] = cascade_size; push_constant.max_cascades = cascades.size(); push_constant.probe_axis_size = probe_axis_count; push_constant.history_index = render_pass % history_size; push_constant.history_size = history_size; static const uint32_t ray_count[RS::ENV_SDFGI_RAY_COUNT_MAX] = { 4, 8, 16, 32, 64, 96, 128 }; push_constant.ray_count = ray_count[gi->sdfgi_ray_count]; push_constant.ray_bias = probe_bias; push_constant.image_size[0] = probe_axis_count * probe_axis_count; push_constant.image_size[1] = probe_axis_count; push_constant.store_ambient_texture = false; push_constant.sky_mode = 0; push_constant.y_mult = y_mult; // Then store values into the lightprobe texture. Separating these steps has a small performance hit, but it allows for multiple bounces RENDER_TIMESTAMP("Average SDFGI Probes"); RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin(); RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.integrate_pipeline[SDFGIShader::INTEGRATE_MODE_STORE]); //convert to octahedral to store push_constant.image_size[0] *= SDFGI::LIGHTPROBE_OCT_SIZE; push_constant.image_size[1] *= SDFGI::LIGHTPROBE_OCT_SIZE; for (uint32_t i = 0; i < cascades.size(); i++) { push_constant.cascade = i; RD::get_singleton()->compute_list_bind_uniform_set(compute_list, cascades[i].integrate_uniform_set, 0); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi->sdfgi_shader.integrate_default_sky_uniform_set, 1); RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::IntegratePushConstant)); RD::get_singleton()->compute_list_dispatch_threads(compute_list, probe_axis_count * probe_axis_count * SDFGI::LIGHTPROBE_OCT_SIZE, probe_axis_count * SDFGI::LIGHTPROBE_OCT_SIZE, 1); } RD::get_singleton()->compute_list_end(RD::BARRIER_MASK_COMPUTE); RD::get_singleton()->draw_command_end_label(); } int GI::SDFGI::get_pending_region_data(int p_region, Vector3i &r_local_offset, Vector3i &r_local_size, AABB &r_bounds) const { int dirty_count = 0; for (uint32_t i = 0; i < cascades.size(); i++) { const SDFGI::Cascade &c = cascades[i]; if (c.dirty_regions == SDFGI::Cascade::DIRTY_ALL) { if (dirty_count == p_region) { r_local_offset = Vector3i(); r_local_size = Vector3i(1, 1, 1) * cascade_size; r_bounds.position = Vector3((Vector3i(1, 1, 1) * -int32_t(cascade_size >> 1) + c.position)) * c.cell_size * Vector3(1, 1.0 / y_mult, 1); r_bounds.size = Vector3(r_local_size) * c.cell_size * Vector3(1, 1.0 / y_mult, 1); return i; } dirty_count++; } else { for (int j = 0; j < 3; j++) { if (c.dirty_regions[j] != 0) { if (dirty_count == p_region) { Vector3i from = Vector3i(0, 0, 0); Vector3i to = Vector3i(1, 1, 1) * cascade_size; if (c.dirty_regions[j] > 0) { //fill from the beginning to[j] = c.dirty_regions[j]; } else { //fill from the end from[j] = to[j] + c.dirty_regions[j]; } for (int k = 0; k < j; k++) { // "chip" away previous regions to avoid re-voxelizing the same thing if (c.dirty_regions[k] > 0) { from[k] += c.dirty_regions[k]; } else if (c.dirty_regions[k] < 0) { to[k] += c.dirty_regions[k]; } } r_local_offset = from; r_local_size = to - from; r_bounds.position = Vector3(from + Vector3i(1, 1, 1) * -int32_t(cascade_size >> 1) + c.position) * c.cell_size * Vector3(1, 1.0 / y_mult, 1); r_bounds.size = Vector3(r_local_size) * c.cell_size * Vector3(1, 1.0 / y_mult, 1); return i; } dirty_count++; } } } } return -1; } void GI::SDFGI::update_cascades() { //update cascades SDFGI::Cascade::UBO cascade_data[SDFGI::MAX_CASCADES]; int32_t probe_divisor = cascade_size / SDFGI::PROBE_DIVISOR; for (uint32_t i = 0; i < cascades.size(); i++) { Vector3 pos = Vector3((Vector3i(1, 1, 1) * -int32_t(cascade_size >> 1) + cascades[i].position)) * cascades[i].cell_size; cascade_data[i].offset[0] = pos.x; cascade_data[i].offset[1] = pos.y; cascade_data[i].offset[2] = pos.z; cascade_data[i].to_cell = 1.0 / cascades[i].cell_size; cascade_data[i].probe_offset[0] = cascades[i].position.x / probe_divisor; cascade_data[i].probe_offset[1] = cascades[i].position.y / probe_divisor; cascade_data[i].probe_offset[2] = cascades[i].position.z / probe_divisor; cascade_data[i].pad = 0; } RD::get_singleton()->buffer_update(cascades_ubo, 0, sizeof(SDFGI::Cascade::UBO) * SDFGI::MAX_CASCADES, cascade_data, RD::BARRIER_MASK_COMPUTE); } void GI::SDFGI::debug_draw(uint32_t p_view_count, const Projection *p_projections, const Transform3D &p_transform, int p_width, int p_height, RID p_render_target, RID p_texture, const Vector &p_texture_views) { RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton(); RendererRD::MaterialStorage *material_storage = RendererRD::MaterialStorage::get_singleton(); RendererRD::CopyEffects *copy_effects = RendererRD::CopyEffects::get_singleton(); for (uint32_t v = 0; v < p_view_count; v++) { if (!debug_uniform_set[v].is_valid() || !RD::get_singleton()->uniform_set_is_valid(debug_uniform_set[v])) { Vector uniforms; { RD::Uniform u; u.binding = 1; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; for (uint32_t i = 0; i < SDFGI::MAX_CASCADES; i++) { if (i < cascades.size()) { u.append_id(cascades[i].sdf_tex); } else { u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE)); } } uniforms.push_back(u); } { RD::Uniform u; u.binding = 2; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; for (uint32_t i = 0; i < SDFGI::MAX_CASCADES; i++) { if (i < cascades.size()) { u.append_id(cascades[i].light_tex); } else { u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE)); } } uniforms.push_back(u); } { RD::Uniform u; u.binding = 3; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; for (uint32_t i = 0; i < SDFGI::MAX_CASCADES; i++) { if (i < cascades.size()) { u.append_id(cascades[i].light_aniso_0_tex); } else { u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE)); } } uniforms.push_back(u); } { RD::Uniform u; u.binding = 4; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; for (uint32_t i = 0; i < SDFGI::MAX_CASCADES; i++) { if (i < cascades.size()) { u.append_id(cascades[i].light_aniso_1_tex); } else { u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE)); } } uniforms.push_back(u); } { RD::Uniform u; u.binding = 5; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; u.append_id(occlusion_texture); uniforms.push_back(u); } { RD::Uniform u; u.binding = 8; u.uniform_type = RD::UNIFORM_TYPE_SAMPLER; u.append_id(material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED)); uniforms.push_back(u); } { RD::Uniform u; u.binding = 9; u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER; u.append_id(cascades_ubo); uniforms.push_back(u); } { RD::Uniform u; u.binding = 10; u.uniform_type = RD::UNIFORM_TYPE_IMAGE; u.append_id(p_texture_views[v]); uniforms.push_back(u); } { RD::Uniform u; u.binding = 11; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; u.append_id(lightprobe_texture); uniforms.push_back(u); } debug_uniform_set[v] = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.debug_shader_version, 0); } RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin(); RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.debug_pipeline); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, debug_uniform_set[v], 0); SDFGIShader::DebugPushConstant push_constant; push_constant.grid_size[0] = cascade_size; push_constant.grid_size[1] = cascade_size; push_constant.grid_size[2] = cascade_size; push_constant.max_cascades = cascades.size(); push_constant.screen_size[0] = p_width; push_constant.screen_size[1] = p_height; push_constant.y_mult = y_mult; push_constant.z_near = -p_projections[v].get_z_near(); for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { push_constant.cam_basis[i][j] = p_transform.basis.rows[j][i]; } } push_constant.cam_origin[0] = p_transform.origin[0]; push_constant.cam_origin[1] = p_transform.origin[1]; push_constant.cam_origin[2] = p_transform.origin[2]; // need to properly unproject for asymmetric projection matrices in stereo.. Projection inv_projection = p_projections[v].inverse(); for (int i = 0; i < 4; i++) { for (int j = 0; j < 3; j++) { push_constant.inv_projection[j][i] = inv_projection.matrix[i][j]; } } RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::DebugPushConstant)); RD::get_singleton()->compute_list_dispatch_threads(compute_list, p_width, p_height, 1); RD::get_singleton()->compute_list_end(); } Size2 rtsize = texture_storage->render_target_get_size(p_render_target); copy_effects->copy_to_fb_rect(p_texture, texture_storage->render_target_get_rd_framebuffer(p_render_target), Rect2(Vector2(), rtsize), true, false, false, false, RID(), p_view_count > 1); } void GI::SDFGI::debug_probes(RID p_framebuffer, const uint32_t p_view_count, const Projection *p_camera_with_transforms, bool p_will_continue_color, bool p_will_continue_depth) { RendererRD::MaterialStorage *material_storage = RendererRD::MaterialStorage::get_singleton(); // setup scene data { SDFGIShader::DebugProbesSceneData scene_data; if (debug_probes_scene_data_ubo.is_null()) { debug_probes_scene_data_ubo = RD::get_singleton()->uniform_buffer_create(sizeof(SDFGIShader::DebugProbesSceneData)); } for (uint32_t v = 0; v < p_view_count; v++) { RendererRD::MaterialStorage::store_camera(p_camera_with_transforms[v], scene_data.projection[v]); } RD::get_singleton()->buffer_update(debug_probes_scene_data_ubo, 0, sizeof(SDFGIShader::DebugProbesSceneData), &scene_data, RD::BARRIER_MASK_RASTER); } // setup push constant SDFGIShader::DebugProbesPushConstant push_constant; //gen spheres from strips uint32_t band_points = 16; push_constant.band_power = 4; push_constant.sections_in_band = ((band_points / 2) - 1); push_constant.band_mask = band_points - 2; push_constant.section_arc = Math_TAU / float(push_constant.sections_in_band); push_constant.y_mult = y_mult; uint32_t total_points = push_constant.sections_in_band * band_points; uint32_t total_probes = probe_axis_count * probe_axis_count * probe_axis_count; push_constant.grid_size[0] = cascade_size; push_constant.grid_size[1] = cascade_size; push_constant.grid_size[2] = cascade_size; push_constant.cascade = 0; push_constant.probe_axis_size = probe_axis_count; if (!debug_probes_uniform_set.is_valid() || !RD::get_singleton()->uniform_set_is_valid(debug_probes_uniform_set)) { Vector uniforms; { RD::Uniform u; u.binding = 1; u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER; u.append_id(cascades_ubo); uniforms.push_back(u); } { RD::Uniform u; u.binding = 2; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; u.append_id(lightprobe_texture); uniforms.push_back(u); } { RD::Uniform u; u.binding = 3; u.uniform_type = RD::UNIFORM_TYPE_SAMPLER; u.append_id(material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED)); uniforms.push_back(u); } { RD::Uniform u; u.binding = 4; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; u.append_id(occlusion_texture); uniforms.push_back(u); } { RD::Uniform u; u.binding = 5; u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER; u.append_id(debug_probes_scene_data_ubo); uniforms.push_back(u); } debug_probes_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.debug_probes.version_get_shader(gi->sdfgi_shader.debug_probes_shader, 0), 0); } SDFGIShader::ProbeDebugMode mode = p_view_count > 1 ? SDFGIShader::PROBE_DEBUG_PROBES_MULTIVIEW : SDFGIShader::PROBE_DEBUG_PROBES; RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(p_framebuffer, RD::INITIAL_ACTION_CONTINUE, p_will_continue_color ? RD::FINAL_ACTION_CONTINUE : RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_CONTINUE, p_will_continue_depth ? RD::FINAL_ACTION_CONTINUE : RD::FINAL_ACTION_READ); RD::get_singleton()->draw_command_begin_label("Debug SDFGI"); RD::get_singleton()->draw_list_bind_render_pipeline(draw_list, gi->sdfgi_shader.debug_probes_pipeline[mode].get_render_pipeline(RD::INVALID_FORMAT_ID, RD::get_singleton()->framebuffer_get_format(p_framebuffer))); RD::get_singleton()->draw_list_bind_uniform_set(draw_list, debug_probes_uniform_set, 0); RD::get_singleton()->draw_list_set_push_constant(draw_list, &push_constant, sizeof(SDFGIShader::DebugProbesPushConstant)); RD::get_singleton()->draw_list_draw(draw_list, false, total_probes, total_points); if (gi->sdfgi_debug_probe_dir != Vector3()) { uint32_t cascade = 0; Vector3 offset = Vector3((Vector3i(1, 1, 1) * -int32_t(cascade_size >> 1) + cascades[cascade].position)) * cascades[cascade].cell_size * Vector3(1.0, 1.0 / y_mult, 1.0); Vector3 probe_size = cascades[cascade].cell_size * (cascade_size / SDFGI::PROBE_DIVISOR) * Vector3(1.0, 1.0 / y_mult, 1.0); Vector3 ray_from = gi->sdfgi_debug_probe_pos; Vector3 ray_to = gi->sdfgi_debug_probe_pos + gi->sdfgi_debug_probe_dir * cascades[cascade].cell_size * Math::sqrt(3.0) * cascade_size; float sphere_radius = 0.2; float closest_dist = 1e20; gi->sdfgi_debug_probe_enabled = false; Vector3i probe_from = cascades[cascade].position / (cascade_size / SDFGI::PROBE_DIVISOR); for (int i = 0; i < (SDFGI::PROBE_DIVISOR + 1); i++) { for (int j = 0; j < (SDFGI::PROBE_DIVISOR + 1); j++) { for (int k = 0; k < (SDFGI::PROBE_DIVISOR + 1); k++) { Vector3 pos = offset + probe_size * Vector3(i, j, k); Vector3 res; if (Geometry3D::segment_intersects_sphere(ray_from, ray_to, pos, sphere_radius, &res)) { float d = ray_from.distance_to(res); if (d < closest_dist) { closest_dist = d; gi->sdfgi_debug_probe_enabled = true; gi->sdfgi_debug_probe_index = probe_from + Vector3i(i, j, k); } } } } } gi->sdfgi_debug_probe_dir = Vector3(); } if (gi->sdfgi_debug_probe_enabled) { uint32_t cascade = 0; uint32_t probe_cells = (cascade_size / SDFGI::PROBE_DIVISOR); Vector3i probe_from = cascades[cascade].position / probe_cells; Vector3i ofs = gi->sdfgi_debug_probe_index - probe_from; if (ofs.x < 0 || ofs.y < 0 || ofs.z < 0) { return; } if (ofs.x > SDFGI::PROBE_DIVISOR || ofs.y > SDFGI::PROBE_DIVISOR || ofs.z > SDFGI::PROBE_DIVISOR) { return; } uint32_t mult = (SDFGI::PROBE_DIVISOR + 1); uint32_t index = ofs.z * mult * mult + ofs.y * mult + ofs.x; push_constant.probe_debug_index = index; uint32_t cell_count = probe_cells * 2 * probe_cells * 2 * probe_cells * 2; RD::get_singleton()->draw_list_bind_render_pipeline(draw_list, gi->sdfgi_shader.debug_probes_pipeline[p_view_count > 1 ? SDFGIShader::PROBE_DEBUG_VISIBILITY_MULTIVIEW : SDFGIShader::PROBE_DEBUG_VISIBILITY].get_render_pipeline(RD::INVALID_FORMAT_ID, RD::get_singleton()->framebuffer_get_format(p_framebuffer))); RD::get_singleton()->draw_list_bind_uniform_set(draw_list, debug_probes_uniform_set, 0); RD::get_singleton()->draw_list_set_push_constant(draw_list, &push_constant, sizeof(SDFGIShader::DebugProbesPushConstant)); RD::get_singleton()->draw_list_draw(draw_list, false, cell_count, total_points); } RD::get_singleton()->draw_command_end_label(); RD::get_singleton()->draw_list_end(); } void GI::SDFGI::pre_process_gi(const Transform3D &p_transform, RenderDataRD *p_render_data, RendererSceneRenderRD *p_scene_render) { /* Update general SDFGI Buffer */ SDFGIData sdfgi_data; sdfgi_data.grid_size[0] = cascade_size; sdfgi_data.grid_size[1] = cascade_size; sdfgi_data.grid_size[2] = cascade_size; sdfgi_data.max_cascades = cascades.size(); sdfgi_data.probe_axis_size = probe_axis_count; sdfgi_data.cascade_probe_size[0] = sdfgi_data.probe_axis_size - 1; //float version for performance sdfgi_data.cascade_probe_size[1] = sdfgi_data.probe_axis_size - 1; sdfgi_data.cascade_probe_size[2] = sdfgi_data.probe_axis_size - 1; float csize = cascade_size; sdfgi_data.probe_to_uvw = 1.0 / float(sdfgi_data.cascade_probe_size[0]); sdfgi_data.use_occlusion = uses_occlusion; //sdfgi_data.energy = energy; sdfgi_data.y_mult = y_mult; float cascade_voxel_size = (csize / sdfgi_data.cascade_probe_size[0]); float occlusion_clamp = (cascade_voxel_size - 0.5) / cascade_voxel_size; sdfgi_data.occlusion_clamp[0] = occlusion_clamp; sdfgi_data.occlusion_clamp[1] = occlusion_clamp; sdfgi_data.occlusion_clamp[2] = occlusion_clamp; sdfgi_data.normal_bias = (normal_bias / csize) * sdfgi_data.cascade_probe_size[0]; //vec2 tex_pixel_size = 1.0 / vec2(ivec2( (OCT_SIZE+2) * params.probe_axis_size * params.probe_axis_size, (OCT_SIZE+2) * params.probe_axis_size ) ); //vec3 probe_uv_offset = (ivec3(OCT_SIZE+2,OCT_SIZE+2,(OCT_SIZE+2) * params.probe_axis_size)) * tex_pixel_size.xyx; uint32_t oct_size = SDFGI::LIGHTPROBE_OCT_SIZE; sdfgi_data.lightprobe_tex_pixel_size[0] = 1.0 / ((oct_size + 2) * sdfgi_data.probe_axis_size * sdfgi_data.probe_axis_size); sdfgi_data.lightprobe_tex_pixel_size[1] = 1.0 / ((oct_size + 2) * sdfgi_data.probe_axis_size); sdfgi_data.lightprobe_tex_pixel_size[2] = 1.0; sdfgi_data.energy = energy; sdfgi_data.lightprobe_uv_offset[0] = float(oct_size + 2) * sdfgi_data.lightprobe_tex_pixel_size[0]; sdfgi_data.lightprobe_uv_offset[1] = float(oct_size + 2) * sdfgi_data.lightprobe_tex_pixel_size[1]; sdfgi_data.lightprobe_uv_offset[2] = float((oct_size + 2) * sdfgi_data.probe_axis_size) * sdfgi_data.lightprobe_tex_pixel_size[0]; sdfgi_data.occlusion_renormalize[0] = 0.5; sdfgi_data.occlusion_renormalize[1] = 1.0; sdfgi_data.occlusion_renormalize[2] = 1.0 / float(sdfgi_data.max_cascades); int32_t probe_divisor = cascade_size / SDFGI::PROBE_DIVISOR; for (uint32_t i = 0; i < sdfgi_data.max_cascades; i++) { SDFGIData::ProbeCascadeData &c = sdfgi_data.cascades[i]; Vector3 pos = Vector3((Vector3i(1, 1, 1) * -int32_t(cascade_size >> 1) + cascades[i].position)) * cascades[i].cell_size; Vector3 cam_origin = p_transform.origin; cam_origin.y *= y_mult; pos -= cam_origin; //make pos local to camera, to reduce numerical error c.position[0] = pos.x; c.position[1] = pos.y; c.position[2] = pos.z; c.to_probe = 1.0 / (float(cascade_size) * cascades[i].cell_size / float(probe_axis_count - 1)); Vector3i probe_ofs = cascades[i].position / probe_divisor; c.probe_world_offset[0] = probe_ofs.x; c.probe_world_offset[1] = probe_ofs.y; c.probe_world_offset[2] = probe_ofs.z; c.to_cell = 1.0 / cascades[i].cell_size; c.exposure_normalization = 1.0; if (p_render_data->camera_attributes.is_valid()) { float exposure_normalization = RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_render_data->camera_attributes); c.exposure_normalization = exposure_normalization / cascades[i].baked_exposure_normalization; } } RD::get_singleton()->buffer_update(gi->sdfgi_ubo, 0, sizeof(SDFGIData), &sdfgi_data, RD::BARRIER_MASK_COMPUTE); /* Update dynamic lights in SDFGI cascades */ for (uint32_t i = 0; i < cascades.size(); i++) { SDFGI::Cascade &cascade = cascades[i]; SDFGIShader::Light lights[SDFGI::MAX_DYNAMIC_LIGHTS]; uint32_t idx = 0; for (uint32_t j = 0; j < (uint32_t)p_scene_render->render_state.sdfgi_update_data->directional_lights->size(); j++) { if (idx == SDFGI::MAX_DYNAMIC_LIGHTS) { break; } RendererSceneRenderRD::LightInstance *li = p_scene_render->light_instance_owner.get_or_null(p_scene_render->render_state.sdfgi_update_data->directional_lights->get(j)); ERR_CONTINUE(!li); if (RSG::light_storage->light_directional_get_sky_mode(li->light) == RS::LIGHT_DIRECTIONAL_SKY_MODE_SKY_ONLY) { continue; } Vector3 dir = -li->transform.basis.get_column(Vector3::AXIS_Z); dir.y *= y_mult; dir.normalize(); lights[idx].direction[0] = dir.x; lights[idx].direction[1] = dir.y; lights[idx].direction[2] = dir.z; Color color = RSG::light_storage->light_get_color(li->light); color = color.srgb_to_linear(); lights[idx].color[0] = color.r; lights[idx].color[1] = color.g; lights[idx].color[2] = color.b; lights[idx].type = RS::LIGHT_DIRECTIONAL; lights[idx].energy = RSG::light_storage->light_get_param(li->light, RS::LIGHT_PARAM_ENERGY) * RSG::light_storage->light_get_param(li->light, RS::LIGHT_PARAM_INDIRECT_ENERGY); if (p_scene_render->is_using_physical_light_units()) { lights[idx].energy *= RSG::light_storage->light_get_param(li->light, RS::LIGHT_PARAM_INTENSITY); } if (p_render_data->camera_attributes.is_valid()) { lights[idx].energy *= RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_render_data->camera_attributes); } lights[idx].has_shadow = RSG::light_storage->light_has_shadow(li->light); idx++; } AABB cascade_aabb; cascade_aabb.position = Vector3((Vector3i(1, 1, 1) * -int32_t(cascade_size >> 1) + cascade.position)) * cascade.cell_size; cascade_aabb.size = Vector3(1, 1, 1) * cascade_size * cascade.cell_size; for (uint32_t j = 0; j < p_scene_render->render_state.sdfgi_update_data->positional_light_count; j++) { if (idx == SDFGI::MAX_DYNAMIC_LIGHTS) { break; } RendererSceneRenderRD::LightInstance *li = p_scene_render->light_instance_owner.get_or_null(p_scene_render->render_state.sdfgi_update_data->positional_light_instances[j]); ERR_CONTINUE(!li); uint32_t max_sdfgi_cascade = RSG::light_storage->light_get_max_sdfgi_cascade(li->light); if (i > max_sdfgi_cascade) { continue; } if (!cascade_aabb.intersects(li->aabb)) { continue; } Vector3 dir = -li->transform.basis.get_column(Vector3::AXIS_Z); //faster to not do this here //dir.y *= y_mult; //dir.normalize(); lights[idx].direction[0] = dir.x; lights[idx].direction[1] = dir.y; lights[idx].direction[2] = dir.z; Vector3 pos = li->transform.origin; pos.y *= y_mult; lights[idx].position[0] = pos.x; lights[idx].position[1] = pos.y; lights[idx].position[2] = pos.z; Color color = RSG::light_storage->light_get_color(li->light); color = color.srgb_to_linear(); lights[idx].color[0] = color.r; lights[idx].color[1] = color.g; lights[idx].color[2] = color.b; lights[idx].type = RSG::light_storage->light_get_type(li->light); lights[idx].energy = RSG::light_storage->light_get_param(li->light, RS::LIGHT_PARAM_ENERGY) * RSG::light_storage->light_get_param(li->light, RS::LIGHT_PARAM_INDIRECT_ENERGY); if (p_scene_render->is_using_physical_light_units()) { lights[idx].energy *= RSG::light_storage->light_get_param(li->light, RS::LIGHT_PARAM_INTENSITY); // Convert from Luminous Power to Luminous Intensity if (lights[idx].type == RS::LIGHT_OMNI) { lights[idx].energy *= 1.0 / (Math_PI * 4.0); } else if (lights[idx].type == RS::LIGHT_SPOT) { // Spot Lights are not physically accurate, Luminous Intensity should change in relation to the cone angle. // We make this assumption to keep them easy to control. lights[idx].energy *= 1.0 / Math_PI; } } if (p_render_data->camera_attributes.is_valid()) { lights[idx].energy *= RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_render_data->camera_attributes); } lights[idx].has_shadow = RSG::light_storage->light_has_shadow(li->light); lights[idx].attenuation = RSG::light_storage->light_get_param(li->light, RS::LIGHT_PARAM_ATTENUATION); lights[idx].radius = RSG::light_storage->light_get_param(li->light, RS::LIGHT_PARAM_RANGE); lights[idx].cos_spot_angle = Math::cos(Math::deg_to_rad(RSG::light_storage->light_get_param(li->light, RS::LIGHT_PARAM_SPOT_ANGLE))); lights[idx].inv_spot_attenuation = 1.0f / RSG::light_storage->light_get_param(li->light, RS::LIGHT_PARAM_SPOT_ATTENUATION); idx++; } if (idx > 0) { RD::get_singleton()->buffer_update(cascade.lights_buffer, 0, idx * sizeof(SDFGIShader::Light), lights, RD::BARRIER_MASK_COMPUTE); } cascade_dynamic_light_count[i] = idx; } } void GI::SDFGI::render_region(Ref p_render_buffers, int p_region, const PagedArray &p_instances, RendererSceneRenderRD *p_scene_render, float p_exposure_normalization) { //print_line("rendering region " + itos(p_region)); ERR_FAIL_COND(p_render_buffers.is_null()); // we wouldn't be here if this failed but... AABB bounds; Vector3i from; Vector3i size; int cascade_prev = get_pending_region_data(p_region - 1, from, size, bounds); int cascade_next = get_pending_region_data(p_region + 1, from, size, bounds); int cascade = get_pending_region_data(p_region, from, size, bounds); ERR_FAIL_COND(cascade < 0); if (cascade_prev != cascade) { //initialize render RD::get_singleton()->texture_clear(render_albedo, Color(0, 0, 0, 0), 0, 1, 0, 1); RD::get_singleton()->texture_clear(render_emission, Color(0, 0, 0, 0), 0, 1, 0, 1); RD::get_singleton()->texture_clear(render_emission_aniso, Color(0, 0, 0, 0), 0, 1, 0, 1); RD::get_singleton()->texture_clear(render_geom_facing, Color(0, 0, 0, 0), 0, 1, 0, 1); } //print_line("rendering cascade " + itos(p_region) + " objects: " + itos(p_cull_count) + " bounds: " + bounds + " from: " + from + " size: " + size + " cell size: " + rtos(cascades[cascade].cell_size)); p_scene_render->_render_sdfgi(p_render_buffers, from, size, bounds, p_instances, render_albedo, render_emission, render_emission_aniso, render_geom_facing, p_exposure_normalization); if (cascade_next != cascade) { RD::get_singleton()->draw_command_begin_label("SDFGI Pre-Process Cascade"); RENDER_TIMESTAMP("> SDFGI Update SDF"); //done rendering! must update SDF //clear dispatch indirect data SDFGIShader::PreprocessPushConstant push_constant; memset(&push_constant, 0, sizeof(SDFGIShader::PreprocessPushConstant)); RENDER_TIMESTAMP("SDFGI Scroll SDF"); //scroll if (cascades[cascade].dirty_regions != SDFGI::Cascade::DIRTY_ALL) { //for scroll Vector3i dirty = cascades[cascade].dirty_regions; push_constant.scroll[0] = dirty.x; push_constant.scroll[1] = dirty.y; push_constant.scroll[2] = dirty.z; } else { //for no scroll push_constant.scroll[0] = 0; push_constant.scroll[1] = 0; push_constant.scroll[2] = 0; } cascades[cascade].all_dynamic_lights_dirty = true; cascades[cascade].baked_exposure_normalization = p_exposure_normalization; push_constant.grid_size = cascade_size; push_constant.cascade = cascade; if (cascades[cascade].dirty_regions != SDFGI::Cascade::DIRTY_ALL) { RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin(); //must pre scroll existing data because not all is dirty RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.preprocess_pipeline[SDFGIShader::PRE_PROCESS_SCROLL]); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, cascades[cascade].scroll_uniform_set, 0); RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::PreprocessPushConstant)); RD::get_singleton()->compute_list_dispatch_indirect(compute_list, cascades[cascade].solid_cell_dispatch_buffer, 0); // no barrier do all together RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.preprocess_pipeline[SDFGIShader::PRE_PROCESS_SCROLL_OCCLUSION]); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, cascades[cascade].scroll_occlusion_uniform_set, 0); Vector3i dirty = cascades[cascade].dirty_regions; Vector3i groups; groups.x = cascade_size - ABS(dirty.x); groups.y = cascade_size - ABS(dirty.y); groups.z = cascade_size - ABS(dirty.z); RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::PreprocessPushConstant)); RD::get_singleton()->compute_list_dispatch_threads(compute_list, groups.x, groups.y, groups.z); //no barrier, continue together { //scroll probes and their history also SDFGIShader::IntegratePushConstant ipush_constant; ipush_constant.grid_size[1] = cascade_size; ipush_constant.grid_size[2] = cascade_size; ipush_constant.grid_size[0] = cascade_size; ipush_constant.max_cascades = cascades.size(); ipush_constant.probe_axis_size = probe_axis_count; ipush_constant.history_index = 0; ipush_constant.history_size = history_size; ipush_constant.ray_count = 0; ipush_constant.ray_bias = 0; ipush_constant.sky_mode = 0; ipush_constant.sky_energy = 0; ipush_constant.sky_color[0] = 0; ipush_constant.sky_color[1] = 0; ipush_constant.sky_color[2] = 0; ipush_constant.y_mult = y_mult; ipush_constant.store_ambient_texture = false; ipush_constant.image_size[0] = probe_axis_count * probe_axis_count; ipush_constant.image_size[1] = probe_axis_count; int32_t probe_divisor = cascade_size / SDFGI::PROBE_DIVISOR; ipush_constant.cascade = cascade; ipush_constant.world_offset[0] = cascades[cascade].position.x / probe_divisor; ipush_constant.world_offset[1] = cascades[cascade].position.y / probe_divisor; ipush_constant.world_offset[2] = cascades[cascade].position.z / probe_divisor; ipush_constant.scroll[0] = dirty.x / probe_divisor; ipush_constant.scroll[1] = dirty.y / probe_divisor; ipush_constant.scroll[2] = dirty.z / probe_divisor; RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.integrate_pipeline[SDFGIShader::INTEGRATE_MODE_SCROLL]); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, cascades[cascade].integrate_uniform_set, 0); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi->sdfgi_shader.integrate_default_sky_uniform_set, 1); RD::get_singleton()->compute_list_set_push_constant(compute_list, &ipush_constant, sizeof(SDFGIShader::IntegratePushConstant)); RD::get_singleton()->compute_list_dispatch_threads(compute_list, probe_axis_count * probe_axis_count, probe_axis_count, 1); RD::get_singleton()->compute_list_add_barrier(compute_list); RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.integrate_pipeline[SDFGIShader::INTEGRATE_MODE_SCROLL_STORE]); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, cascades[cascade].integrate_uniform_set, 0); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi->sdfgi_shader.integrate_default_sky_uniform_set, 1); RD::get_singleton()->compute_list_set_push_constant(compute_list, &ipush_constant, sizeof(SDFGIShader::IntegratePushConstant)); RD::get_singleton()->compute_list_dispatch_threads(compute_list, probe_axis_count * probe_axis_count, probe_axis_count, 1); RD::get_singleton()->compute_list_add_barrier(compute_list); if (bounce_feedback > 0.0) { //multibounce requires this to be stored so direct light can read from it RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.integrate_pipeline[SDFGIShader::INTEGRATE_MODE_STORE]); //convert to octahedral to store ipush_constant.image_size[0] *= SDFGI::LIGHTPROBE_OCT_SIZE; ipush_constant.image_size[1] *= SDFGI::LIGHTPROBE_OCT_SIZE; RD::get_singleton()->compute_list_bind_uniform_set(compute_list, cascades[cascade].integrate_uniform_set, 0); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi->sdfgi_shader.integrate_default_sky_uniform_set, 1); RD::get_singleton()->compute_list_set_push_constant(compute_list, &ipush_constant, sizeof(SDFGIShader::IntegratePushConstant)); RD::get_singleton()->compute_list_dispatch_threads(compute_list, probe_axis_count * probe_axis_count * SDFGI::LIGHTPROBE_OCT_SIZE, probe_axis_count * SDFGI::LIGHTPROBE_OCT_SIZE, 1); } } //ok finally barrier RD::get_singleton()->compute_list_end(); } //clear dispatch indirect data uint32_t dispatch_indirct_data[4] = { 0, 0, 0, 0 }; RD::get_singleton()->buffer_update(cascades[cascade].solid_cell_dispatch_buffer, 0, sizeof(uint32_t) * 4, dispatch_indirct_data); RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin(); bool half_size = true; //much faster, very little difference static const int optimized_jf_group_size = 8; if (half_size) { push_constant.grid_size >>= 1; uint32_t cascade_half_size = cascade_size >> 1; RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.preprocess_pipeline[SDFGIShader::PRE_PROCESS_JUMP_FLOOD_INITIALIZE_HALF]); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, sdf_initialize_half_uniform_set, 0); RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::PreprocessPushConstant)); RD::get_singleton()->compute_list_dispatch_threads(compute_list, cascade_half_size, cascade_half_size, cascade_half_size); RD::get_singleton()->compute_list_add_barrier(compute_list); //must start with regular jumpflood push_constant.half_size = true; { RENDER_TIMESTAMP("SDFGI Jump Flood (Half-Size)"); uint32_t s = cascade_half_size; RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.preprocess_pipeline[SDFGIShader::PRE_PROCESS_JUMP_FLOOD]); int jf_us = 0; //start with regular jump flood for very coarse reads, as this is impossible to optimize while (s > 1) { s /= 2; push_constant.step_size = s; RD::get_singleton()->compute_list_bind_uniform_set(compute_list, jump_flood_half_uniform_set[jf_us], 0); RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::PreprocessPushConstant)); RD::get_singleton()->compute_list_dispatch_threads(compute_list, cascade_half_size, cascade_half_size, cascade_half_size); RD::get_singleton()->compute_list_add_barrier(compute_list); jf_us = jf_us == 0 ? 1 : 0; if (cascade_half_size / (s / 2) >= optimized_jf_group_size) { break; } } RENDER_TIMESTAMP("SDFGI Jump Flood Optimized (Half-Size)"); //continue with optimized jump flood for smaller reads RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.preprocess_pipeline[SDFGIShader::PRE_PROCESS_JUMP_FLOOD_OPTIMIZED]); while (s > 1) { s /= 2; push_constant.step_size = s; RD::get_singleton()->compute_list_bind_uniform_set(compute_list, jump_flood_half_uniform_set[jf_us], 0); RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::PreprocessPushConstant)); RD::get_singleton()->compute_list_dispatch_threads(compute_list, cascade_half_size, cascade_half_size, cascade_half_size); RD::get_singleton()->compute_list_add_barrier(compute_list); jf_us = jf_us == 0 ? 1 : 0; } } // restore grid size for last passes push_constant.grid_size = cascade_size; RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.preprocess_pipeline[SDFGIShader::PRE_PROCESS_JUMP_FLOOD_UPSCALE]); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, sdf_upscale_uniform_set, 0); RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::PreprocessPushConstant)); RD::get_singleton()->compute_list_dispatch_threads(compute_list, cascade_size, cascade_size, cascade_size); RD::get_singleton()->compute_list_add_barrier(compute_list); //run one pass of fullsize jumpflood to fix up half size arctifacts push_constant.half_size = false; push_constant.step_size = 1; RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.preprocess_pipeline[SDFGIShader::PRE_PROCESS_JUMP_FLOOD_OPTIMIZED]); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, jump_flood_uniform_set[upscale_jfa_uniform_set_index], 0); RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::PreprocessPushConstant)); RD::get_singleton()->compute_list_dispatch_threads(compute_list, cascade_size, cascade_size, cascade_size); RD::get_singleton()->compute_list_add_barrier(compute_list); } else { //full size jumpflood RENDER_TIMESTAMP("SDFGI Jump Flood (Full-Size)"); RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.preprocess_pipeline[SDFGIShader::PRE_PROCESS_JUMP_FLOOD_INITIALIZE]); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, sdf_initialize_uniform_set, 0); RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::PreprocessPushConstant)); RD::get_singleton()->compute_list_dispatch_threads(compute_list, cascade_size, cascade_size, cascade_size); RD::get_singleton()->compute_list_add_barrier(compute_list); push_constant.half_size = false; { uint32_t s = cascade_size; RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.preprocess_pipeline[SDFGIShader::PRE_PROCESS_JUMP_FLOOD]); int jf_us = 0; //start with regular jump flood for very coarse reads, as this is impossible to optimize while (s > 1) { s /= 2; push_constant.step_size = s; RD::get_singleton()->compute_list_bind_uniform_set(compute_list, jump_flood_uniform_set[jf_us], 0); RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::PreprocessPushConstant)); RD::get_singleton()->compute_list_dispatch_threads(compute_list, cascade_size, cascade_size, cascade_size); RD::get_singleton()->compute_list_add_barrier(compute_list); jf_us = jf_us == 0 ? 1 : 0; if (cascade_size / (s / 2) >= optimized_jf_group_size) { break; } } RENDER_TIMESTAMP("SDFGI Jump Flood Optimized (Full-Size)"); //continue with optimized jump flood for smaller reads RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.preprocess_pipeline[SDFGIShader::PRE_PROCESS_JUMP_FLOOD_OPTIMIZED]); while (s > 1) { s /= 2; push_constant.step_size = s; RD::get_singleton()->compute_list_bind_uniform_set(compute_list, jump_flood_uniform_set[jf_us], 0); RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::PreprocessPushConstant)); RD::get_singleton()->compute_list_dispatch_threads(compute_list, cascade_size, cascade_size, cascade_size); RD::get_singleton()->compute_list_add_barrier(compute_list); jf_us = jf_us == 0 ? 1 : 0; } } } RENDER_TIMESTAMP("SDFGI Occlusion"); // occlusion { uint32_t probe_size = cascade_size / SDFGI::PROBE_DIVISOR; Vector3i probe_global_pos = cascades[cascade].position / probe_size; RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.preprocess_pipeline[SDFGIShader::PRE_PROCESS_OCCLUSION]); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, occlusion_uniform_set, 0); for (int i = 0; i < 8; i++) { //dispatch all at once for performance Vector3i offset(i & 1, (i >> 1) & 1, (i >> 2) & 1); if ((probe_global_pos.x & 1) != 0) { offset.x = (offset.x + 1) & 1; } if ((probe_global_pos.y & 1) != 0) { offset.y = (offset.y + 1) & 1; } if ((probe_global_pos.z & 1) != 0) { offset.z = (offset.z + 1) & 1; } push_constant.probe_offset[0] = offset.x; push_constant.probe_offset[1] = offset.y; push_constant.probe_offset[2] = offset.z; push_constant.occlusion_index = i; RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::PreprocessPushConstant)); Vector3i groups = Vector3i(probe_size + 1, probe_size + 1, probe_size + 1) - offset; //if offset, it's one less probe per axis to compute RD::get_singleton()->compute_list_dispatch(compute_list, groups.x, groups.y, groups.z); } RD::get_singleton()->compute_list_add_barrier(compute_list); } RENDER_TIMESTAMP("SDFGI Store"); // store RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.preprocess_pipeline[SDFGIShader::PRE_PROCESS_STORE]); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, cascades[cascade].sdf_store_uniform_set, 0); RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::PreprocessPushConstant)); RD::get_singleton()->compute_list_dispatch_threads(compute_list, cascade_size, cascade_size, cascade_size); RD::get_singleton()->compute_list_end(); //clear these textures, as they will have previous garbage on next draw RD::get_singleton()->texture_clear(cascades[cascade].light_tex, Color(0, 0, 0, 0), 0, 1, 0, 1); RD::get_singleton()->texture_clear(cascades[cascade].light_aniso_0_tex, Color(0, 0, 0, 0), 0, 1, 0, 1); RD::get_singleton()->texture_clear(cascades[cascade].light_aniso_1_tex, Color(0, 0, 0, 0), 0, 1, 0, 1); #if 0 Vector data = RD::get_singleton()->texture_get_data(cascades[cascade].sdf, 0); Ref img; img.instantiate(); for (uint32_t i = 0; i < cascade_size; i++) { Vector subarr = data.slice(128 * 128 * i, 128 * 128 * (i + 1)); img->create(cascade_size, cascade_size, false, Image::FORMAT_L8, subarr); img->save_png("res://cascade_sdf_" + itos(cascade) + "_" + itos(i) + ".png"); } //finalize render and update sdf #endif #if 0 Vector data = RD::get_singleton()->texture_get_data(render_albedo, 0); Ref img; img.instantiate(); for (uint32_t i = 0; i < cascade_size; i++) { Vector subarr = data.slice(128 * 128 * i * 2, 128 * 128 * (i + 1) * 2); img->createcascade_size, cascade_size, false, Image::FORMAT_RGB565, subarr); img->convert(Image::FORMAT_RGBA8); img->save_png("res://cascade_" + itos(cascade) + "_" + itos(i) + ".png"); } //finalize render and update sdf #endif RENDER_TIMESTAMP("< SDFGI Update SDF"); RD::get_singleton()->draw_command_end_label(); } } void GI::SDFGI::render_static_lights(RenderDataRD *p_render_data, Ref p_render_buffers, uint32_t p_cascade_count, const uint32_t *p_cascade_indices, const PagedArray *p_positional_light_cull_result, RendererSceneRenderRD *p_scene_render) { ERR_FAIL_COND(p_render_buffers.is_null()); // we wouldn't be here if this failed but... RD::get_singleton()->draw_command_begin_label("SDFGI Render Static Lights"); update_cascades(); SDFGIShader::Light lights[SDFGI::MAX_STATIC_LIGHTS]; uint32_t light_count[SDFGI::MAX_STATIC_LIGHTS]; for (uint32_t i = 0; i < p_cascade_count; i++) { ERR_CONTINUE(p_cascade_indices[i] >= cascades.size()); SDFGI::Cascade &cc = cascades[p_cascade_indices[i]]; { //fill light buffer AABB cascade_aabb; cascade_aabb.position = Vector3((Vector3i(1, 1, 1) * -int32_t(cascade_size >> 1) + cc.position)) * cc.cell_size; cascade_aabb.size = Vector3(1, 1, 1) * cascade_size * cc.cell_size; int idx = 0; for (uint32_t j = 0; j < (uint32_t)p_positional_light_cull_result[i].size(); j++) { if (idx == SDFGI::MAX_STATIC_LIGHTS) { break; } RendererSceneRenderRD::LightInstance *li = p_scene_render->light_instance_owner.get_or_null(p_positional_light_cull_result[i][j]); ERR_CONTINUE(!li); uint32_t max_sdfgi_cascade = RSG::light_storage->light_get_max_sdfgi_cascade(li->light); if (p_cascade_indices[i] > max_sdfgi_cascade) { continue; } if (!cascade_aabb.intersects(li->aabb)) { continue; } lights[idx].type = RSG::light_storage->light_get_type(li->light); Vector3 dir = -li->transform.basis.get_column(Vector3::AXIS_Z); if (lights[idx].type == RS::LIGHT_DIRECTIONAL) { dir.y *= y_mult; //only makes sense for directional dir.normalize(); } lights[idx].direction[0] = dir.x; lights[idx].direction[1] = dir.y; lights[idx].direction[2] = dir.z; Vector3 pos = li->transform.origin; pos.y *= y_mult; lights[idx].position[0] = pos.x; lights[idx].position[1] = pos.y; lights[idx].position[2] = pos.z; Color color = RSG::light_storage->light_get_color(li->light); color = color.srgb_to_linear(); lights[idx].color[0] = color.r; lights[idx].color[1] = color.g; lights[idx].color[2] = color.b; lights[idx].energy = RSG::light_storage->light_get_param(li->light, RS::LIGHT_PARAM_ENERGY) * RSG::light_storage->light_get_param(li->light, RS::LIGHT_PARAM_INDIRECT_ENERGY); if (p_scene_render->is_using_physical_light_units()) { lights[idx].energy *= RSG::light_storage->light_get_param(li->light, RS::LIGHT_PARAM_INTENSITY); // Convert from Luminous Power to Luminous Intensity if (lights[idx].type == RS::LIGHT_OMNI) { lights[idx].energy *= 1.0 / (Math_PI * 4.0); } else if (lights[idx].type == RS::LIGHT_SPOT) { // Spot Lights are not physically accurate, Luminous Intensity should change in relation to the cone angle. // We make this assumption to keep them easy to control. lights[idx].energy *= 1.0 / Math_PI; } } if (p_render_data->camera_attributes.is_valid()) { lights[idx].energy *= RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_render_data->camera_attributes); } lights[idx].has_shadow = RSG::light_storage->light_has_shadow(li->light); lights[idx].attenuation = RSG::light_storage->light_get_param(li->light, RS::LIGHT_PARAM_ATTENUATION); lights[idx].radius = RSG::light_storage->light_get_param(li->light, RS::LIGHT_PARAM_RANGE); lights[idx].cos_spot_angle = Math::cos(Math::deg_to_rad(RSG::light_storage->light_get_param(li->light, RS::LIGHT_PARAM_SPOT_ANGLE))); lights[idx].inv_spot_attenuation = 1.0f / RSG::light_storage->light_get_param(li->light, RS::LIGHT_PARAM_SPOT_ATTENUATION); idx++; } if (idx > 0) { RD::get_singleton()->buffer_update(cc.lights_buffer, 0, idx * sizeof(SDFGIShader::Light), lights); } light_count[i] = idx; } } /* Static Lights */ RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin(); RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.direct_light_pipeline[SDFGIShader::DIRECT_LIGHT_MODE_STATIC]); SDFGIShader::DirectLightPushConstant dl_push_constant; dl_push_constant.grid_size[0] = cascade_size; dl_push_constant.grid_size[1] = cascade_size; dl_push_constant.grid_size[2] = cascade_size; dl_push_constant.max_cascades = cascades.size(); dl_push_constant.probe_axis_size = probe_axis_count; dl_push_constant.bounce_feedback = 0.0; // this is static light, do not multibounce yet dl_push_constant.y_mult = y_mult; dl_push_constant.use_occlusion = uses_occlusion; //all must be processed dl_push_constant.process_offset = 0; dl_push_constant.process_increment = 1; for (uint32_t i = 0; i < p_cascade_count; i++) { ERR_CONTINUE(p_cascade_indices[i] >= cascades.size()); SDFGI::Cascade &cc = cascades[p_cascade_indices[i]]; dl_push_constant.light_count = light_count[i]; dl_push_constant.cascade = p_cascade_indices[i]; if (dl_push_constant.light_count > 0) { RD::get_singleton()->compute_list_bind_uniform_set(compute_list, cc.sdf_direct_light_static_uniform_set, 0); RD::get_singleton()->compute_list_set_push_constant(compute_list, &dl_push_constant, sizeof(SDFGIShader::DirectLightPushConstant)); RD::get_singleton()->compute_list_dispatch_indirect(compute_list, cc.solid_cell_dispatch_buffer, 0); } } RD::get_singleton()->compute_list_end(); RD::get_singleton()->draw_command_end_label(); } //////////////////////////////////////////////////////////////////////////////// // VoxelGIInstance void GI::VoxelGIInstance::update(bool p_update_light_instances, const Vector &p_light_instances, const PagedArray &p_dynamic_objects, RendererSceneRenderRD *p_scene_render) { RendererRD::MaterialStorage *material_storage = RendererRD::MaterialStorage::get_singleton(); uint32_t data_version = gi->voxel_gi_get_data_version(probe); // (RE)CREATE IF NEEDED if (last_probe_data_version != data_version) { //need to re-create everything free_resources(); Vector3i octree_size = gi->voxel_gi_get_octree_size(probe); if (octree_size != Vector3i()) { //can create a 3D texture Vector levels = gi->voxel_gi_get_level_counts(probe); RD::TextureFormat tf; tf.format = RD::DATA_FORMAT_R8G8B8A8_UNORM; tf.width = octree_size.x; tf.height = octree_size.y; tf.depth = octree_size.z; tf.texture_type = RD::TEXTURE_TYPE_3D; tf.mipmaps = levels.size(); tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT; texture = RD::get_singleton()->texture_create(tf, RD::TextureView()); RD::get_singleton()->set_resource_name(texture, "VoxelGI Instance Texture"); RD::get_singleton()->texture_clear(texture, Color(0, 0, 0, 0), 0, levels.size(), 0, 1); { int total_elements = 0; for (int i = 0; i < levels.size(); i++) { total_elements += levels[i]; } write_buffer = RD::get_singleton()->storage_buffer_create(total_elements * 16); } for (int i = 0; i < levels.size(); i++) { VoxelGIInstance::Mipmap mipmap; mipmap.texture = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), texture, 0, i, 1, RD::TEXTURE_SLICE_3D); mipmap.level = levels.size() - i - 1; mipmap.cell_offset = 0; for (uint32_t j = 0; j < mipmap.level; j++) { mipmap.cell_offset += levels[j]; } mipmap.cell_count = levels[mipmap.level]; Vector uniforms; { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u.binding = 1; u.append_id(gi->voxel_gi_get_octree_buffer(probe)); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u.binding = 2; u.append_id(gi->voxel_gi_get_data_buffer(probe)); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u.binding = 4; u.append_id(write_buffer); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 9; u.append_id(gi->voxel_gi_get_sdf_texture(probe)); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_SAMPLER; u.binding = 10; u.append_id(material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED)); uniforms.push_back(u); } { Vector copy_uniforms = uniforms; if (i == 0) { { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER; u.binding = 3; u.append_id(gi->voxel_gi_lights_uniform); copy_uniforms.push_back(u); } mipmap.uniform_set = RD::get_singleton()->uniform_set_create(copy_uniforms, gi->voxel_gi_lighting_shader_version_shaders[VOXEL_GI_SHADER_VERSION_COMPUTE_LIGHT], 0); copy_uniforms = uniforms; //restore { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 5; u.append_id(texture); copy_uniforms.push_back(u); } mipmap.second_bounce_uniform_set = RD::get_singleton()->uniform_set_create(copy_uniforms, gi->voxel_gi_lighting_shader_version_shaders[VOXEL_GI_SHADER_VERSION_COMPUTE_SECOND_BOUNCE], 0); } else { mipmap.uniform_set = RD::get_singleton()->uniform_set_create(copy_uniforms, gi->voxel_gi_lighting_shader_version_shaders[VOXEL_GI_SHADER_VERSION_COMPUTE_MIPMAP], 0); } } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_IMAGE; u.binding = 5; u.append_id(mipmap.texture); uniforms.push_back(u); } mipmap.write_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->voxel_gi_lighting_shader_version_shaders[VOXEL_GI_SHADER_VERSION_WRITE_TEXTURE], 0); mipmaps.push_back(mipmap); } { uint32_t dynamic_map_size = MAX(MAX(octree_size.x, octree_size.y), octree_size.z); uint32_t oversample = nearest_power_of_2_templated(4); int mipmap_index = 0; while (mipmap_index < mipmaps.size()) { VoxelGIInstance::DynamicMap dmap; if (oversample > 0) { dmap.size = dynamic_map_size * (1 << oversample); dmap.mipmap = -1; oversample--; } else { dmap.size = dynamic_map_size >> mipmap_index; dmap.mipmap = mipmap_index; mipmap_index++; } RD::TextureFormat dtf; dtf.width = dmap.size; dtf.height = dmap.size; dtf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT; dtf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT; if (dynamic_maps.size() == 0) { dtf.usage_bits |= RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT; } dmap.texture = RD::get_singleton()->texture_create(dtf, RD::TextureView()); RD::get_singleton()->set_resource_name(dmap.texture, "VoxelGI Instance DMap Texture"); if (dynamic_maps.size() == 0) { // Render depth for first one. // Use 16-bit depth when supported to improve performance. dtf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D16_UNORM, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D16_UNORM : RD::DATA_FORMAT_X8_D24_UNORM_PACK32; dtf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT; dmap.fb_depth = RD::get_singleton()->texture_create(dtf, RD::TextureView()); RD::get_singleton()->set_resource_name(dmap.fb_depth, "VoxelGI Instance DMap FB Depth"); } //just use depth as-is dtf.format = RD::DATA_FORMAT_R32_SFLOAT; dtf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT; dmap.depth = RD::get_singleton()->texture_create(dtf, RD::TextureView()); RD::get_singleton()->set_resource_name(dmap.depth, "VoxelGI Instance DMap Depth"); if (dynamic_maps.size() == 0) { dtf.format = RD::DATA_FORMAT_R8G8B8A8_UNORM; dtf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT; dmap.albedo = RD::get_singleton()->texture_create(dtf, RD::TextureView()); RD::get_singleton()->set_resource_name(dmap.albedo, "VoxelGI Instance DMap Albedo"); dmap.normal = RD::get_singleton()->texture_create(dtf, RD::TextureView()); RD::get_singleton()->set_resource_name(dmap.normal, "VoxelGI Instance DMap Normal"); dmap.orm = RD::get_singleton()->texture_create(dtf, RD::TextureView()); RD::get_singleton()->set_resource_name(dmap.orm, "VoxelGI Instance DMap ORM"); Vector fb; fb.push_back(dmap.albedo); fb.push_back(dmap.normal); fb.push_back(dmap.orm); fb.push_back(dmap.texture); //emission fb.push_back(dmap.depth); fb.push_back(dmap.fb_depth); dmap.fb = RD::get_singleton()->framebuffer_create(fb); { Vector uniforms; { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER; u.binding = 3; u.append_id(gi->voxel_gi_lights_uniform); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_IMAGE; u.binding = 5; u.append_id(dmap.albedo); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_IMAGE; u.binding = 6; u.append_id(dmap.normal); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_IMAGE; u.binding = 7; u.append_id(dmap.orm); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 8; u.append_id(dmap.fb_depth); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 9; u.append_id(gi->voxel_gi_get_sdf_texture(probe)); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_SAMPLER; u.binding = 10; u.append_id(material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED)); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_IMAGE; u.binding = 11; u.append_id(dmap.texture); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_IMAGE; u.binding = 12; u.append_id(dmap.depth); uniforms.push_back(u); } dmap.uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->voxel_gi_lighting_shader_version_shaders[VOXEL_GI_SHADER_VERSION_DYNAMIC_OBJECT_LIGHTING], 0); } } else { bool plot = dmap.mipmap >= 0; bool write = dmap.mipmap < (mipmaps.size() - 1); Vector uniforms; { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_IMAGE; u.binding = 5; u.append_id(dynamic_maps[dynamic_maps.size() - 1].texture); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_IMAGE; u.binding = 6; u.append_id(dynamic_maps[dynamic_maps.size() - 1].depth); uniforms.push_back(u); } if (write) { { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_IMAGE; u.binding = 7; u.append_id(dmap.texture); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_IMAGE; u.binding = 8; u.append_id(dmap.depth); uniforms.push_back(u); } } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 9; u.append_id(gi->voxel_gi_get_sdf_texture(probe)); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_SAMPLER; u.binding = 10; u.append_id(material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED)); uniforms.push_back(u); } if (plot) { { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_IMAGE; u.binding = 11; u.append_id(mipmaps[dmap.mipmap].texture); uniforms.push_back(u); } } dmap.uniform_set = RD::get_singleton()->uniform_set_create( uniforms, gi->voxel_gi_lighting_shader_version_shaders[(write && plot) ? VOXEL_GI_SHADER_VERSION_DYNAMIC_SHRINK_WRITE_PLOT : (write ? VOXEL_GI_SHADER_VERSION_DYNAMIC_SHRINK_WRITE : VOXEL_GI_SHADER_VERSION_DYNAMIC_SHRINK_PLOT)], 0); } dynamic_maps.push_back(dmap); } } } last_probe_data_version = data_version; p_update_light_instances = true; //just in case p_scene_render->_base_uniforms_changed(); } // UDPDATE TIME if (has_dynamic_object_data) { //if it has dynamic object data, it needs to be cleared RD::get_singleton()->texture_clear(texture, Color(0, 0, 0, 0), 0, mipmaps.size(), 0, 1); } uint32_t light_count = 0; if (p_update_light_instances || p_dynamic_objects.size() > 0) { light_count = MIN(gi->voxel_gi_max_lights, (uint32_t)p_light_instances.size()); { Transform3D to_cell = gi->voxel_gi_get_to_cell_xform(probe); Transform3D to_probe_xform = (transform * to_cell.affine_inverse()).affine_inverse(); //update lights for (uint32_t i = 0; i < light_count; i++) { VoxelGILight &l = gi->voxel_gi_lights[i]; RID light_instance = p_light_instances[i]; RID light = p_scene_render->light_instance_get_base_light(light_instance); l.type = RSG::light_storage->light_get_type(light); if (l.type == RS::LIGHT_DIRECTIONAL && RSG::light_storage->light_directional_get_sky_mode(light) == RS::LIGHT_DIRECTIONAL_SKY_MODE_SKY_ONLY) { light_count--; continue; } l.attenuation = RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_ATTENUATION); l.energy = RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_ENERGY) * RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_INDIRECT_ENERGY); if (p_scene_render->is_using_physical_light_units()) { l.energy *= RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_INTENSITY); l.energy *= gi->voxel_gi_get_baked_exposure_normalization(probe); // Convert from Luminous Power to Luminous Intensity if (l.type == RS::LIGHT_OMNI) { l.energy *= 1.0 / (Math_PI * 4.0); } else if (l.type == RS::LIGHT_SPOT) { // Spot Lights are not physically accurate, Luminous Intensity should change in relation to the cone angle. // We make this assumption to keep them easy to control. l.energy *= 1.0 / Math_PI; } } l.radius = to_cell.basis.xform(Vector3(RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_RANGE), 0, 0)).length(); Color color = RSG::light_storage->light_get_color(light).srgb_to_linear(); l.color[0] = color.r; l.color[1] = color.g; l.color[2] = color.b; l.cos_spot_angle = Math::cos(Math::deg_to_rad(RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_SPOT_ANGLE))); l.inv_spot_attenuation = 1.0f / RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_SPOT_ATTENUATION); Transform3D xform = p_scene_render->light_instance_get_base_transform(light_instance); Vector3 pos = to_probe_xform.xform(xform.origin); Vector3 dir = to_probe_xform.basis.xform(-xform.basis.get_column(2)).normalized(); l.position[0] = pos.x; l.position[1] = pos.y; l.position[2] = pos.z; l.direction[0] = dir.x; l.direction[1] = dir.y; l.direction[2] = dir.z; l.has_shadow = RSG::light_storage->light_has_shadow(light); } RD::get_singleton()->buffer_update(gi->voxel_gi_lights_uniform, 0, sizeof(VoxelGILight) * light_count, gi->voxel_gi_lights); } } if (has_dynamic_object_data || p_update_light_instances || p_dynamic_objects.size()) { // PROCESS MIPMAPS if (mipmaps.size()) { //can update mipmaps Vector3i probe_size = gi->voxel_gi_get_octree_size(probe); VoxelGIPushConstant push_constant; push_constant.limits[0] = probe_size.x; push_constant.limits[1] = probe_size.y; push_constant.limits[2] = probe_size.z; push_constant.stack_size = mipmaps.size(); push_constant.emission_scale = 1.0; push_constant.propagation = gi->voxel_gi_get_propagation(probe); push_constant.dynamic_range = gi->voxel_gi_get_dynamic_range(probe); push_constant.light_count = light_count; push_constant.aniso_strength = 0; /* print_line("probe update to version " + itos(last_probe_version)); print_line("propagation " + rtos(push_constant.propagation)); print_line("dynrange " + rtos(push_constant.dynamic_range)); */ RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin(); int passes; if (p_update_light_instances) { passes = gi->voxel_gi_is_using_two_bounces(probe) ? 2 : 1; } else { passes = 1; //only re-blitting is necessary } int wg_size = 64; int64_t wg_limit_x = (int64_t)RD::get_singleton()->limit_get(RD::LIMIT_MAX_COMPUTE_WORKGROUP_COUNT_X); for (int pass = 0; pass < passes; pass++) { if (p_update_light_instances) { for (int i = 0; i < mipmaps.size(); i++) { if (i == 0) { RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->voxel_gi_lighting_shader_version_pipelines[pass == 0 ? VOXEL_GI_SHADER_VERSION_COMPUTE_LIGHT : VOXEL_GI_SHADER_VERSION_COMPUTE_SECOND_BOUNCE]); } else if (i == 1) { RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->voxel_gi_lighting_shader_version_pipelines[VOXEL_GI_SHADER_VERSION_COMPUTE_MIPMAP]); } if (pass == 1 || i > 0) { RD::get_singleton()->compute_list_add_barrier(compute_list); //wait til previous step is done } if (pass == 0 || i > 0) { RD::get_singleton()->compute_list_bind_uniform_set(compute_list, mipmaps[i].uniform_set, 0); } else { RD::get_singleton()->compute_list_bind_uniform_set(compute_list, mipmaps[i].second_bounce_uniform_set, 0); } push_constant.cell_offset = mipmaps[i].cell_offset; push_constant.cell_count = mipmaps[i].cell_count; int64_t wg_todo = (mipmaps[i].cell_count - 1) / wg_size + 1; while (wg_todo) { int64_t wg_count = MIN(wg_todo, wg_limit_x); RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(VoxelGIPushConstant)); RD::get_singleton()->compute_list_dispatch(compute_list, wg_count, 1, 1); wg_todo -= wg_count; push_constant.cell_offset += wg_count * wg_size; } } RD::get_singleton()->compute_list_add_barrier(compute_list); //wait til previous step is done } RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->voxel_gi_lighting_shader_version_pipelines[VOXEL_GI_SHADER_VERSION_WRITE_TEXTURE]); for (int i = 0; i < mipmaps.size(); i++) { RD::get_singleton()->compute_list_bind_uniform_set(compute_list, mipmaps[i].write_uniform_set, 0); push_constant.cell_offset = mipmaps[i].cell_offset; push_constant.cell_count = mipmaps[i].cell_count; int64_t wg_todo = (mipmaps[i].cell_count - 1) / wg_size + 1; while (wg_todo) { int64_t wg_count = MIN(wg_todo, wg_limit_x); RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(VoxelGIPushConstant)); RD::get_singleton()->compute_list_dispatch(compute_list, wg_count, 1, 1); wg_todo -= wg_count; push_constant.cell_offset += wg_count * wg_size; } } } RD::get_singleton()->compute_list_end(); } } has_dynamic_object_data = false; //clear until dynamic object data is used again if (p_dynamic_objects.size() && dynamic_maps.size()) { Vector3i octree_size = gi->voxel_gi_get_octree_size(probe); int multiplier = dynamic_maps[0].size / MAX(MAX(octree_size.x, octree_size.y), octree_size.z); Transform3D oversample_scale; oversample_scale.basis.scale(Vector3(multiplier, multiplier, multiplier)); Transform3D to_cell = oversample_scale * gi->voxel_gi_get_to_cell_xform(probe); Transform3D to_world_xform = transform * to_cell.affine_inverse(); Transform3D to_probe_xform = to_world_xform.affine_inverse(); AABB probe_aabb(Vector3(), octree_size); //this could probably be better parallelized in compute.. for (int i = 0; i < (int)p_dynamic_objects.size(); i++) { RenderGeometryInstance *instance = p_dynamic_objects[i]; //transform aabb to voxel_gi AABB aabb = (to_probe_xform * instance->get_transform()).xform(instance->get_aabb()); //this needs to wrap to grid resolution to avoid jitter //also extend margin a bit just in case Vector3i begin = aabb.position - Vector3i(1, 1, 1); Vector3i end = aabb.position + aabb.size + Vector3i(1, 1, 1); for (int j = 0; j < 3; j++) { if ((end[j] - begin[j]) & 1) { end[j]++; //for half extents split, it needs to be even } begin[j] = MAX(begin[j], 0); end[j] = MIN(end[j], octree_size[j] * multiplier); } //aabb = aabb.intersection(probe_aabb); //intersect aabb.position = begin; aabb.size = end - begin; //print_line("aabb: " + aabb); for (int j = 0; j < 6; j++) { //if (j != 0 && j != 3) { // continue; //} static const Vector3 render_z[6] = { Vector3(1, 0, 0), Vector3(0, 1, 0), Vector3(0, 0, 1), Vector3(-1, 0, 0), Vector3(0, -1, 0), Vector3(0, 0, -1), }; static const Vector3 render_up[6] = { Vector3(0, 1, 0), Vector3(0, 0, 1), Vector3(0, 1, 0), Vector3(0, 1, 0), Vector3(0, 0, 1), Vector3(0, 1, 0), }; Vector3 render_dir = render_z[j]; Vector3 up_dir = render_up[j]; Vector3 center = aabb.get_center(); Transform3D xform; xform.set_look_at(center - aabb.size * 0.5 * render_dir, center, up_dir); Vector3 x_dir = xform.basis.get_column(0).abs(); int x_axis = int(Vector3(0, 1, 2).dot(x_dir)); Vector3 y_dir = xform.basis.get_column(1).abs(); int y_axis = int(Vector3(0, 1, 2).dot(y_dir)); Vector3 z_dir = -xform.basis.get_column(2); int z_axis = int(Vector3(0, 1, 2).dot(z_dir.abs())); Rect2i rect(aabb.position[x_axis], aabb.position[y_axis], aabb.size[x_axis], aabb.size[y_axis]); bool x_flip = bool(Vector3(1, 1, 1).dot(xform.basis.get_column(0)) < 0); bool y_flip = bool(Vector3(1, 1, 1).dot(xform.basis.get_column(1)) < 0); bool z_flip = bool(Vector3(1, 1, 1).dot(xform.basis.get_column(2)) > 0); Projection cm; cm.set_orthogonal(-rect.size.width / 2, rect.size.width / 2, -rect.size.height / 2, rect.size.height / 2, 0.0001, aabb.size[z_axis]); if (p_scene_render->cull_argument.size() == 0) { p_scene_render->cull_argument.push_back(nullptr); } p_scene_render->cull_argument[0] = instance; float exposure_normalization = 1.0; if (p_scene_render->is_using_physical_light_units()) { exposure_normalization = gi->voxel_gi_get_baked_exposure_normalization(probe); } p_scene_render->_render_material(to_world_xform * xform, cm, true, p_scene_render->cull_argument, dynamic_maps[0].fb, Rect2i(Vector2i(), rect.size), exposure_normalization); VoxelGIDynamicPushConstant push_constant; memset(&push_constant, 0, sizeof(VoxelGIDynamicPushConstant)); push_constant.limits[0] = octree_size.x; push_constant.limits[1] = octree_size.y; push_constant.limits[2] = octree_size.z; push_constant.light_count = p_light_instances.size(); push_constant.x_dir[0] = x_dir[0]; push_constant.x_dir[1] = x_dir[1]; push_constant.x_dir[2] = x_dir[2]; push_constant.y_dir[0] = y_dir[0]; push_constant.y_dir[1] = y_dir[1]; push_constant.y_dir[2] = y_dir[2]; push_constant.z_dir[0] = z_dir[0]; push_constant.z_dir[1] = z_dir[1]; push_constant.z_dir[2] = z_dir[2]; push_constant.z_base = xform.origin[z_axis]; push_constant.z_sign = (z_flip ? -1.0 : 1.0); push_constant.pos_multiplier = float(1.0) / multiplier; push_constant.dynamic_range = gi->voxel_gi_get_dynamic_range(probe); push_constant.flip_x = x_flip; push_constant.flip_y = y_flip; push_constant.rect_pos[0] = rect.position[0]; push_constant.rect_pos[1] = rect.position[1]; push_constant.rect_size[0] = rect.size[0]; push_constant.rect_size[1] = rect.size[1]; push_constant.prev_rect_ofs[0] = 0; push_constant.prev_rect_ofs[1] = 0; push_constant.prev_rect_size[0] = 0; push_constant.prev_rect_size[1] = 0; push_constant.on_mipmap = false; push_constant.propagation = gi->voxel_gi_get_propagation(probe); push_constant.pad[0] = 0; push_constant.pad[1] = 0; push_constant.pad[2] = 0; //process lighting RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin(); RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->voxel_gi_lighting_shader_version_pipelines[VOXEL_GI_SHADER_VERSION_DYNAMIC_OBJECT_LIGHTING]); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, dynamic_maps[0].uniform_set, 0); RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(VoxelGIDynamicPushConstant)); RD::get_singleton()->compute_list_dispatch(compute_list, (rect.size.x - 1) / 8 + 1, (rect.size.y - 1) / 8 + 1, 1); //print_line("rect: " + itos(i) + ": " + rect); for (int k = 1; k < dynamic_maps.size(); k++) { // enlarge the rect if needed so all pixels fit when downscaled, // this ensures downsampling is smooth and optimal because no pixels are left behind //x if (rect.position.x & 1) { rect.size.x++; push_constant.prev_rect_ofs[0] = 1; //this is used to ensure reading is also optimal } else { push_constant.prev_rect_ofs[0] = 0; } if (rect.size.x & 1) { rect.size.x++; } rect.position.x >>= 1; rect.size.x = MAX(1, rect.size.x >> 1); //y if (rect.position.y & 1) { rect.size.y++; push_constant.prev_rect_ofs[1] = 1; } else { push_constant.prev_rect_ofs[1] = 0; } if (rect.size.y & 1) { rect.size.y++; } rect.position.y >>= 1; rect.size.y = MAX(1, rect.size.y >> 1); //shrink limits to ensure plot does not go outside map if (dynamic_maps[k].mipmap > 0) { for (int l = 0; l < 3; l++) { push_constant.limits[l] = MAX(1, push_constant.limits[l] >> 1); } } //print_line("rect: " + itos(i) + ": " + rect); push_constant.rect_pos[0] = rect.position[0]; push_constant.rect_pos[1] = rect.position[1]; push_constant.prev_rect_size[0] = push_constant.rect_size[0]; push_constant.prev_rect_size[1] = push_constant.rect_size[1]; push_constant.rect_size[0] = rect.size[0]; push_constant.rect_size[1] = rect.size[1]; push_constant.on_mipmap = dynamic_maps[k].mipmap > 0; RD::get_singleton()->compute_list_add_barrier(compute_list); if (dynamic_maps[k].mipmap < 0) { RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->voxel_gi_lighting_shader_version_pipelines[VOXEL_GI_SHADER_VERSION_DYNAMIC_SHRINK_WRITE]); } else if (k < dynamic_maps.size() - 1) { RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->voxel_gi_lighting_shader_version_pipelines[VOXEL_GI_SHADER_VERSION_DYNAMIC_SHRINK_WRITE_PLOT]); } else { RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->voxel_gi_lighting_shader_version_pipelines[VOXEL_GI_SHADER_VERSION_DYNAMIC_SHRINK_PLOT]); } RD::get_singleton()->compute_list_bind_uniform_set(compute_list, dynamic_maps[k].uniform_set, 0); RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(VoxelGIDynamicPushConstant)); RD::get_singleton()->compute_list_dispatch(compute_list, (rect.size.x - 1) / 8 + 1, (rect.size.y - 1) / 8 + 1, 1); } RD::get_singleton()->compute_list_end(); } } has_dynamic_object_data = true; //clear until dynamic object data is used again } last_probe_version = gi->voxel_gi_get_version(probe); } void GI::VoxelGIInstance::free_resources() { if (texture.is_valid()) { RD::get_singleton()->free(texture); RD::get_singleton()->free(write_buffer); texture = RID(); write_buffer = RID(); mipmaps.clear(); } for (int i = 0; i < dynamic_maps.size(); i++) { RD::get_singleton()->free(dynamic_maps[i].texture); RD::get_singleton()->free(dynamic_maps[i].depth); // these only exist on the first level... if (dynamic_maps[i].fb_depth.is_valid()) { RD::get_singleton()->free(dynamic_maps[i].fb_depth); } if (dynamic_maps[i].albedo.is_valid()) { RD::get_singleton()->free(dynamic_maps[i].albedo); } if (dynamic_maps[i].normal.is_valid()) { RD::get_singleton()->free(dynamic_maps[i].normal); } if (dynamic_maps[i].orm.is_valid()) { RD::get_singleton()->free(dynamic_maps[i].orm); } } dynamic_maps.clear(); } void GI::VoxelGIInstance::debug(RD::DrawListID p_draw_list, RID p_framebuffer, const Projection &p_camera_with_transform, bool p_lighting, bool p_emission, float p_alpha) { RendererRD::MaterialStorage *material_storage = RendererRD::MaterialStorage::get_singleton(); if (mipmaps.size() == 0) { return; } Projection cam_transform = (p_camera_with_transform * Projection(transform)) * Projection(gi->voxel_gi_get_to_cell_xform(probe).affine_inverse()); int level = 0; Vector3i octree_size = gi->voxel_gi_get_octree_size(probe); VoxelGIDebugPushConstant push_constant; push_constant.alpha = p_alpha; push_constant.dynamic_range = gi->voxel_gi_get_dynamic_range(probe); push_constant.cell_offset = mipmaps[level].cell_offset; push_constant.level = level; push_constant.bounds[0] = octree_size.x >> level; push_constant.bounds[1] = octree_size.y >> level; push_constant.bounds[2] = octree_size.z >> level; push_constant.pad = 0; for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { push_constant.projection[i * 4 + j] = cam_transform.matrix[i][j]; } } if (gi->voxel_gi_debug_uniform_set.is_valid()) { RD::get_singleton()->free(gi->voxel_gi_debug_uniform_set); } Vector uniforms; { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u.binding = 1; u.append_id(gi->voxel_gi_get_data_buffer(probe)); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 2; u.append_id(texture); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_SAMPLER; u.binding = 3; u.append_id(material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED)); uniforms.push_back(u); } int cell_count; if (!p_emission && p_lighting && has_dynamic_object_data) { cell_count = push_constant.bounds[0] * push_constant.bounds[1] * push_constant.bounds[2]; } else { cell_count = mipmaps[level].cell_count; } gi->voxel_gi_debug_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->voxel_gi_debug_shader_version_shaders[0], 0); int voxel_gi_debug_pipeline = VOXEL_GI_DEBUG_COLOR; if (p_emission) { voxel_gi_debug_pipeline = VOXEL_GI_DEBUG_EMISSION; } else if (p_lighting) { voxel_gi_debug_pipeline = has_dynamic_object_data ? VOXEL_GI_DEBUG_LIGHT_FULL : VOXEL_GI_DEBUG_LIGHT; } RD::get_singleton()->draw_list_bind_render_pipeline( p_draw_list, gi->voxel_gi_debug_shader_version_pipelines[voxel_gi_debug_pipeline].get_render_pipeline(RD::INVALID_ID, RD::get_singleton()->framebuffer_get_format(p_framebuffer))); RD::get_singleton()->draw_list_bind_uniform_set(p_draw_list, gi->voxel_gi_debug_uniform_set, 0); RD::get_singleton()->draw_list_set_push_constant(p_draw_list, &push_constant, sizeof(VoxelGIDebugPushConstant)); RD::get_singleton()->draw_list_draw(p_draw_list, false, cell_count, 36); } //////////////////////////////////////////////////////////////////////////////// // GI GI::GI() { singleton = this; sdfgi_ray_count = RS::EnvironmentSDFGIRayCount(CLAMP(int32_t(GLOBAL_GET("rendering/global_illumination/sdfgi/probe_ray_count")), 0, int32_t(RS::ENV_SDFGI_RAY_COUNT_MAX - 1))); sdfgi_frames_to_converge = RS::EnvironmentSDFGIFramesToConverge(CLAMP(int32_t(GLOBAL_GET("rendering/global_illumination/sdfgi/frames_to_converge")), 0, int32_t(RS::ENV_SDFGI_CONVERGE_MAX - 1))); sdfgi_frames_to_update_light = RS::EnvironmentSDFGIFramesToUpdateLight(CLAMP(int32_t(GLOBAL_GET("rendering/global_illumination/sdfgi/frames_to_update_lights")), 0, int32_t(RS::ENV_SDFGI_UPDATE_LIGHT_MAX - 1))); } GI::~GI() { singleton = nullptr; } void GI::init(SkyRD *p_sky) { RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton(); RendererRD::MaterialStorage *material_storage = RendererRD::MaterialStorage::get_singleton(); /* GI */ { //kinda complicated to compute the amount of slots, we try to use as many as we can voxel_gi_lights = memnew_arr(VoxelGILight, voxel_gi_max_lights); voxel_gi_lights_uniform = RD::get_singleton()->uniform_buffer_create(voxel_gi_max_lights * sizeof(VoxelGILight)); voxel_gi_quality = RS::VoxelGIQuality(CLAMP(int(GLOBAL_GET("rendering/global_illumination/voxel_gi/quality")), 0, 1)); String defines = "\n#define MAX_LIGHTS " + itos(voxel_gi_max_lights) + "\n"; Vector versions; versions.push_back("\n#define MODE_COMPUTE_LIGHT\n"); versions.push_back("\n#define MODE_SECOND_BOUNCE\n"); versions.push_back("\n#define MODE_UPDATE_MIPMAPS\n"); versions.push_back("\n#define MODE_WRITE_TEXTURE\n"); versions.push_back("\n#define MODE_DYNAMIC\n#define MODE_DYNAMIC_LIGHTING\n"); versions.push_back("\n#define MODE_DYNAMIC\n#define MODE_DYNAMIC_SHRINK\n#define MODE_DYNAMIC_SHRINK_WRITE\n"); versions.push_back("\n#define MODE_DYNAMIC\n#define MODE_DYNAMIC_SHRINK\n#define MODE_DYNAMIC_SHRINK_PLOT\n"); versions.push_back("\n#define MODE_DYNAMIC\n#define MODE_DYNAMIC_SHRINK\n#define MODE_DYNAMIC_SHRINK_PLOT\n#define MODE_DYNAMIC_SHRINK_WRITE\n"); voxel_gi_shader.initialize(versions, defines); voxel_gi_lighting_shader_version = voxel_gi_shader.version_create(); for (int i = 0; i < VOXEL_GI_SHADER_VERSION_MAX; i++) { voxel_gi_lighting_shader_version_shaders[i] = voxel_gi_shader.version_get_shader(voxel_gi_lighting_shader_version, i); voxel_gi_lighting_shader_version_pipelines[i] = RD::get_singleton()->compute_pipeline_create(voxel_gi_lighting_shader_version_shaders[i]); } } { String defines; Vector versions; versions.push_back("\n#define MODE_DEBUG_COLOR\n"); versions.push_back("\n#define MODE_DEBUG_LIGHT\n"); versions.push_back("\n#define MODE_DEBUG_EMISSION\n"); versions.push_back("\n#define MODE_DEBUG_LIGHT\n#define MODE_DEBUG_LIGHT_FULL\n"); voxel_gi_debug_shader.initialize(versions, defines); voxel_gi_debug_shader_version = voxel_gi_debug_shader.version_create(); for (int i = 0; i < VOXEL_GI_DEBUG_MAX; i++) { voxel_gi_debug_shader_version_shaders[i] = voxel_gi_debug_shader.version_get_shader(voxel_gi_debug_shader_version, i); RD::PipelineRasterizationState rs; rs.cull_mode = RD::POLYGON_CULL_FRONT; RD::PipelineDepthStencilState ds; ds.enable_depth_test = true; ds.enable_depth_write = true; ds.depth_compare_operator = RD::COMPARE_OP_LESS_OR_EQUAL; voxel_gi_debug_shader_version_pipelines[i].setup(voxel_gi_debug_shader_version_shaders[i], RD::RENDER_PRIMITIVE_TRIANGLES, rs, RD::PipelineMultisampleState(), ds, RD::PipelineColorBlendState::create_disabled(), 0); } } /* SDGFI */ { Vector preprocess_modes; preprocess_modes.push_back("\n#define MODE_SCROLL\n"); preprocess_modes.push_back("\n#define MODE_SCROLL_OCCLUSION\n"); preprocess_modes.push_back("\n#define MODE_INITIALIZE_JUMP_FLOOD\n"); preprocess_modes.push_back("\n#define MODE_INITIALIZE_JUMP_FLOOD_HALF\n"); preprocess_modes.push_back("\n#define MODE_JUMPFLOOD\n"); preprocess_modes.push_back("\n#define MODE_JUMPFLOOD_OPTIMIZED\n"); preprocess_modes.push_back("\n#define MODE_UPSCALE_JUMP_FLOOD\n"); preprocess_modes.push_back("\n#define MODE_OCCLUSION\n"); preprocess_modes.push_back("\n#define MODE_STORE\n"); String defines = "\n#define OCCLUSION_SIZE " + itos(SDFGI::CASCADE_SIZE / SDFGI::PROBE_DIVISOR) + "\n"; sdfgi_shader.preprocess.initialize(preprocess_modes, defines); sdfgi_shader.preprocess_shader = sdfgi_shader.preprocess.version_create(); for (int i = 0; i < SDFGIShader::PRE_PROCESS_MAX; i++) { sdfgi_shader.preprocess_pipeline[i] = RD::get_singleton()->compute_pipeline_create(sdfgi_shader.preprocess.version_get_shader(sdfgi_shader.preprocess_shader, i)); } } { //calculate tables String defines = "\n#define OCT_SIZE " + itos(SDFGI::LIGHTPROBE_OCT_SIZE) + "\n"; Vector direct_light_modes; direct_light_modes.push_back("\n#define MODE_PROCESS_STATIC\n"); direct_light_modes.push_back("\n#define MODE_PROCESS_DYNAMIC\n"); sdfgi_shader.direct_light.initialize(direct_light_modes, defines); sdfgi_shader.direct_light_shader = sdfgi_shader.direct_light.version_create(); for (int i = 0; i < SDFGIShader::DIRECT_LIGHT_MODE_MAX; i++) { sdfgi_shader.direct_light_pipeline[i] = RD::get_singleton()->compute_pipeline_create(sdfgi_shader.direct_light.version_get_shader(sdfgi_shader.direct_light_shader, i)); } } { //calculate tables String defines = "\n#define OCT_SIZE " + itos(SDFGI::LIGHTPROBE_OCT_SIZE) + "\n"; defines += "\n#define SH_SIZE " + itos(SDFGI::SH_SIZE) + "\n"; if (p_sky->sky_use_cubemap_array) { defines += "\n#define USE_CUBEMAP_ARRAY\n"; } Vector integrate_modes; integrate_modes.push_back("\n#define MODE_PROCESS\n"); integrate_modes.push_back("\n#define MODE_STORE\n"); integrate_modes.push_back("\n#define MODE_SCROLL\n"); integrate_modes.push_back("\n#define MODE_SCROLL_STORE\n"); sdfgi_shader.integrate.initialize(integrate_modes, defines); sdfgi_shader.integrate_shader = sdfgi_shader.integrate.version_create(); for (int i = 0; i < SDFGIShader::INTEGRATE_MODE_MAX; i++) { sdfgi_shader.integrate_pipeline[i] = RD::get_singleton()->compute_pipeline_create(sdfgi_shader.integrate.version_get_shader(sdfgi_shader.integrate_shader, i)); } { Vector uniforms; { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 0; if (p_sky->sky_use_cubemap_array) { u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_CUBEMAP_ARRAY_WHITE)); } else { u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_CUBEMAP_WHITE)); } uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_SAMPLER; u.binding = 1; u.append_id(material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED)); uniforms.push_back(u); } sdfgi_shader.integrate_default_sky_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.integrate.version_get_shader(sdfgi_shader.integrate_shader, 0), 1); } } //GK { //calculate tables String defines = "\n#define SDFGI_OCT_SIZE " + itos(SDFGI::LIGHTPROBE_OCT_SIZE) + "\n"; Vector gi_modes; gi_modes.push_back("\n#define USE_VOXEL_GI_INSTANCES\n"); // MODE_VOXEL_GI gi_modes.push_back("\n#define USE_SDFGI\n"); // MODE_SDFGI gi_modes.push_back("\n#define USE_SDFGI\n\n#define USE_VOXEL_GI_INSTANCES\n"); // MODE_COMBINED shader.initialize(gi_modes, defines); shader_version = shader.version_create(); Vector specialization_constants; { RD::PipelineSpecializationConstant sc; sc.type = RD::PIPELINE_SPECIALIZATION_CONSTANT_TYPE_BOOL; sc.constant_id = 0; // SHADER_SPECIALIZATION_HALF_RES sc.bool_value = false; specialization_constants.push_back(sc); sc.type = RD::PIPELINE_SPECIALIZATION_CONSTANT_TYPE_BOOL; sc.constant_id = 1; // SHADER_SPECIALIZATION_USE_FULL_PROJECTION_MATRIX sc.bool_value = false; specialization_constants.push_back(sc); sc.type = RD::PIPELINE_SPECIALIZATION_CONSTANT_TYPE_BOOL; sc.constant_id = 2; // SHADER_SPECIALIZATION_USE_VRS sc.bool_value = false; specialization_constants.push_back(sc); } for (int v = 0; v < SHADER_SPECIALIZATION_VARIATIONS; v++) { specialization_constants.ptrw()[0].bool_value = (v & SHADER_SPECIALIZATION_HALF_RES) ? true : false; specialization_constants.ptrw()[1].bool_value = (v & SHADER_SPECIALIZATION_USE_FULL_PROJECTION_MATRIX) ? true : false; specialization_constants.ptrw()[2].bool_value = (v & SHADER_SPECIALIZATION_USE_VRS) ? true : false; for (int i = 0; i < MODE_MAX; i++) { pipelines[v][i] = RD::get_singleton()->compute_pipeline_create(shader.version_get_shader(shader_version, i), specialization_constants); } } sdfgi_ubo = RD::get_singleton()->uniform_buffer_create(sizeof(SDFGIData)); } { String defines = "\n#define OCT_SIZE " + itos(SDFGI::LIGHTPROBE_OCT_SIZE) + "\n"; Vector debug_modes; debug_modes.push_back(""); sdfgi_shader.debug.initialize(debug_modes, defines); sdfgi_shader.debug_shader = sdfgi_shader.debug.version_create(); sdfgi_shader.debug_shader_version = sdfgi_shader.debug.version_get_shader(sdfgi_shader.debug_shader, 0); sdfgi_shader.debug_pipeline = RD::get_singleton()->compute_pipeline_create(sdfgi_shader.debug_shader_version); } { String defines = "\n#define OCT_SIZE " + itos(SDFGI::LIGHTPROBE_OCT_SIZE) + "\n"; Vector versions; versions.push_back("\n#define MODE_PROBES\n"); versions.push_back("\n#define MODE_PROBES\n#define USE_MULTIVIEW\n"); versions.push_back("\n#define MODE_VISIBILITY\n"); versions.push_back("\n#define MODE_VISIBILITY\n#define USE_MULTIVIEW\n"); sdfgi_shader.debug_probes.initialize(versions, defines); // TODO disable multiview versions if turned off sdfgi_shader.debug_probes_shader = sdfgi_shader.debug_probes.version_create(); { RD::PipelineRasterizationState rs; rs.cull_mode = RD::POLYGON_CULL_DISABLED; RD::PipelineDepthStencilState ds; ds.enable_depth_test = true; ds.enable_depth_write = true; ds.depth_compare_operator = RD::COMPARE_OP_LESS_OR_EQUAL; for (int i = 0; i < SDFGIShader::PROBE_DEBUG_MAX; i++) { // TODO check if version is enabled RID debug_probes_shader_version = sdfgi_shader.debug_probes.version_get_shader(sdfgi_shader.debug_probes_shader, i); sdfgi_shader.debug_probes_pipeline[i].setup(debug_probes_shader_version, RD::RENDER_PRIMITIVE_TRIANGLE_STRIPS, rs, RD::PipelineMultisampleState(), ds, RD::PipelineColorBlendState::create_disabled(), 0); } } } default_voxel_gi_buffer = RD::get_singleton()->uniform_buffer_create(sizeof(VoxelGIData) * MAX_VOXEL_GI_INSTANCES); half_resolution = GLOBAL_GET("rendering/global_illumination/gi/use_half_resolution"); } void GI::free() { RD::get_singleton()->free(default_voxel_gi_buffer); RD::get_singleton()->free(voxel_gi_lights_uniform); RD::get_singleton()->free(sdfgi_ubo); voxel_gi_debug_shader.version_free(voxel_gi_debug_shader_version); voxel_gi_shader.version_free(voxel_gi_lighting_shader_version); shader.version_free(shader_version); sdfgi_shader.debug_probes.version_free(sdfgi_shader.debug_probes_shader); sdfgi_shader.debug.version_free(sdfgi_shader.debug_shader); sdfgi_shader.direct_light.version_free(sdfgi_shader.direct_light_shader); sdfgi_shader.integrate.version_free(sdfgi_shader.integrate_shader); sdfgi_shader.preprocess.version_free(sdfgi_shader.preprocess_shader); if (voxel_gi_lights) { memdelete_arr(voxel_gi_lights); } } Ref GI::create_sdfgi(RID p_env, const Vector3 &p_world_position, uint32_t p_requested_history_size) { Ref sdfgi; sdfgi.instantiate(); sdfgi->create(p_env, p_world_position, p_requested_history_size, this); return sdfgi; } void GI::setup_voxel_gi_instances(RenderDataRD *p_render_data, Ref p_render_buffers, const Transform3D &p_transform, const PagedArray &p_voxel_gi_instances, uint32_t &r_voxel_gi_instances_used, RendererSceneRenderRD *p_scene_render) { ERR_FAIL_COND(p_render_buffers.is_null()); RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton(); ERR_FAIL_NULL(texture_storage); r_voxel_gi_instances_used = 0; Ref rbgi = p_render_buffers->get_custom_data(RB_SCOPE_GI); ERR_FAIL_COND(rbgi.is_null()); RID voxel_gi_buffer = rbgi->get_voxel_gi_buffer(); VoxelGIData voxel_gi_data[MAX_VOXEL_GI_INSTANCES]; bool voxel_gi_instances_changed = false; Transform3D to_camera; to_camera.origin = p_transform.origin; //only translation, make local for (int i = 0; i < MAX_VOXEL_GI_INSTANCES; i++) { RID texture; if (i < (int)p_voxel_gi_instances.size()) { VoxelGIInstance *gipi = voxel_gi_instance_owner.get_or_null(p_voxel_gi_instances[i]); if (gipi) { texture = gipi->texture; VoxelGIData &gipd = voxel_gi_data[i]; RID base_probe = gipi->probe; Transform3D to_cell = voxel_gi_get_to_cell_xform(gipi->probe) * gipi->transform.affine_inverse() * to_camera; gipd.xform[0] = to_cell.basis.rows[0][0]; gipd.xform[1] = to_cell.basis.rows[1][0]; gipd.xform[2] = to_cell.basis.rows[2][0]; gipd.xform[3] = 0; gipd.xform[4] = to_cell.basis.rows[0][1]; gipd.xform[5] = to_cell.basis.rows[1][1]; gipd.xform[6] = to_cell.basis.rows[2][1]; gipd.xform[7] = 0; gipd.xform[8] = to_cell.basis.rows[0][2]; gipd.xform[9] = to_cell.basis.rows[1][2]; gipd.xform[10] = to_cell.basis.rows[2][2]; gipd.xform[11] = 0; gipd.xform[12] = to_cell.origin.x; gipd.xform[13] = to_cell.origin.y; gipd.xform[14] = to_cell.origin.z; gipd.xform[15] = 1; Vector3 bounds = voxel_gi_get_octree_size(base_probe); gipd.bounds[0] = bounds.x; gipd.bounds[1] = bounds.y; gipd.bounds[2] = bounds.z; gipd.dynamic_range = voxel_gi_get_dynamic_range(base_probe) * voxel_gi_get_energy(base_probe); gipd.bias = voxel_gi_get_bias(base_probe); gipd.normal_bias = voxel_gi_get_normal_bias(base_probe); gipd.blend_ambient = !voxel_gi_is_interior(base_probe); gipd.mipmaps = gipi->mipmaps.size(); gipd.exposure_normalization = 1.0; if (p_render_data->camera_attributes.is_valid()) { float exposure_normalization = RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_render_data->camera_attributes); gipd.exposure_normalization = exposure_normalization / voxel_gi_get_baked_exposure_normalization(base_probe); } } r_voxel_gi_instances_used++; } if (texture == RID()) { texture = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE); } if (texture != rbgi->voxel_gi_textures[i]) { voxel_gi_instances_changed = true; rbgi->voxel_gi_textures[i] = texture; } } if (voxel_gi_instances_changed) { for (uint32_t v = 0; v < RendererSceneRender::MAX_RENDER_VIEWS; v++) { if (RD::get_singleton()->uniform_set_is_valid(rbgi->uniform_set[v])) { RD::get_singleton()->free(rbgi->uniform_set[v]); } rbgi->uniform_set[v] = RID(); } if (p_render_buffers->has_custom_data(RB_SCOPE_FOG)) { Ref fog = p_render_buffers->get_custom_data(RB_SCOPE_FOG); if (RD::get_singleton()->uniform_set_is_valid(fog->fog_uniform_set)) { RD::get_singleton()->free(fog->fog_uniform_set); RD::get_singleton()->free(fog->process_uniform_set); RD::get_singleton()->free(fog->process_uniform_set2); } fog->fog_uniform_set = RID(); fog->process_uniform_set = RID(); fog->process_uniform_set2 = RID(); } } if (p_voxel_gi_instances.size() > 0) { RD::get_singleton()->draw_command_begin_label("VoxelGIs Setup"); RD::get_singleton()->buffer_update(voxel_gi_buffer, 0, sizeof(VoxelGIData) * MIN((uint64_t)MAX_VOXEL_GI_INSTANCES, p_voxel_gi_instances.size()), voxel_gi_data, RD::BARRIER_MASK_COMPUTE); RD::get_singleton()->draw_command_end_label(); } } RID GI::RenderBuffersGI::get_voxel_gi_buffer() { if (voxel_gi_buffer.is_null()) { voxel_gi_buffer = RD::get_singleton()->uniform_buffer_create(sizeof(GI::VoxelGIData) * GI::MAX_VOXEL_GI_INSTANCES); } return voxel_gi_buffer; } void GI::RenderBuffersGI::free_data() { for (uint32_t v = 0; v < RendererSceneRender::MAX_RENDER_VIEWS; v++) { if (RD::get_singleton()->uniform_set_is_valid(uniform_set[v])) { RD::get_singleton()->free(uniform_set[v]); } uniform_set[v] = RID(); } if (scene_data_ubo.is_valid()) { RD::get_singleton()->free(scene_data_ubo); scene_data_ubo = RID(); } if (voxel_gi_buffer.is_valid()) { RD::get_singleton()->free(voxel_gi_buffer); voxel_gi_buffer = RID(); } } void GI::process_gi(Ref p_render_buffers, const RID *p_normal_roughness_slices, RID p_voxel_gi_buffer, RID p_environment, uint32_t p_view_count, const Projection *p_projections, const Vector3 *p_eye_offsets, const Transform3D &p_cam_transform, const PagedArray &p_voxel_gi_instances) { RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton(); RendererRD::MaterialStorage *material_storage = RendererRD::MaterialStorage::get_singleton(); ERR_FAIL_COND_MSG(p_view_count > 2, "Maximum of 2 views supported for Processing GI."); RD::get_singleton()->draw_command_begin_label("GI Render"); ERR_FAIL_COND(p_render_buffers.is_null()); Ref rbgi = p_render_buffers->get_custom_data(RB_SCOPE_GI); ERR_FAIL_COND(rbgi.is_null()); Size2i internal_size = p_render_buffers->get_internal_size(); if (rbgi->using_half_size_gi != half_resolution) { p_render_buffers->clear_context(RB_SCOPE_GI); } if (!p_render_buffers->has_texture(RB_SCOPE_GI, RB_TEX_AMBIENT)) { Size2i size = internal_size; uint32_t usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT; if (half_resolution) { size.x >>= 1; size.y >>= 1; } p_render_buffers->create_texture(RB_SCOPE_GI, RB_TEX_AMBIENT, RD::DATA_FORMAT_R16G16B16A16_SFLOAT, usage_bits, RD::TEXTURE_SAMPLES_1, size); p_render_buffers->create_texture(RB_SCOPE_GI, RB_TEX_REFLECTION, RD::DATA_FORMAT_R16G16B16A16_SFLOAT, usage_bits, RD::TEXTURE_SAMPLES_1, size); rbgi->using_half_size_gi = half_resolution; } // Setup our scene data { SceneData scene_data; if (rbgi->scene_data_ubo.is_null()) { rbgi->scene_data_ubo = RD::get_singleton()->uniform_buffer_create(sizeof(SceneData)); } for (uint32_t v = 0; v < p_view_count; v++) { RendererRD::MaterialStorage::store_camera(p_projections[v].inverse(), scene_data.inv_projection[v]); scene_data.eye_offset[v][0] = p_eye_offsets[v].x; scene_data.eye_offset[v][1] = p_eye_offsets[v].y; scene_data.eye_offset[v][2] = p_eye_offsets[v].z; scene_data.eye_offset[v][3] = 0.0; } // Note that we will be ignoring the origin of this transform. RendererRD::MaterialStorage::store_transform(p_cam_transform, scene_data.cam_transform); scene_data.screen_size[0] = internal_size.x; scene_data.screen_size[1] = internal_size.y; RD::get_singleton()->buffer_update(rbgi->scene_data_ubo, 0, sizeof(SceneData), &scene_data, RD::BARRIER_MASK_COMPUTE); } // Now compute the contents of our buffers. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin(true); // Render each eye separately. // We need to look into whether we can make our compute shader use Multiview but not sure that works or makes a difference.. // setup our push constant PushConstant push_constant; push_constant.max_voxel_gi_instances = MIN((uint64_t)MAX_VOXEL_GI_INSTANCES, p_voxel_gi_instances.size()); push_constant.high_quality_vct = voxel_gi_quality == RS::VOXEL_GI_QUALITY_HIGH; // these should be the same for all views push_constant.orthogonal = p_projections[0].is_orthogonal(); push_constant.z_near = p_projections[0].get_z_near(); push_constant.z_far = p_projections[0].get_z_far(); // these are only used if we have 1 view, else we use the projections in our scene data push_constant.proj_info[0] = -2.0f / (internal_size.x * p_projections[0].matrix[0][0]); push_constant.proj_info[1] = -2.0f / (internal_size.y * p_projections[0].matrix[1][1]); push_constant.proj_info[2] = (1.0f - p_projections[0].matrix[0][2]) / p_projections[0].matrix[0][0]; push_constant.proj_info[3] = (1.0f + p_projections[0].matrix[1][2]) / p_projections[0].matrix[1][1]; bool use_sdfgi = p_render_buffers->has_custom_data(RB_SCOPE_SDFGI); bool use_voxel_gi_instances = push_constant.max_voxel_gi_instances > 0; Ref sdfgi; if (use_sdfgi) { sdfgi = p_render_buffers->get_custom_data(RB_SCOPE_SDFGI); } uint32_t pipeline_specialization = 0; if (rbgi->using_half_size_gi) { pipeline_specialization |= SHADER_SPECIALIZATION_HALF_RES; } if (p_view_count > 1) { pipeline_specialization |= SHADER_SPECIALIZATION_USE_FULL_PROJECTION_MATRIX; } bool has_vrs_texture = p_render_buffers->has_texture(RB_SCOPE_VRS, RB_TEXTURE); if (has_vrs_texture) { pipeline_specialization |= SHADER_SPECIALIZATION_USE_VRS; } Mode mode = (use_sdfgi && use_voxel_gi_instances) ? MODE_COMBINED : (use_sdfgi ? MODE_SDFGI : MODE_VOXEL_GI); for (uint32_t v = 0; v < p_view_count; v++) { push_constant.view_index = v; // setup our uniform set if (rbgi->uniform_set[v].is_null() || !RD::get_singleton()->uniform_set_is_valid(rbgi->uniform_set[v])) { Vector uniforms; { RD::Uniform u; u.binding = 1; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) { if (use_sdfgi && j < sdfgi->cascades.size()) { u.append_id(sdfgi->cascades[j].sdf_tex); } else { u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE)); } } uniforms.push_back(u); } { RD::Uniform u; u.binding = 2; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) { if (use_sdfgi && j < sdfgi->cascades.size()) { u.append_id(sdfgi->cascades[j].light_tex); } else { u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE)); } } uniforms.push_back(u); } { RD::Uniform u; u.binding = 3; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) { if (use_sdfgi && j < sdfgi->cascades.size()) { u.append_id(sdfgi->cascades[j].light_aniso_0_tex); } else { u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE)); } } uniforms.push_back(u); } { RD::Uniform u; u.binding = 4; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) { if (use_sdfgi && j < sdfgi->cascades.size()) { u.append_id(sdfgi->cascades[j].light_aniso_1_tex); } else { u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE)); } } uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 5; if (use_sdfgi) { u.append_id(sdfgi->occlusion_texture); } else { u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE)); } uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_SAMPLER; u.binding = 6; u.append_id(material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED)); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_SAMPLER; u.binding = 7; u.append_id(material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED)); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_IMAGE; u.binding = 9; u.append_id(p_render_buffers->get_texture_slice(RB_SCOPE_GI, RB_TEX_AMBIENT, v, 0)); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_IMAGE; u.binding = 10; u.append_id(p_render_buffers->get_texture_slice(RB_SCOPE_GI, RB_TEX_REFLECTION, v, 0)); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 11; if (use_sdfgi) { u.append_id(sdfgi->lightprobe_texture); } else { u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_2D_ARRAY_WHITE)); } uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 12; u.append_id(p_render_buffers->get_depth_texture(v)); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 13; u.append_id(p_normal_roughness_slices[v]); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 14; RID buffer = p_voxel_gi_buffer.is_valid() ? p_voxel_gi_buffer : texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_BLACK); u.append_id(buffer); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER; u.binding = 15; u.append_id(sdfgi_ubo); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER; u.binding = 16; u.append_id(rbgi->get_voxel_gi_buffer()); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 17; for (int i = 0; i < MAX_VOXEL_GI_INSTANCES; i++) { u.append_id(rbgi->voxel_gi_textures[i]); } uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER; u.binding = 18; u.append_id(rbgi->scene_data_ubo); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_IMAGE; u.binding = 19; RID buffer = has_vrs_texture ? p_render_buffers->get_texture_slice(RB_SCOPE_VRS, RB_TEXTURE, v, 0) : texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_VRS); u.append_id(buffer); uniforms.push_back(u); } rbgi->uniform_set[v] = RD::get_singleton()->uniform_set_create(uniforms, shader.version_get_shader(shader_version, 0), 0); } RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, pipelines[pipeline_specialization][mode]); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rbgi->uniform_set[v], 0); RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(PushConstant)); if (rbgi->using_half_size_gi) { RD::get_singleton()->compute_list_dispatch_threads(compute_list, internal_size.x >> 1, internal_size.y >> 1, 1); } else { RD::get_singleton()->compute_list_dispatch_threads(compute_list, internal_size.x, internal_size.y, 1); } } //do barrier later to allow oeverlap //RD::get_singleton()->compute_list_end(RD::BARRIER_MASK_NO_BARRIER); //no barriers, let other compute, raster and transfer happen at the same time RD::get_singleton()->draw_command_end_label(); } RID GI::voxel_gi_instance_create(RID p_base) { VoxelGIInstance voxel_gi; voxel_gi.gi = this; voxel_gi.probe = p_base; RID rid = voxel_gi_instance_owner.make_rid(voxel_gi); return rid; } void GI::voxel_gi_instance_free(RID p_rid) { GI::VoxelGIInstance *voxel_gi = voxel_gi_instance_owner.get_or_null(p_rid); voxel_gi->free_resources(); voxel_gi_instance_owner.free(p_rid); } void GI::voxel_gi_instance_set_transform_to_data(RID p_probe, const Transform3D &p_xform) { VoxelGIInstance *voxel_gi = voxel_gi_instance_owner.get_or_null(p_probe); ERR_FAIL_COND(!voxel_gi); voxel_gi->transform = p_xform; } bool GI::voxel_gi_needs_update(RID p_probe) const { VoxelGIInstance *voxel_gi = voxel_gi_instance_owner.get_or_null(p_probe); ERR_FAIL_COND_V(!voxel_gi, false); return voxel_gi->last_probe_version != voxel_gi_get_version(voxel_gi->probe); } void GI::voxel_gi_update(RID p_probe, bool p_update_light_instances, const Vector &p_light_instances, const PagedArray &p_dynamic_objects, RendererSceneRenderRD *p_scene_render) { VoxelGIInstance *voxel_gi = voxel_gi_instance_owner.get_or_null(p_probe); ERR_FAIL_COND(!voxel_gi); voxel_gi->update(p_update_light_instances, p_light_instances, p_dynamic_objects, p_scene_render); } void GI::debug_voxel_gi(RID p_voxel_gi, RD::DrawListID p_draw_list, RID p_framebuffer, const Projection &p_camera_with_transform, bool p_lighting, bool p_emission, float p_alpha) { VoxelGIInstance *voxel_gi = voxel_gi_instance_owner.get_or_null(p_voxel_gi); ERR_FAIL_COND(!voxel_gi); voxel_gi->debug(p_draw_list, p_framebuffer, p_camera_with_transform, p_lighting, p_emission, p_alpha); }