/**************************************************************************/ /* cluster_builder_rd.h */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #ifndef CLUSTER_BUILDER_RD_H #define CLUSTER_BUILDER_RD_H #include "servers/rendering/renderer_rd/shaders/cluster_debug.glsl.gen.h" #include "servers/rendering/renderer_rd/shaders/cluster_render.glsl.gen.h" #include "servers/rendering/renderer_rd/shaders/cluster_store.glsl.gen.h" #include "servers/rendering/renderer_rd/storage_rd/material_storage.h" class ClusterBuilderSharedDataRD { friend class ClusterBuilderRD; RID sphere_vertex_buffer; RID sphere_vertex_array; RID sphere_index_buffer; RID sphere_index_array; float sphere_overfit = 0.0; // Because an icosphere is not a perfect sphere, we need to enlarge it to cover the sphere area. RID cone_vertex_buffer; RID cone_vertex_array; RID cone_index_buffer; RID cone_index_array; float cone_overfit = 0.0; // Because an cone mesh is not a perfect cone, we need to enlarge it to cover the actual cone area. RID box_vertex_buffer; RID box_vertex_array; RID box_index_buffer; RID box_index_array; enum Divisor { DIVISOR_1, DIVISOR_2, DIVISOR_4, }; struct ClusterRender { struct PushConstant { uint32_t base_index; uint32_t pad0; uint32_t pad1; uint32_t pad2; }; ClusterRenderShaderRD cluster_render_shader; RID shader_version; RID shader; enum PipelineVersion { PIPELINE_NORMAL, PIPELINE_MSAA, PIPELINE_MAX }; RID shader_pipelines[PIPELINE_MAX]; } cluster_render; struct ClusterStore { struct PushConstant { uint32_t cluster_render_data_size; // how much data for a single cluster takes uint32_t max_render_element_count_div_32; // divided by 32 uint32_t cluster_screen_size[2]; uint32_t render_element_count_div_32; // divided by 32 uint32_t max_cluster_element_count_div_32; // divided by 32 uint32_t pad1; uint32_t pad2; }; ClusterStoreShaderRD cluster_store_shader; RID shader_version; RID shader; RID shader_pipeline; } cluster_store; struct ClusterDebug { struct PushConstant { uint32_t screen_size[2]; uint32_t cluster_screen_size[2]; uint32_t cluster_shift; uint32_t cluster_type; float z_near; float z_far; uint32_t orthogonal; uint32_t max_cluster_element_count_div_32; uint32_t pad1; uint32_t pad2; }; ClusterDebugShaderRD cluster_debug_shader; RID shader_version; RID shader; RID shader_pipeline; } cluster_debug; public: ClusterBuilderSharedDataRD(); ~ClusterBuilderSharedDataRD(); }; class ClusterBuilderRD { public: static constexpr float WIDE_SPOT_ANGLE_THRESHOLD_DEG = 60.0f; enum LightType { LIGHT_TYPE_OMNI, LIGHT_TYPE_SPOT }; enum BoxType { BOX_TYPE_REFLECTION_PROBE, BOX_TYPE_DECAL, }; enum ElementType { ELEMENT_TYPE_OMNI_LIGHT, ELEMENT_TYPE_SPOT_LIGHT, ELEMENT_TYPE_DECAL, ELEMENT_TYPE_REFLECTION_PROBE, ELEMENT_TYPE_MAX, }; private: ClusterBuilderSharedDataRD *shared = nullptr; struct RenderElementData { uint32_t type; // 0-4 uint32_t touches_near; uint32_t touches_far; uint32_t original_index; float transform_inv[12]; // Transposed transform for less space. float scale[3]; uint32_t has_wide_spot_angle; }; // Keep aligned to 32 bytes. uint32_t cluster_count_by_type[ELEMENT_TYPE_MAX] = {}; uint32_t max_elements_by_type = 0; RenderElementData *render_elements = nullptr; uint32_t render_element_count = 0; uint32_t render_element_max = 0; Transform3D view_xform; Projection adjusted_projection; Projection projection; float z_far = 0; float z_near = 0; bool camera_orthogonal = false; enum Divisor { DIVISOR_1, DIVISOR_2, DIVISOR_4, }; uint32_t cluster_size = 32; bool use_msaa = true; Divisor divisor = DIVISOR_4; Size2i screen_size; Size2i cluster_screen_size; RID framebuffer; RID cluster_render_buffer; // Used for creating. RID cluster_buffer; // Used for rendering. RID element_buffer; // Used for storing, to hint element touches far plane or near plane. uint32_t cluster_render_buffer_size = 0; uint32_t cluster_buffer_size = 0; RID cluster_render_uniform_set; RID cluster_store_uniform_set; // Persistent data. void _clear(); struct StateUniform { float projection[16]; float inv_z_far; uint32_t screen_to_clusters_shift; // Shift to obtain coordinates in block indices. uint32_t cluster_screen_width; uint32_t cluster_data_size; // How much data is needed for a single cluster. uint32_t cluster_depth_offset; uint32_t pad0; uint32_t pad1; uint32_t pad2; }; RID state_uniform; RID debug_uniform_set; public: void setup(Size2i p_screen_size, uint32_t p_max_elements, RID p_depth_buffer, RID p_depth_buffer_sampler, RID p_color_buffer); void begin(const Transform3D &p_view_transform, const Projection &p_cam_projection, bool p_flip_y); _FORCE_INLINE_ void add_light(LightType p_type, const Transform3D &p_transform, float p_radius, float p_spot_aperture) { if (p_type == LIGHT_TYPE_OMNI && cluster_count_by_type[ELEMENT_TYPE_OMNI_LIGHT] == max_elements_by_type) { return; // Max number elements reached. } if (p_type == LIGHT_TYPE_SPOT && cluster_count_by_type[ELEMENT_TYPE_SPOT_LIGHT] == max_elements_by_type) { return; // Max number elements reached. } RenderElementData &e = render_elements[render_element_count]; Transform3D xform = view_xform * p_transform; float radius = xform.basis.get_uniform_scale(); if (radius < 0.98 || radius > 1.02) { xform.basis.orthonormalize(); } radius *= p_radius; if (p_type == LIGHT_TYPE_OMNI) { radius *= shared->sphere_overfit; // Overfit icosphere. float depth = -xform.origin.z; if (camera_orthogonal) { e.touches_near = (depth - radius) < z_near; } else { // Contains camera inside light. float radius2 = radius * shared->sphere_overfit; // Overfit again for outer size (camera may be outside actual sphere but behind an icosphere vertex) e.touches_near = xform.origin.length_squared() < radius2 * radius2; } e.touches_far = (depth + radius) > z_far; e.scale[0] = radius; e.scale[1] = radius; e.scale[2] = radius; e.type = ELEMENT_TYPE_OMNI_LIGHT; e.original_index = cluster_count_by_type[ELEMENT_TYPE_OMNI_LIGHT]; RendererRD::MaterialStorage::store_transform_transposed_3x4(xform, e.transform_inv); cluster_count_by_type[ELEMENT_TYPE_OMNI_LIGHT]++; } else /*LIGHT_TYPE_SPOT */ { radius *= shared->cone_overfit; // Overfit icosphere real_t len = Math::tan(Math::deg_to_rad(p_spot_aperture)) * radius; // Approximate, probably better to use a cone support function. float max_d = -1e20; float min_d = 1e20; #define CONE_MINMAX(m_x, m_y) \ { \ float d = -xform.xform(Vector3(len * m_x, len * m_y, -radius)).z; \ min_d = MIN(d, min_d); \ max_d = MAX(d, max_d); \ } CONE_MINMAX(1, 1); CONE_MINMAX(-1, 1); CONE_MINMAX(-1, -1); CONE_MINMAX(1, -1); if (camera_orthogonal) { e.touches_near = min_d < z_near; } else { Plane base_plane(-xform.basis.get_column(Vector3::AXIS_Z), xform.origin); float dist = base_plane.distance_to(Vector3()); if (dist >= 0 && dist < radius) { // Contains camera inside light, check angle. float angle = Math::rad_to_deg(Math::acos((-xform.origin.normalized()).dot(-xform.basis.get_column(Vector3::AXIS_Z)))); e.touches_near = angle < p_spot_aperture * 1.05; //overfit aperture a little due to cone overfit } else { e.touches_near = false; } } e.touches_far = max_d > z_far; // If the spot angle is above the threshold, use a sphere instead of a cone for building the clusters // since the cone gets too flat/large (spot angle close to 90 degrees) or // can't even cover the affected area of the light (spot angle above 90 degrees). if (p_spot_aperture > WIDE_SPOT_ANGLE_THRESHOLD_DEG) { e.scale[0] = radius; e.scale[1] = radius; e.scale[2] = radius; e.has_wide_spot_angle = true; } else { e.scale[0] = len * shared->cone_overfit; e.scale[1] = len * shared->cone_overfit; e.scale[2] = radius; e.has_wide_spot_angle = false; } e.type = ELEMENT_TYPE_SPOT_LIGHT; e.original_index = cluster_count_by_type[ELEMENT_TYPE_SPOT_LIGHT]; // Use omni light since they share index. RendererRD::MaterialStorage::store_transform_transposed_3x4(xform, e.transform_inv); cluster_count_by_type[ELEMENT_TYPE_SPOT_LIGHT]++; } render_element_count++; } _FORCE_INLINE_ void add_box(BoxType p_box_type, const Transform3D &p_transform, const Vector3 &p_half_extents) { if (p_box_type == BOX_TYPE_DECAL && cluster_count_by_type[ELEMENT_TYPE_DECAL] == max_elements_by_type) { return; // Max number elements reached. } if (p_box_type == BOX_TYPE_REFLECTION_PROBE && cluster_count_by_type[ELEMENT_TYPE_REFLECTION_PROBE] == max_elements_by_type) { return; // Max number elements reached. } RenderElementData &e = render_elements[render_element_count]; Transform3D xform = view_xform * p_transform; // Extract scale and scale the matrix by it, makes things simpler. Vector3 scale = p_half_extents; for (uint32_t i = 0; i < 3; i++) { float s = xform.basis.rows[i].length(); scale[i] *= s; xform.basis.rows[i] /= s; }; float box_depth = Math::abs(xform.basis.xform_inv(Vector3(0, 0, -1)).dot(scale)); float depth = -xform.origin.z; if (camera_orthogonal) { e.touches_near = depth - box_depth < z_near; } else { // Contains camera inside box. Vector3 inside = xform.xform_inv(Vector3(0, 0, 0)).abs(); e.touches_near = inside.x < scale.x && inside.y < scale.y && inside.z < scale.z; } e.touches_far = depth + box_depth > z_far; e.scale[0] = scale.x; e.scale[1] = scale.y; e.scale[2] = scale.z; e.type = (p_box_type == BOX_TYPE_DECAL) ? ELEMENT_TYPE_DECAL : ELEMENT_TYPE_REFLECTION_PROBE; e.original_index = cluster_count_by_type[e.type]; RendererRD::MaterialStorage::store_transform_transposed_3x4(xform, e.transform_inv); cluster_count_by_type[e.type]++; render_element_count++; } void bake_cluster(); void debug(ElementType p_element); RID get_cluster_buffer() const; uint32_t get_cluster_size() const; uint32_t get_max_cluster_elements() const; void set_shared(ClusterBuilderSharedDataRD *p_shared); ClusterBuilderRD(); ~ClusterBuilderRD(); }; #endif // CLUSTER_BUILDER_RD_H