/* clang-format off */ [compute] #version 450 VERSION_DEFINES #ifdef MODE_DYNAMIC layout(local_size_x = 8, local_size_y = 8, local_size_z = 1) in; #else layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in; #endif /* clang-format on */ #ifndef MODE_DYNAMIC #define NO_CHILDREN 0xFFFFFFFF #define GREY_VEC vec3(0.33333, 0.33333, 0.33333) struct CellChildren { uint children[8]; }; layout(set = 0, binding = 1, std430) buffer CellChildrenBuffer { CellChildren data[]; } cell_children; struct CellData { uint position; // xyz 10 bits uint albedo; //rgb albedo uint emission; //rgb normalized with e as multiplier uint normal; //RGB normal encoded }; layout(set = 0, binding = 2, std430) buffer CellDataBuffer { CellData data[]; } cell_data; #endif // MODE DYNAMIC #define LIGHT_TYPE_DIRECTIONAL 0 #define LIGHT_TYPE_OMNI 1 #define LIGHT_TYPE_SPOT 2 #if defined(MODE_COMPUTE_LIGHT) || defined(MODE_DYNAMIC_LIGHTING) struct Light { uint type; float energy; float radius; float attenuation; vec3 color; float spot_angle_radians; vec3 position; float spot_attenuation; vec3 direction; bool has_shadow; }; layout(set = 0, binding = 3, std140) uniform Lights { Light data[MAX_LIGHTS]; } lights; #endif // MODE COMPUTE LIGHT #ifdef MODE_SECOND_BOUNCE layout(set = 0, binding = 5) uniform texture3D color_texture; #ifdef MODE_ANISOTROPIC layout(set = 0, binding = 7) uniform texture3D aniso_pos_texture; layout(set = 0, binding = 8) uniform texture3D aniso_neg_texture; #endif // MODE ANISOTROPIC #endif // MODE_SECOND_BOUNCE #ifndef MODE_DYNAMIC layout(push_constant, binding = 0, std430) uniform Params { ivec3 limits; uint stack_size; float emission_scale; float propagation; float dynamic_range; uint light_count; uint cell_offset; uint cell_count; float aniso_strength; uint pad; } params; layout(set = 0, binding = 4, std430) buffer Outputs { vec4 data[]; } outputs; #endif // MODE DYNAMIC layout(set = 0, binding = 9) uniform texture3D texture_sdf; layout(set = 0, binding = 10) uniform sampler texture_sampler; #ifdef MODE_WRITE_TEXTURE layout(rgba8, set = 0, binding = 5) uniform restrict writeonly image3D color_tex; #ifdef MODE_ANISOTROPIC layout(r16ui, set = 0, binding = 6) uniform restrict writeonly uimage3D aniso_pos_tex; layout(r16ui, set = 0, binding = 7) uniform restrict writeonly uimage3D aniso_neg_tex; #endif #endif #ifdef MODE_DYNAMIC layout(push_constant, binding = 0, std430) uniform Params { ivec3 limits; uint light_count; //when not lighting ivec3 x_dir; float z_base; ivec3 y_dir; float z_sign; ivec3 z_dir; float pos_multiplier; ivec2 rect_pos; ivec2 rect_size; ivec2 prev_rect_ofs; ivec2 prev_rect_size; bool flip_x; bool flip_y; float dynamic_range; bool on_mipmap; float propagation; float pad[3]; } params; #ifdef MODE_DYNAMIC_LIGHTING layout(rgba8, set = 0, binding = 5) uniform restrict readonly image2D source_albedo; layout(rgba8, set = 0, binding = 6) uniform restrict readonly image2D source_normal; layout(rgba8, set = 0, binding = 7) uniform restrict readonly image2D source_orm; //layout (set=0,binding=8) uniform texture2D source_depth; layout(rgba16f, set = 0, binding = 11) uniform restrict image2D emission; layout(r32f, set = 0, binding = 12) uniform restrict image2D depth; #endif #ifdef MODE_DYNAMIC_SHRINK layout(rgba16f, set = 0, binding = 5) uniform restrict readonly image2D source_light; layout(r32f, set = 0, binding = 6) uniform restrict readonly image2D source_depth; #ifdef MODE_DYNAMIC_SHRINK_WRITE layout(rgba16f, set = 0, binding = 7) uniform restrict writeonly image2D light; layout(r32f, set = 0, binding = 8) uniform restrict writeonly image2D depth; #endif // MODE_DYNAMIC_SHRINK_WRITE #ifdef MODE_DYNAMIC_SHRINK_PLOT layout(rgba8, set = 0, binding = 11) uniform restrict image3D color_texture; #ifdef MODE_ANISOTROPIC layout(r16ui, set = 0, binding = 12) uniform restrict writeonly uimage3D aniso_pos_texture; layout(r16ui, set = 0, binding = 13) uniform restrict writeonly uimage3D aniso_neg_texture; #endif // MODE ANISOTROPIC #endif //MODE_DYNAMIC_SHRINK_PLOT #endif // MODE_DYNAMIC_SHRINK //layout (rgba8,set=0,binding=5) uniform restrict writeonly image3D color_tex; #endif // MODE DYNAMIC #if defined(MODE_COMPUTE_LIGHT) || defined(MODE_DYNAMIC_LIGHTING) float raymarch(float distance, float distance_adv, vec3 from, vec3 direction) { vec3 cell_size = 1.0 / vec3(params.limits); float occlusion = 1.0; while (distance > 0.5) { //use this to avoid precision errors float advance = texture(sampler3D(texture_sdf, texture_sampler), from * cell_size).r * 255.0 - 1.0; if (advance < 0.0) { occlusion = 0.0; break; } occlusion = min(advance, occlusion); advance = max(distance_adv, advance - mod(advance, distance_adv)); //should always advance in multiples of distance_adv from += direction * advance; distance -= advance; } return occlusion; //max(0.0,distance); } bool compute_light_vector(uint light, vec3 pos, out float attenuation, out vec3 light_pos) { if (lights.data[light].type == LIGHT_TYPE_DIRECTIONAL) { light_pos = pos - lights.data[light].direction * length(vec3(params.limits)); attenuation = 1.0; } else { light_pos = lights.data[light].position; float distance = length(pos - light_pos); if (distance >= lights.data[light].radius) { return false; } attenuation = pow(clamp(1.0 - distance / lights.data[light].radius, 0.0001, 1.0), lights.data[light].attenuation); if (lights.data[light].type == LIGHT_TYPE_SPOT) { vec3 rel = normalize(pos - light_pos); float angle = acos(dot(rel, lights.data[light].direction)); if (angle > lights.data[light].spot_angle_radians) { return false; } float d = clamp(angle / lights.data[light].spot_angle_radians, 0, 1); attenuation *= pow(1.0 - d, lights.data[light].spot_attenuation); } } return true; } float get_normal_advance(vec3 p_normal) { vec3 normal = p_normal; vec3 unorm = abs(normal); if ((unorm.x >= unorm.y) && (unorm.x >= unorm.z)) { // x code unorm = normal.x > 0.0 ? vec3(1.0, 0.0, 0.0) : vec3(-1.0, 0.0, 0.0); } else if ((unorm.y > unorm.x) && (unorm.y >= unorm.z)) { // y code unorm = normal.y > 0.0 ? vec3(0.0, 1.0, 0.0) : vec3(0.0, -1.0, 0.0); } else if ((unorm.z > unorm.x) && (unorm.z > unorm.y)) { // z code unorm = normal.z > 0.0 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 0.0, -1.0); } else { // oh-no we messed up code // has to be unorm = vec3(1.0, 0.0, 0.0); } return 1.0 / dot(normal, unorm); } void clip_segment(vec4 plane, vec3 begin, inout vec3 end) { vec3 segment = begin - end; float den = dot(plane.xyz, segment); //printf("den is %i\n",den); if (den < 0.0001) { return; } float dist = (dot(plane.xyz, begin) - plane.w) / den; if (dist < 0.0001 || dist > 1.0001) { return; } end = begin + segment * -dist; } bool compute_light_at_pos(uint index, vec3 pos, vec3 normal, inout vec3 light, inout vec3 light_dir) { float attenuation; vec3 light_pos; if (!compute_light_vector(index, pos, attenuation, light_pos)) { return false; } light_dir = normalize(pos - light_pos); if (attenuation < 0.01 || (length(normal) > 0.2 && dot(normal, light_dir) >= 0)) { return false; //not facing the light, or attenuation is near zero } if (lights.data[index].has_shadow) { float distance_adv = get_normal_advance(light_dir); vec3 to = pos; if (length(normal) > 0.2) { to += normal * distance_adv * 0.51; } else { to -= sign(light_dir) * 0.45; //go near the edge towards the light direction to avoid self occlusion } //clip clip_segment(mix(vec4(-1.0, 0.0, 0.0, 0.0), vec4(1.0, 0.0, 0.0, float(params.limits.x - 1)), bvec4(light_dir.x < 0.0)), to, light_pos); clip_segment(mix(vec4(0.0, -1.0, 0.0, 0.0), vec4(0.0, 1.0, 0.0, float(params.limits.y - 1)), bvec4(light_dir.y < 0.0)), to, light_pos); clip_segment(mix(vec4(0.0, 0.0, -1.0, 0.0), vec4(0.0, 0.0, 1.0, float(params.limits.z - 1)), bvec4(light_dir.z < 0.0)), to, light_pos); float distance = length(to - light_pos); if (distance < 0.1) { return false; // hit } distance += distance_adv - mod(distance, distance_adv); //make it reach the center of the box always light_pos = to - light_dir * distance; //from -= sign(light_dir)*0.45; //go near the edge towards the light direction to avoid self occlusion /*float dist = raymarch(distance,distance_adv,light_pos,light_dir); if (dist > distance_adv) { return false; } attenuation *= 1.0 - smoothstep(0.1*distance_adv,distance_adv,dist); */ float occlusion = raymarch(distance, distance_adv, light_pos, light_dir); if (occlusion == 0.0) { return false; } attenuation *= occlusion; //1.0 - smoothstep(0.1*distance_adv,distance_adv,dist); } light = lights.data[index].color * attenuation * lights.data[index].energy; return true; } #endif // MODE COMPUTE LIGHT void main() { #ifndef MODE_DYNAMIC uint cell_index = gl_GlobalInvocationID.x; if (cell_index >= params.cell_count) { return; } cell_index += params.cell_offset; uvec3 posu = uvec3(cell_data.data[cell_index].position & 0x7FF, (cell_data.data[cell_index].position >> 11) & 0x3FF, cell_data.data[cell_index].position >> 21); vec4 albedo = unpackUnorm4x8(cell_data.data[cell_index].albedo); #endif /////////////////COMPUTE LIGHT/////////////////////////////// #ifdef MODE_COMPUTE_LIGHT vec3 pos = vec3(posu) + vec3(0.5); vec3 emission = vec3(uvec3(cell_data.data[cell_index].emission & 0x1ff, (cell_data.data[cell_index].emission >> 9) & 0x1ff, (cell_data.data[cell_index].emission >> 18) & 0x1ff)) * pow(2.0, float(cell_data.data[cell_index].emission >> 27) - 15.0 - 9.0); vec3 normal = unpackSnorm4x8(cell_data.data[cell_index].normal).xyz; #ifdef MODE_ANISOTROPIC vec3 accum[6] = vec3[](vec3(0.0), vec3(0.0), vec3(0.0), vec3(0.0), vec3(0.0), vec3(0.0)); const vec3 accum_dirs[6] = vec3[](vec3(1.0, 0.0, 0.0), vec3(-1.0, 0.0, 0.0), vec3(0.0, 1.0, 0.0), vec3(0.0, -1.0, 0.0), vec3(0.0, 0.0, 1.0), vec3(0.0, 0.0, -1.0)); #else vec3 accum = vec3(0.0); #endif for (uint i = 0; i < params.light_count; i++) { vec3 light; vec3 light_dir; if (!compute_light_at_pos(i, pos, normal.xyz, light, light_dir)) { continue; } light *= albedo.rgb; #ifdef MODE_ANISOTROPIC for (uint j = 0; j < 6; j++) { accum[j] += max(0.0, dot(accum_dirs[j], -light_dir)) * light; } #else if (length(normal) > 0.2) { accum += max(0.0, dot(normal, -light_dir)) * light; } else { //all directions accum += light; } #endif } #ifdef MODE_ANISOTROPIC for (uint i = 0; i < 6; i++) { vec3 light = accum[i]; if (length(normal) > 0.2) { light += max(0.0, dot(accum_dirs[i], -normal)) * emission; } else { light += emission; } outputs.data[cell_index * 6 + i] = vec4(light, 0.0); } #else outputs.data[cell_index] = vec4(accum + emission, 0.0); #endif #endif //MODE_COMPUTE_LIGHT /////////////////SECOND BOUNCE/////////////////////////////// #ifdef MODE_SECOND_BOUNCE vec3 pos = vec3(posu) + vec3(0.5); ivec3 ipos = ivec3(posu); vec4 normal = unpackSnorm4x8(cell_data.data[cell_index].normal); #ifdef MODE_ANISOTROPIC vec3 accum[6]; const vec3 accum_dirs[6] = vec3[](vec3(1.0, 0.0, 0.0), vec3(-1.0, 0.0, 0.0), vec3(0.0, 1.0, 0.0), vec3(0.0, -1.0, 0.0), vec3(0.0, 0.0, 1.0), vec3(0.0, 0.0, -1.0)); /*vec3 src_color = texelFetch(sampler3D(color_texture,texture_sampler),ipos,0).rgb * params.dynamic_range; vec3 src_aniso_pos = texelFetch(sampler3D(aniso_pos_texture,texture_sampler),ipos,0).rgb; vec3 src_anisp_neg = texelFetch(sampler3D(anisp_neg_texture,texture_sampler),ipos,0).rgb; accum[0]=src_col * src_aniso_pos.x; accum[1]=src_col * src_aniso_neg.x; accum[2]=src_col * src_aniso_pos.y; accum[3]=src_col * src_aniso_neg.y; accum[4]=src_col * src_aniso_pos.z; accum[5]=src_col * src_aniso_neg.z;*/ accum[0] = outputs.data[cell_index * 6 + 0].rgb; accum[1] = outputs.data[cell_index * 6 + 1].rgb; accum[2] = outputs.data[cell_index * 6 + 2].rgb; accum[3] = outputs.data[cell_index * 6 + 3].rgb; accum[4] = outputs.data[cell_index * 6 + 4].rgb; accum[5] = outputs.data[cell_index * 6 + 5].rgb; #else vec3 accum = outputs.data[cell_index].rgb; #endif if (length(normal.xyz) > 0.2) { vec3 v0 = abs(normal.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 1.0, 0.0); vec3 tangent = normalize(cross(v0, normal.xyz)); vec3 bitangent = normalize(cross(tangent, normal.xyz)); mat3 normal_mat = mat3(tangent, bitangent, normal.xyz); #define MAX_CONE_DIRS 6 vec3 cone_dirs[MAX_CONE_DIRS] = vec3[]( vec3(0.0, 0.0, 1.0), vec3(0.866025, 0.0, 0.5), vec3(0.267617, 0.823639, 0.5), vec3(-0.700629, 0.509037, 0.5), vec3(-0.700629, -0.509037, 0.5), vec3(0.267617, -0.823639, 0.5)); float cone_weights[MAX_CONE_DIRS] = float[](0.25, 0.15, 0.15, 0.15, 0.15, 0.15); float tan_half_angle = 0.577; for (int i = 0; i < MAX_CONE_DIRS; i++) { vec3 direction = normal_mat * cone_dirs[i]; vec4 color = vec4(0.0); { float dist = 1.5; float max_distance = length(vec3(params.limits)); vec3 cell_size = 1.0 / vec3(params.limits); #ifdef MODE_ANISOTROPIC vec3 aniso_normal = mix(direction, normal.xyz, params.aniso_strength); #endif while (dist < max_distance && color.a < 0.95) { float diameter = max(1.0, 2.0 * tan_half_angle * dist); vec3 uvw_pos = (pos + dist * direction) * cell_size; float half_diameter = diameter * 0.5; //check if outside, then break //if ( any(greaterThan(abs(uvw_pos - 0.5),vec3(0.5f + half_diameter * cell_size)) ) ) { // break; //} float log2_diameter = log2(diameter); vec4 scolor = textureLod(sampler3D(color_texture, texture_sampler), uvw_pos, log2_diameter); #ifdef MODE_ANISOTROPIC vec3 aniso_neg = textureLod(sampler3D(aniso_neg_texture, texture_sampler), uvw_pos, log2_diameter).rgb; vec3 aniso_pos = textureLod(sampler3D(aniso_pos_texture, texture_sampler), uvw_pos, log2_diameter).rgb; scolor.rgb *= dot(max(vec3(0.0), (aniso_normal * aniso_pos)), vec3(1.0)) + dot(max(vec3(0.0), (-aniso_normal * aniso_neg)), vec3(1.0)); #endif float a = (1.0 - color.a); color += a * scolor; dist += half_diameter; } } color *= cone_weights[i] * vec4(albedo.rgb, 1.0) * params.dynamic_range; //restore range #ifdef MODE_ANISOTROPIC for (uint j = 0; j < 6; j++) { accum[j] += max(0.0, dot(accum_dirs[j], direction)) * color.rgb; } #else accum += color.rgb; #endif } } #ifdef MODE_ANISOTROPIC outputs.data[cell_index * 6 + 0] = vec4(accum[0], 0.0); outputs.data[cell_index * 6 + 1] = vec4(accum[1], 0.0); outputs.data[cell_index * 6 + 2] = vec4(accum[2], 0.0); outputs.data[cell_index * 6 + 3] = vec4(accum[3], 0.0); outputs.data[cell_index * 6 + 4] = vec4(accum[4], 0.0); outputs.data[cell_index * 6 + 5] = vec4(accum[5], 0.0); #else outputs.data[cell_index] = vec4(accum, 0.0); #endif #endif // MODE_SECOND_BOUNCE /////////////////UPDATE MIPMAPS/////////////////////////////// #ifdef MODE_UPDATE_MIPMAPS { #ifdef MODE_ANISOTROPIC vec3 light_accum[6] = vec3[](vec3(0.0), vec3(0.0), vec3(0.0), vec3(0.0), vec3(0.0), vec3(0.0)); #else vec3 light_accum = vec3(0.0); #endif float count = 0.0; for (uint i = 0; i < 8; i++) { uint child_index = cell_children.data[cell_index].children[i]; if (child_index == NO_CHILDREN) { continue; } #ifdef MODE_ANISOTROPIC light_accum[0] += outputs.data[child_index * 6 + 0].rgb; light_accum[1] += outputs.data[child_index * 6 + 1].rgb; light_accum[2] += outputs.data[child_index * 6 + 2].rgb; light_accum[3] += outputs.data[child_index * 6 + 3].rgb; light_accum[4] += outputs.data[child_index * 6 + 4].rgb; light_accum[5] += outputs.data[child_index * 6 + 5].rgb; #else light_accum += outputs.data[child_index].rgb; #endif count += 1.0; } float divisor = mix(8.0, count, params.propagation); #ifdef MODE_ANISOTROPIC outputs.data[cell_index * 6 + 0] = vec4(light_accum[0] / divisor, 0.0); outputs.data[cell_index * 6 + 1] = vec4(light_accum[1] / divisor, 0.0); outputs.data[cell_index * 6 + 2] = vec4(light_accum[2] / divisor, 0.0); outputs.data[cell_index * 6 + 3] = vec4(light_accum[3] / divisor, 0.0); outputs.data[cell_index * 6 + 4] = vec4(light_accum[4] / divisor, 0.0); outputs.data[cell_index * 6 + 5] = vec4(light_accum[5] / divisor, 0.0); #else outputs.data[cell_index] = vec4(light_accum / divisor, 0.0); #endif } #endif ///////////////////WRITE TEXTURE///////////////////////////// #ifdef MODE_WRITE_TEXTURE { #ifdef MODE_ANISOTROPIC vec3 accum_total = vec3(0.0); accum_total += outputs.data[cell_index * 6 + 0].rgb; accum_total += outputs.data[cell_index * 6 + 1].rgb; accum_total += outputs.data[cell_index * 6 + 2].rgb; accum_total += outputs.data[cell_index * 6 + 3].rgb; accum_total += outputs.data[cell_index * 6 + 4].rgb; accum_total += outputs.data[cell_index * 6 + 5].rgb; float accum_total_energy = max(dot(accum_total, GREY_VEC), 0.00001); vec3 iso_positive = vec3(dot(outputs.data[cell_index * 6 + 0].rgb, GREY_VEC), dot(outputs.data[cell_index * 6 + 2].rgb, GREY_VEC), dot(outputs.data[cell_index * 6 + 4].rgb, GREY_VEC)) / vec3(accum_total_energy); vec3 iso_negative = vec3(dot(outputs.data[cell_index * 6 + 1].rgb, GREY_VEC), dot(outputs.data[cell_index * 6 + 3].rgb, GREY_VEC), dot(outputs.data[cell_index * 6 + 5].rgb, GREY_VEC)) / vec3(accum_total_energy); { uint aniso_pos = uint(clamp(iso_positive.b * 31.0, 0.0, 31.0)); aniso_pos |= uint(clamp(iso_positive.g * 63.0, 0.0, 63.0)) << 5; aniso_pos |= uint(clamp(iso_positive.r * 31.0, 0.0, 31.0)) << 11; imageStore(aniso_pos_tex, ivec3(posu), uvec4(aniso_pos)); } { uint aniso_neg = uint(clamp(iso_negative.b * 31.0, 0.0, 31.0)); aniso_neg |= uint(clamp(iso_negative.g * 63.0, 0.0, 63.0)) << 5; aniso_neg |= uint(clamp(iso_negative.r * 31.0, 0.0, 31.0)) << 11; imageStore(aniso_neg_tex, ivec3(posu), uvec4(aniso_neg)); } imageStore(color_tex, ivec3(posu), vec4(accum_total / params.dynamic_range, albedo.a)); #else imageStore(color_tex, ivec3(posu), vec4(outputs.data[cell_index].rgb / params.dynamic_range, albedo.a)); #endif } #endif ///////////////////DYNAMIC LIGHTING///////////////////////////// #ifdef MODE_DYNAMIC ivec2 pos_xy = ivec2(gl_GlobalInvocationID.xy); if (any(greaterThanEqual(pos_xy, params.rect_size))) { return; //out of bounds } ivec2 uv_xy = pos_xy; if (params.flip_x) { uv_xy.x = params.rect_size.x - pos_xy.x - 1; } if (params.flip_y) { uv_xy.y = params.rect_size.y - pos_xy.y - 1; } #ifdef MODE_DYNAMIC_LIGHTING { float z = params.z_base + imageLoad(depth, uv_xy).x * params.z_sign; ivec3 pos = params.x_dir * (params.rect_pos.x + pos_xy.x) + params.y_dir * (params.rect_pos.y + pos_xy.y) + abs(params.z_dir) * int(z); vec3 normal = imageLoad(source_normal, uv_xy).xyz * 2.0 - 1.0; normal = vec3(params.x_dir) * normal.x * mix(1.0, -1.0, params.flip_x) + vec3(params.y_dir) * normal.y * mix(1.0, -1.0, params.flip_y) - vec3(params.z_dir) * normal.z; vec4 albedo = imageLoad(source_albedo, uv_xy); //determine the position in space vec3 accum = vec3(0.0); for (uint i = 0; i < params.light_count; i++) { vec3 light; vec3 light_dir; if (!compute_light_at_pos(i, vec3(pos) * params.pos_multiplier, normal, light, light_dir)) { continue; } light *= albedo.rgb; accum += max(0.0, dot(normal, -light_dir)) * light; } accum += imageLoad(emission, uv_xy).xyz; imageStore(emission, uv_xy, vec4(accum, albedo.a)); imageStore(depth, uv_xy, vec4(z)); } #endif // MODE DYNAMIC LIGHTING #ifdef MODE_DYNAMIC_SHRINK { vec4 accum = vec4(0.0); float accum_z = 0.0; float count = 0.0; for (int i = 0; i < 4; i++) { ivec2 ofs = pos_xy * 2 + ivec2(i & 1, i >> 1) - params.prev_rect_ofs; if (any(lessThan(ofs, ivec2(0))) || any(greaterThanEqual(ofs, params.prev_rect_size))) { continue; } if (params.flip_x) { ofs.x = params.prev_rect_size.x - ofs.x - 1; } if (params.flip_y) { ofs.y = params.prev_rect_size.y - ofs.y - 1; } vec4 light = imageLoad(source_light, ofs); if (light.a == 0.0) { //ignore empty continue; } accum += light; float z = imageLoad(source_depth, ofs).x; accum_z += z * 0.5; //shrink half too count += 1.0; } if (params.on_mipmap) { accum.rgb /= mix(8.0, count, params.propagation); accum.a /= 8.0; } else { accum /= 4.0; } if (count == 0.0) { accum_z = 0.0; //avoid nan } else { accum_z /= count; } #ifdef MODE_DYNAMIC_SHRINK_WRITE imageStore(light, uv_xy, accum); imageStore(depth, uv_xy, vec4(accum_z)); #endif #ifdef MODE_DYNAMIC_SHRINK_PLOT if (accum.a < 0.001) { return; //do not blit if alpha is too low } ivec3 pos = params.x_dir * (params.rect_pos.x + pos_xy.x) + params.y_dir * (params.rect_pos.y + pos_xy.y) + abs(params.z_dir) * int(accum_z); float z_frac = fract(accum_z); for (int i = 0; i < 2; i++) { ivec3 pos3d = pos + abs(params.z_dir) * i; if (any(lessThan(pos3d, ivec3(0))) || any(greaterThanEqual(pos3d, params.limits))) { //skip if offlimits continue; } vec4 color_blit = accum * (i == 0 ? 1.0 - z_frac : z_frac); vec4 color = imageLoad(color_texture, pos3d); color.rgb *= params.dynamic_range; #if 0 color.rgb = mix(color.rgb,color_blit.rgb,color_blit.a); color.a+=color_blit.a; #else float sa = 1.0 - color_blit.a; vec4 result; result.a = color.a * sa + color_blit.a; if (result.a == 0.0) { result = vec4(0.0); } else { result.rgb = (color.rgb * color.a * sa + color_blit.rgb * color_blit.a) / result.a; color = result; } #endif color.rgb /= params.dynamic_range; imageStore(color_texture, pos3d, color); //imageStore(color_texture,pos3d,vec4(1,1,1,1)); #ifdef MODE_ANISOTROPIC //do not care about anisotropy for dynamic objects, just store full lit in all directions imageStore(aniso_pos_texture, pos3d, uvec4(0xFFFF)); imageStore(aniso_neg_texture, pos3d, uvec4(0xFFFF)); #endif // ANISOTROPIC } #endif // MODE_DYNAMIC_SHRINK_PLOT } #endif #endif // MODE DYNAMIC }