/*************************************************************************/ /* collision_solver_3d_sw.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "collision_solver_3d_sw.h" #include "collision_solver_3d_sat.h" #include "soft_body_3d_sw.h" #include "gjk_epa.h" #define collision_solver sat_calculate_penetration //#define collision_solver gjk_epa_calculate_penetration bool CollisionSolver3DSW::solve_static_world_boundary(const Shape3DSW *p_shape_A, const Transform3D &p_transform_A, const Shape3DSW *p_shape_B, const Transform3D &p_transform_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result) { const WorldBoundaryShape3DSW *world_boundary = static_cast(p_shape_A); if (p_shape_B->get_type() == PhysicsServer3D::SHAPE_WORLD_BOUNDARY) { return false; } Plane p = p_transform_A.xform(world_boundary->get_plane()); static const int max_supports = 16; Vector3 supports[max_supports]; int support_count; Shape3DSW::FeatureType support_type; p_shape_B->get_supports(p_transform_B.basis.xform_inv(-p.normal).normalized(), max_supports, supports, support_count, support_type); if (support_type == Shape3DSW::FEATURE_CIRCLE) { ERR_FAIL_COND_V(support_count != 3, false); Vector3 circle_pos = supports[0]; Vector3 circle_axis_1 = supports[1] - circle_pos; Vector3 circle_axis_2 = supports[2] - circle_pos; // Use 3 equidistant points on the circle. for (int i = 0; i < 3; ++i) { Vector3 vertex_pos = circle_pos; vertex_pos += circle_axis_1 * Math::cos(2.0 * Math_PI * i / 3.0); vertex_pos += circle_axis_2 * Math::sin(2.0 * Math_PI * i / 3.0); supports[i] = vertex_pos; } } bool found = false; for (int i = 0; i < support_count; i++) { supports[i] = p_transform_B.xform(supports[i]); if (p.distance_to(supports[i]) >= 0) { continue; } found = true; Vector3 support_A = p.project(supports[i]); if (p_result_callback) { if (p_swap_result) { p_result_callback(supports[i], 0, support_A, 0, p_userdata); } else { p_result_callback(support_A, 0, supports[i], 0, p_userdata); } } } return found; } bool CollisionSolver3DSW::solve_separation_ray(const Shape3DSW *p_shape_A, const Transform3D &p_transform_A, const Shape3DSW *p_shape_B, const Transform3D &p_transform_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result, real_t p_margin) { const SeparationRayShape3DSW *ray = static_cast(p_shape_A); Vector3 from = p_transform_A.origin; Vector3 to = from + p_transform_A.basis.get_axis(2) * (ray->get_length() + p_margin); Vector3 support_A = to; Transform3D ai = p_transform_B.affine_inverse(); from = ai.xform(from); to = ai.xform(to); Vector3 p, n; if (!p_shape_B->intersect_segment(from, to, p, n)) { return false; } // Discard contacts when the ray is fully contained inside the shape. if (n == Vector3()) { return false; } // Discard contacts in the wrong direction. if (n.dot(from - to) < CMP_EPSILON) { return false; } Vector3 support_B = p_transform_B.xform(p); if (ray->get_slide_on_slope()) { Vector3 global_n = ai.basis.xform_inv(n).normalized(); support_B = support_A + (support_B - support_A).length() * global_n; } if (p_result_callback) { if (p_swap_result) { p_result_callback(support_B, 0, support_A, 0, p_userdata); } else { p_result_callback(support_A, 0, support_B, 0, p_userdata); } } return true; } struct _SoftBodyContactCollisionInfo { int node_index = 0; CollisionSolver3DSW::CallbackResult result_callback = nullptr; void *userdata = nullptr; bool swap_result = false; int contact_count = 0; }; void CollisionSolver3DSW::soft_body_contact_callback(const Vector3 &p_point_A, int p_index_A, const Vector3 &p_point_B, int p_index_B, void *p_userdata) { _SoftBodyContactCollisionInfo &cinfo = *(_SoftBodyContactCollisionInfo *)(p_userdata); ++cinfo.contact_count; if (!cinfo.result_callback) { return; } if (cinfo.swap_result) { cinfo.result_callback(p_point_B, cinfo.node_index, p_point_A, p_index_A, cinfo.userdata); } else { cinfo.result_callback(p_point_A, p_index_A, p_point_B, cinfo.node_index, cinfo.userdata); } } struct _SoftBodyQueryInfo { SoftBody3DSW *soft_body = nullptr; const Shape3DSW *shape_A = nullptr; const Shape3DSW *shape_B = nullptr; Transform3D transform_A; Transform3D node_transform; _SoftBodyContactCollisionInfo contact_info; #ifdef DEBUG_ENABLED int node_query_count = 0; int convex_query_count = 0; #endif }; bool CollisionSolver3DSW::soft_body_query_callback(uint32_t p_node_index, void *p_userdata) { _SoftBodyQueryInfo &query_cinfo = *(_SoftBodyQueryInfo *)(p_userdata); Vector3 node_position = query_cinfo.soft_body->get_node_position(p_node_index); Transform3D transform_B; transform_B.origin = query_cinfo.node_transform.xform(node_position); query_cinfo.contact_info.node_index = p_node_index; bool collided = solve_static(query_cinfo.shape_A, query_cinfo.transform_A, query_cinfo.shape_B, transform_B, soft_body_contact_callback, &query_cinfo.contact_info); #ifdef DEBUG_ENABLED ++query_cinfo.node_query_count; #endif // Stop at first collision if contacts are not needed. return (collided && !query_cinfo.contact_info.result_callback); } bool CollisionSolver3DSW::soft_body_concave_callback(void *p_userdata, Shape3DSW *p_convex) { _SoftBodyQueryInfo &query_cinfo = *(_SoftBodyQueryInfo *)(p_userdata); query_cinfo.shape_A = p_convex; // Calculate AABB for internal soft body query (in world space). AABB shape_aabb; for (int i = 0; i < 3; i++) { Vector3 axis; axis[i] = 1.0; real_t smin, smax; p_convex->project_range(axis, query_cinfo.transform_A, smin, smax); shape_aabb.position[i] = smin; shape_aabb.size[i] = smax - smin; } shape_aabb.grow_by(query_cinfo.soft_body->get_collision_margin()); query_cinfo.soft_body->query_aabb(shape_aabb, soft_body_query_callback, &query_cinfo); bool collided = (query_cinfo.contact_info.contact_count > 0); #ifdef DEBUG_ENABLED ++query_cinfo.convex_query_count; #endif // Stop at first collision if contacts are not needed. return (collided && !query_cinfo.contact_info.result_callback); } bool CollisionSolver3DSW::solve_soft_body(const Shape3DSW *p_shape_A, const Transform3D &p_transform_A, const Shape3DSW *p_shape_B, const Transform3D &p_transform_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result) { const SoftBodyShape3DSW *soft_body_shape_B = static_cast(p_shape_B); SoftBody3DSW *soft_body = soft_body_shape_B->get_soft_body(); const Transform3D &world_to_local = soft_body->get_inv_transform(); const real_t collision_margin = soft_body->get_collision_margin(); SphereShape3DSW sphere_shape; sphere_shape.set_data(collision_margin); _SoftBodyQueryInfo query_cinfo; query_cinfo.contact_info.result_callback = p_result_callback; query_cinfo.contact_info.userdata = p_userdata; query_cinfo.contact_info.swap_result = p_swap_result; query_cinfo.soft_body = soft_body; query_cinfo.node_transform = p_transform_B * world_to_local; query_cinfo.shape_A = p_shape_A; query_cinfo.transform_A = p_transform_A; query_cinfo.shape_B = &sphere_shape; if (p_shape_A->is_concave()) { // In case of concave shape, query convex shapes first. const ConcaveShape3DSW *concave_shape_A = static_cast(p_shape_A); AABB soft_body_aabb = soft_body->get_bounds(); soft_body_aabb.grow_by(collision_margin); // Calculate AABB for internal concave shape query (in local space). AABB local_aabb; for (int i = 0; i < 3; i++) { Vector3 axis(p_transform_A.basis.get_axis(i)); real_t axis_scale = 1.0 / axis.length(); real_t smin = soft_body_aabb.position[i]; real_t smax = smin + soft_body_aabb.size[i]; smin *= axis_scale; smax *= axis_scale; local_aabb.position[i] = smin; local_aabb.size[i] = smax - smin; } concave_shape_A->cull(local_aabb, soft_body_concave_callback, &query_cinfo); } else { AABB shape_aabb = p_transform_A.xform(p_shape_A->get_aabb()); shape_aabb.grow_by(collision_margin); soft_body->query_aabb(shape_aabb, soft_body_query_callback, &query_cinfo); } return (query_cinfo.contact_info.contact_count > 0); } struct _ConcaveCollisionInfo { const Transform3D *transform_A; const Shape3DSW *shape_A; const Transform3D *transform_B; CollisionSolver3DSW::CallbackResult result_callback; void *userdata; bool swap_result; bool collided; int aabb_tests; int collisions; bool tested; real_t margin_A; real_t margin_B; Vector3 close_A, close_B; }; bool CollisionSolver3DSW::concave_callback(void *p_userdata, Shape3DSW *p_convex) { _ConcaveCollisionInfo &cinfo = *(_ConcaveCollisionInfo *)(p_userdata); cinfo.aabb_tests++; bool collided = collision_solver(cinfo.shape_A, *cinfo.transform_A, p_convex, *cinfo.transform_B, cinfo.result_callback, cinfo.userdata, cinfo.swap_result, nullptr, cinfo.margin_A, cinfo.margin_B); if (!collided) { return false; } cinfo.collided = true; cinfo.collisions++; // Stop at first collision if contacts are not needed. return !cinfo.result_callback; } bool CollisionSolver3DSW::solve_concave(const Shape3DSW *p_shape_A, const Transform3D &p_transform_A, const Shape3DSW *p_shape_B, const Transform3D &p_transform_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result, real_t p_margin_A, real_t p_margin_B) { const ConcaveShape3DSW *concave_B = static_cast(p_shape_B); _ConcaveCollisionInfo cinfo; cinfo.transform_A = &p_transform_A; cinfo.shape_A = p_shape_A; cinfo.transform_B = &p_transform_B; cinfo.result_callback = p_result_callback; cinfo.userdata = p_userdata; cinfo.swap_result = p_swap_result; cinfo.collided = false; cinfo.collisions = 0; cinfo.margin_A = p_margin_A; cinfo.margin_B = p_margin_B; cinfo.aabb_tests = 0; Transform3D rel_transform = p_transform_A; rel_transform.origin -= p_transform_B.origin; //quickly compute a local AABB AABB local_aabb; for (int i = 0; i < 3; i++) { Vector3 axis(p_transform_B.basis.get_axis(i)); real_t axis_scale = 1.0 / axis.length(); axis *= axis_scale; real_t smin, smax; p_shape_A->project_range(axis, rel_transform, smin, smax); smin -= p_margin_A; smax += p_margin_A; smin *= axis_scale; smax *= axis_scale; local_aabb.position[i] = smin; local_aabb.size[i] = smax - smin; } concave_B->cull(local_aabb, concave_callback, &cinfo); return cinfo.collided; } bool CollisionSolver3DSW::solve_static(const Shape3DSW *p_shape_A, const Transform3D &p_transform_A, const Shape3DSW *p_shape_B, const Transform3D &p_transform_B, CallbackResult p_result_callback, void *p_userdata, Vector3 *r_sep_axis, real_t p_margin_A, real_t p_margin_B) { PhysicsServer3D::ShapeType type_A = p_shape_A->get_type(); PhysicsServer3D::ShapeType type_B = p_shape_B->get_type(); bool concave_A = p_shape_A->is_concave(); bool concave_B = p_shape_B->is_concave(); bool swap = false; if (type_A > type_B) { SWAP(type_A, type_B); SWAP(concave_A, concave_B); swap = true; } if (type_A == PhysicsServer3D::SHAPE_WORLD_BOUNDARY) { if (type_B == PhysicsServer3D::SHAPE_WORLD_BOUNDARY) { return false; } if (type_B == PhysicsServer3D::SHAPE_SEPARATION_RAY) { return false; } if (type_B == PhysicsServer3D::SHAPE_SOFT_BODY) { return false; } if (swap) { return solve_static_world_boundary(p_shape_B, p_transform_B, p_shape_A, p_transform_A, p_result_callback, p_userdata, true); } else { return solve_static_world_boundary(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false); } } else if (type_A == PhysicsServer3D::SHAPE_SEPARATION_RAY) { if (type_B == PhysicsServer3D::SHAPE_SEPARATION_RAY) { return false; } if (swap) { return solve_separation_ray(p_shape_B, p_transform_B, p_shape_A, p_transform_A, p_result_callback, p_userdata, true, p_margin_B); } else { return solve_separation_ray(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false, p_margin_A); } } else if (type_B == PhysicsServer3D::SHAPE_SOFT_BODY) { if (type_A == PhysicsServer3D::SHAPE_SOFT_BODY) { // Soft Body / Soft Body not supported. return false; } if (swap) { return solve_soft_body(p_shape_B, p_transform_B, p_shape_A, p_transform_A, p_result_callback, p_userdata, true); } else { return solve_soft_body(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false); } } else if (concave_B) { if (concave_A) { return false; } if (!swap) { return solve_concave(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false, p_margin_A, p_margin_B); } else { return solve_concave(p_shape_B, p_transform_B, p_shape_A, p_transform_A, p_result_callback, p_userdata, true, p_margin_A, p_margin_B); } } else { return collision_solver(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false, r_sep_axis, p_margin_A, p_margin_B); } } bool CollisionSolver3DSW::concave_distance_callback(void *p_userdata, Shape3DSW *p_convex) { _ConcaveCollisionInfo &cinfo = *(_ConcaveCollisionInfo *)(p_userdata); cinfo.aabb_tests++; Vector3 close_A, close_B; cinfo.collided = !gjk_epa_calculate_distance(cinfo.shape_A, *cinfo.transform_A, p_convex, *cinfo.transform_B, close_A, close_B); if (cinfo.collided) { // No need to process any more result. return true; } if (!cinfo.tested || close_A.distance_squared_to(close_B) < cinfo.close_A.distance_squared_to(cinfo.close_B)) { cinfo.close_A = close_A; cinfo.close_B = close_B; cinfo.tested = true; } cinfo.collisions++; return false; } bool CollisionSolver3DSW::solve_distance_world_boundary(const Shape3DSW *p_shape_A, const Transform3D &p_transform_A, const Shape3DSW *p_shape_B, const Transform3D &p_transform_B, Vector3 &r_point_A, Vector3 &r_point_B) { const WorldBoundaryShape3DSW *world_boundary = static_cast(p_shape_A); if (p_shape_B->get_type() == PhysicsServer3D::SHAPE_WORLD_BOUNDARY) { return false; } Plane p = p_transform_A.xform(world_boundary->get_plane()); static const int max_supports = 16; Vector3 supports[max_supports]; int support_count; Shape3DSW::FeatureType support_type; p_shape_B->get_supports(p_transform_B.basis.xform_inv(-p.normal).normalized(), max_supports, supports, support_count, support_type); if (support_type == Shape3DSW::FEATURE_CIRCLE) { ERR_FAIL_COND_V(support_count != 3, false); Vector3 circle_pos = supports[0]; Vector3 circle_axis_1 = supports[1] - circle_pos; Vector3 circle_axis_2 = supports[2] - circle_pos; // Use 3 equidistant points on the circle. for (int i = 0; i < 3; ++i) { Vector3 vertex_pos = circle_pos; vertex_pos += circle_axis_1 * Math::cos(2.0 * Math_PI * i / 3.0); vertex_pos += circle_axis_2 * Math::sin(2.0 * Math_PI * i / 3.0); supports[i] = vertex_pos; } } bool collided = false; Vector3 closest; real_t closest_d = 0; for (int i = 0; i < support_count; i++) { supports[i] = p_transform_B.xform(supports[i]); real_t d = p.distance_to(supports[i]); if (i == 0 || d < closest_d) { closest = supports[i]; closest_d = d; if (d <= 0) { collided = true; } } } r_point_A = p.project(closest); r_point_B = closest; return collided; } bool CollisionSolver3DSW::solve_distance(const Shape3DSW *p_shape_A, const Transform3D &p_transform_A, const Shape3DSW *p_shape_B, const Transform3D &p_transform_B, Vector3 &r_point_A, Vector3 &r_point_B, const AABB &p_concave_hint, Vector3 *r_sep_axis) { if (p_shape_A->is_concave()) { return false; } if (p_shape_B->get_type() == PhysicsServer3D::SHAPE_WORLD_BOUNDARY) { Vector3 a, b; bool col = solve_distance_world_boundary(p_shape_B, p_transform_B, p_shape_A, p_transform_A, a, b); r_point_A = b; r_point_B = a; return !col; } else if (p_shape_B->is_concave()) { if (p_shape_A->is_concave()) { return false; } const ConcaveShape3DSW *concave_B = static_cast(p_shape_B); _ConcaveCollisionInfo cinfo; cinfo.transform_A = &p_transform_A; cinfo.shape_A = p_shape_A; cinfo.transform_B = &p_transform_B; cinfo.result_callback = nullptr; cinfo.userdata = nullptr; cinfo.swap_result = false; cinfo.collided = false; cinfo.collisions = 0; cinfo.aabb_tests = 0; cinfo.tested = false; Transform3D rel_transform = p_transform_A; rel_transform.origin -= p_transform_B.origin; //quickly compute a local AABB bool use_cc_hint = p_concave_hint != AABB(); AABB cc_hint_aabb; if (use_cc_hint) { cc_hint_aabb = p_concave_hint; cc_hint_aabb.position -= p_transform_B.origin; } AABB local_aabb; for (int i = 0; i < 3; i++) { Vector3 axis(p_transform_B.basis.get_axis(i)); real_t axis_scale = ((real_t)1.0) / axis.length(); axis *= axis_scale; real_t smin, smax; if (use_cc_hint) { cc_hint_aabb.project_range_in_plane(Plane(axis), smin, smax); } else { p_shape_A->project_range(axis, rel_transform, smin, smax); } smin *= axis_scale; smax *= axis_scale; local_aabb.position[i] = smin; local_aabb.size[i] = smax - smin; } concave_B->cull(local_aabb, concave_distance_callback, &cinfo); if (!cinfo.collided) { r_point_A = cinfo.close_A; r_point_B = cinfo.close_B; } return !cinfo.collided; } else { return gjk_epa_calculate_distance(p_shape_A, p_transform_A, p_shape_B, p_transform_B, r_point_A, r_point_B); //should pass sepaxis.. } }