/*************************************************************************/ /* body_3d_sw.h */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #ifndef BODY_3D_SW_H #define BODY_3D_SW_H #include "area_3d_sw.h" #include "collision_object_3d_sw.h" #include "core/templates/vset.h" class Constraint3DSW; class PhysicsDirectBodyState3DSW; class Body3DSW : public CollisionObject3DSW { PhysicsServer3D::BodyMode mode; Vector3 linear_velocity; Vector3 angular_velocity; Vector3 biased_linear_velocity; Vector3 biased_angular_velocity; real_t mass; real_t bounce; real_t friction; real_t linear_damp; real_t angular_damp; real_t gravity_scale; uint16_t locked_axis = 0; real_t _inv_mass; Vector3 _inv_inertia; // Relative to the principal axes of inertia // Relative to the local frame of reference Basis principal_inertia_axes_local; Vector3 center_of_mass_local; // In world orientation with local origin Basis _inv_inertia_tensor; Basis principal_inertia_axes; Vector3 center_of_mass; Vector3 gravity; real_t still_time; Vector3 applied_force; Vector3 applied_torque; real_t area_angular_damp; real_t area_linear_damp; SelfList active_list; SelfList inertia_update_list; SelfList direct_state_query_list; VSet exceptions; bool omit_force_integration; bool active; bool first_integration; bool continuous_cd; bool can_sleep; bool first_time_kinematic; void _update_inertia(); virtual void _shapes_changed(); Transform3D new_transform; Map constraint_map; Vector areas; struct Contact { Vector3 local_pos; Vector3 local_normal; real_t depth; int local_shape; Vector3 collider_pos; int collider_shape; ObjectID collider_instance_id; RID collider; Vector3 collider_velocity_at_pos; }; Vector contacts; //no contacts by default int contact_count; void *body_state_callback_instance = nullptr; PhysicsServer3D::BodyStateCallback body_state_callback = nullptr; struct ForceIntegrationCallbackData { Callable callable; Variant udata; }; ForceIntegrationCallbackData *fi_callback_data = nullptr; PhysicsDirectBodyState3DSW *direct_state = nullptr; uint64_t island_step; _FORCE_INLINE_ void _compute_area_gravity_and_damping(const Area3DSW *p_area); _FORCE_INLINE_ void _update_transform_dependant(); friend class PhysicsDirectBodyState3DSW; // i give up, too many functions to expose public: void set_state_sync_callback(void *p_instance, PhysicsServer3D::BodyStateCallback p_callback); void set_force_integration_callback(const Callable &p_callable, const Variant &p_udata = Variant()); PhysicsDirectBodyState3DSW *get_direct_state(); _FORCE_INLINE_ void add_area(Area3DSW *p_area) { int index = areas.find(AreaCMP(p_area)); if (index > -1) { areas.write[index].refCount += 1; } else { areas.ordered_insert(AreaCMP(p_area)); } } _FORCE_INLINE_ void remove_area(Area3DSW *p_area) { int index = areas.find(AreaCMP(p_area)); if (index > -1) { areas.write[index].refCount -= 1; if (areas[index].refCount < 1) { areas.remove(index); } } } _FORCE_INLINE_ void set_max_contacts_reported(int p_size) { contacts.resize(p_size); contact_count = 0; if (mode == PhysicsServer3D::BODY_MODE_KINEMATIC && p_size) { set_active(true); } } _FORCE_INLINE_ int get_max_contacts_reported() const { return contacts.size(); } _FORCE_INLINE_ bool can_report_contacts() const { return !contacts.is_empty(); } _FORCE_INLINE_ void add_contact(const Vector3 &p_local_pos, const Vector3 &p_local_normal, real_t p_depth, int p_local_shape, const Vector3 &p_collider_pos, int p_collider_shape, ObjectID p_collider_instance_id, const RID &p_collider, const Vector3 &p_collider_velocity_at_pos); _FORCE_INLINE_ void add_exception(const RID &p_exception) { exceptions.insert(p_exception); } _FORCE_INLINE_ void remove_exception(const RID &p_exception) { exceptions.erase(p_exception); } _FORCE_INLINE_ bool has_exception(const RID &p_exception) const { return exceptions.has(p_exception); } _FORCE_INLINE_ const VSet &get_exceptions() const { return exceptions; } _FORCE_INLINE_ uint64_t get_island_step() const { return island_step; } _FORCE_INLINE_ void set_island_step(uint64_t p_step) { island_step = p_step; } _FORCE_INLINE_ void add_constraint(Constraint3DSW *p_constraint, int p_pos) { constraint_map[p_constraint] = p_pos; } _FORCE_INLINE_ void remove_constraint(Constraint3DSW *p_constraint) { constraint_map.erase(p_constraint); } const Map &get_constraint_map() const { return constraint_map; } _FORCE_INLINE_ void clear_constraint_map() { constraint_map.clear(); } _FORCE_INLINE_ void set_omit_force_integration(bool p_omit_force_integration) { omit_force_integration = p_omit_force_integration; } _FORCE_INLINE_ bool get_omit_force_integration() const { return omit_force_integration; } _FORCE_INLINE_ Basis get_principal_inertia_axes() const { return principal_inertia_axes; } _FORCE_INLINE_ Vector3 get_center_of_mass() const { return center_of_mass; } _FORCE_INLINE_ Vector3 xform_local_to_principal(const Vector3 &p_pos) const { return principal_inertia_axes_local.xform(p_pos - center_of_mass_local); } _FORCE_INLINE_ void set_linear_velocity(const Vector3 &p_velocity) { linear_velocity = p_velocity; } _FORCE_INLINE_ Vector3 get_linear_velocity() const { return linear_velocity; } _FORCE_INLINE_ void set_angular_velocity(const Vector3 &p_velocity) { angular_velocity = p_velocity; } _FORCE_INLINE_ Vector3 get_angular_velocity() const { return angular_velocity; } _FORCE_INLINE_ const Vector3 &get_biased_linear_velocity() const { return biased_linear_velocity; } _FORCE_INLINE_ const Vector3 &get_biased_angular_velocity() const { return biased_angular_velocity; } _FORCE_INLINE_ void apply_central_impulse(const Vector3 &p_impulse) { linear_velocity += p_impulse * _inv_mass; } _FORCE_INLINE_ void apply_impulse(const Vector3 &p_impulse, const Vector3 &p_position = Vector3()) { linear_velocity += p_impulse * _inv_mass; angular_velocity += _inv_inertia_tensor.xform((p_position - center_of_mass).cross(p_impulse)); } _FORCE_INLINE_ void apply_torque_impulse(const Vector3 &p_impulse) { angular_velocity += _inv_inertia_tensor.xform(p_impulse); } _FORCE_INLINE_ void apply_bias_impulse(const Vector3 &p_impulse, const Vector3 &p_position = Vector3(), real_t p_max_delta_av = -1.0) { biased_linear_velocity += p_impulse * _inv_mass; if (p_max_delta_av != 0.0) { Vector3 delta_av = _inv_inertia_tensor.xform((p_position - center_of_mass).cross(p_impulse)); if (p_max_delta_av > 0 && delta_av.length() > p_max_delta_av) { delta_av = delta_av.normalized() * p_max_delta_av; } biased_angular_velocity += delta_av; } } _FORCE_INLINE_ void apply_bias_torque_impulse(const Vector3 &p_impulse) { biased_angular_velocity += _inv_inertia_tensor.xform(p_impulse); } _FORCE_INLINE_ void add_central_force(const Vector3 &p_force) { applied_force += p_force; } _FORCE_INLINE_ void add_force(const Vector3 &p_force, const Vector3 &p_position = Vector3()) { applied_force += p_force; applied_torque += (p_position - center_of_mass).cross(p_force); } _FORCE_INLINE_ void add_torque(const Vector3 &p_torque) { applied_torque += p_torque; } void set_active(bool p_active); _FORCE_INLINE_ bool is_active() const { return active; } _FORCE_INLINE_ void wakeup() { if ((!get_space()) || mode == PhysicsServer3D::BODY_MODE_STATIC || mode == PhysicsServer3D::BODY_MODE_KINEMATIC) { return; } set_active(true); } void set_param(PhysicsServer3D::BodyParameter p_param, real_t); real_t get_param(PhysicsServer3D::BodyParameter p_param) const; void set_mode(PhysicsServer3D::BodyMode p_mode); PhysicsServer3D::BodyMode get_mode() const; void set_state(PhysicsServer3D::BodyState p_state, const Variant &p_variant); Variant get_state(PhysicsServer3D::BodyState p_state) const; void set_applied_force(const Vector3 &p_force) { applied_force = p_force; } Vector3 get_applied_force() const { return applied_force; } void set_applied_torque(const Vector3 &p_torque) { applied_torque = p_torque; } Vector3 get_applied_torque() const { return applied_torque; } _FORCE_INLINE_ void set_continuous_collision_detection(bool p_enable) { continuous_cd = p_enable; } _FORCE_INLINE_ bool is_continuous_collision_detection_enabled() const { return continuous_cd; } void set_space(Space3DSW *p_space); void update_inertias(); _FORCE_INLINE_ real_t get_inv_mass() const { return _inv_mass; } _FORCE_INLINE_ const Vector3 &get_inv_inertia() const { return _inv_inertia; } _FORCE_INLINE_ const Basis &get_inv_inertia_tensor() const { return _inv_inertia_tensor; } _FORCE_INLINE_ real_t get_friction() const { return friction; } _FORCE_INLINE_ const Vector3 &get_gravity() const { return gravity; } _FORCE_INLINE_ real_t get_bounce() const { return bounce; } void set_axis_lock(PhysicsServer3D::BodyAxis p_axis, bool lock); bool is_axis_locked(PhysicsServer3D::BodyAxis p_axis) const; void integrate_forces(real_t p_step); void integrate_velocities(real_t p_step); _FORCE_INLINE_ Vector3 get_velocity_in_local_point(const Vector3 &rel_pos) const { return linear_velocity + angular_velocity.cross(rel_pos - center_of_mass); } _FORCE_INLINE_ real_t compute_impulse_denominator(const Vector3 &p_pos, const Vector3 &p_normal) const { Vector3 r0 = p_pos - get_transform().origin - center_of_mass; Vector3 c0 = (r0).cross(p_normal); Vector3 vec = (_inv_inertia_tensor.xform_inv(c0)).cross(r0); return _inv_mass + p_normal.dot(vec); } _FORCE_INLINE_ real_t compute_angular_impulse_denominator(const Vector3 &p_axis) const { return p_axis.dot(_inv_inertia_tensor.xform_inv(p_axis)); } //void simulate_motion(const Transform3D& p_xform,real_t p_step); void call_queries(); void wakeup_neighbours(); bool sleep_test(real_t p_step); Body3DSW(); ~Body3DSW(); }; //add contact inline void Body3DSW::add_contact(const Vector3 &p_local_pos, const Vector3 &p_local_normal, real_t p_depth, int p_local_shape, const Vector3 &p_collider_pos, int p_collider_shape, ObjectID p_collider_instance_id, const RID &p_collider, const Vector3 &p_collider_velocity_at_pos) { int c_max = contacts.size(); if (c_max == 0) { return; } Contact *c = contacts.ptrw(); int idx = -1; if (contact_count < c_max) { idx = contact_count++; } else { real_t least_depth = 1e20; int least_deep = -1; for (int i = 0; i < c_max; i++) { if (i == 0 || c[i].depth < least_depth) { least_deep = i; least_depth = c[i].depth; } } if (least_deep >= 0 && least_depth < p_depth) { idx = least_deep; } if (idx == -1) { return; //none least deepe than this } } c[idx].local_pos = p_local_pos; c[idx].local_normal = p_local_normal; c[idx].depth = p_depth; c[idx].local_shape = p_local_shape; c[idx].collider_pos = p_collider_pos; c[idx].collider_shape = p_collider_shape; c[idx].collider_instance_id = p_collider_instance_id; c[idx].collider = p_collider; c[idx].collider_velocity_at_pos = p_collider_velocity_at_pos; } #endif // BODY_3D_SW_H