/*************************************************************************/ /* space_2d_sw.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* http://www.godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2017 Godot Engine contributors (cf. AUTHORS.md) */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "space_2d_sw.h" #include "collision_solver_2d_sw.h" #include "physics_2d_server_sw.h" _FORCE_INLINE_ static bool _match_object_type_query(CollisionObject2DSW *p_object, uint32_t p_collision_layer, uint32_t p_type_mask) { if ((p_object->get_collision_layer() & p_collision_layer) == 0) return false; if (p_object->get_type() == CollisionObject2DSW::TYPE_AREA) return p_type_mask & Physics2DDirectSpaceState::TYPE_MASK_AREA; Body2DSW *body = static_cast(p_object); return (1 << body->get_mode()) & p_type_mask; } int Physics2DDirectSpaceStateSW::intersect_point(const Vector2 &p_point, ShapeResult *r_results, int p_result_max, const Set &p_exclude, uint32_t p_collision_layer, uint32_t p_object_type_mask, bool p_pick_point) { if (p_result_max <= 0) return 0; Rect2 aabb; aabb.position = p_point - Vector2(0.00001, 0.00001); aabb.size = Vector2(0.00002, 0.00002); int amount = space->broadphase->cull_aabb(aabb, space->intersection_query_results, Space2DSW::INTERSECTION_QUERY_MAX, space->intersection_query_subindex_results); int cc = 0; for (int i = 0; i < amount; i++) { if (!_match_object_type_query(space->intersection_query_results[i], p_collision_layer, p_object_type_mask)) continue; if (p_exclude.has(space->intersection_query_results[i]->get_self())) continue; const CollisionObject2DSW *col_obj = space->intersection_query_results[i]; if (p_pick_point && !col_obj->is_pickable()) continue; int shape_idx = space->intersection_query_subindex_results[i]; Shape2DSW *shape = col_obj->get_shape(shape_idx); Vector2 local_point = (col_obj->get_transform() * col_obj->get_shape_transform(shape_idx)).affine_inverse().xform(p_point); if (!shape->contains_point(local_point)) continue; if (cc >= p_result_max) continue; r_results[cc].collider_id = col_obj->get_instance_id(); if (r_results[cc].collider_id != 0) r_results[cc].collider = ObjectDB::get_instance(r_results[cc].collider_id); r_results[cc].rid = col_obj->get_self(); r_results[cc].shape = shape_idx; r_results[cc].metadata = col_obj->get_shape_metadata(shape_idx); cc++; } return cc; } bool Physics2DDirectSpaceStateSW::intersect_ray(const Vector2 &p_from, const Vector2 &p_to, RayResult &r_result, const Set &p_exclude, uint32_t p_collision_layer, uint32_t p_object_type_mask) { ERR_FAIL_COND_V(space->locked, false); Vector2 begin, end; Vector2 normal; begin = p_from; end = p_to; normal = (end - begin).normalized(); int amount = space->broadphase->cull_segment(begin, end, space->intersection_query_results, Space2DSW::INTERSECTION_QUERY_MAX, space->intersection_query_subindex_results); //todo, create another array tha references results, compute AABBs and check closest point to ray origin, sort, and stop evaluating results when beyond first collision bool collided = false; Vector2 res_point, res_normal; int res_shape; const CollisionObject2DSW *res_obj; real_t min_d = 1e10; for (int i = 0; i < amount; i++) { if (!_match_object_type_query(space->intersection_query_results[i], p_collision_layer, p_object_type_mask)) continue; if (p_exclude.has(space->intersection_query_results[i]->get_self())) continue; const CollisionObject2DSW *col_obj = space->intersection_query_results[i]; int shape_idx = space->intersection_query_subindex_results[i]; Transform2D inv_xform = col_obj->get_shape_inv_transform(shape_idx) * col_obj->get_inv_transform(); Vector2 local_from = inv_xform.xform(begin); Vector2 local_to = inv_xform.xform(end); /*local_from = col_obj->get_inv_transform().xform(begin); local_from = col_obj->get_shape_inv_transform(shape_idx).xform(local_from); local_to = col_obj->get_inv_transform().xform(end); local_to = col_obj->get_shape_inv_transform(shape_idx).xform(local_to);*/ const Shape2DSW *shape = col_obj->get_shape(shape_idx); Vector2 shape_point, shape_normal; if (shape->intersect_segment(local_from, local_to, shape_point, shape_normal)) { Transform2D xform = col_obj->get_transform() * col_obj->get_shape_transform(shape_idx); shape_point = xform.xform(shape_point); real_t ld = normal.dot(shape_point); if (ld < min_d) { min_d = ld; res_point = shape_point; res_normal = inv_xform.basis_xform_inv(shape_normal).normalized(); res_shape = shape_idx; res_obj = col_obj; collided = true; } } } if (!collided) return false; r_result.collider_id = res_obj->get_instance_id(); if (r_result.collider_id != 0) r_result.collider = ObjectDB::get_instance(r_result.collider_id); r_result.normal = res_normal; r_result.metadata = res_obj->get_shape_metadata(res_shape); r_result.position = res_point; r_result.rid = res_obj->get_self(); r_result.shape = res_shape; return true; } int Physics2DDirectSpaceStateSW::intersect_shape(const RID &p_shape, const Transform2D &p_xform, const Vector2 &p_motion, real_t p_margin, ShapeResult *r_results, int p_result_max, const Set &p_exclude, uint32_t p_collision_layer, uint32_t p_object_type_mask) { if (p_result_max <= 0) return 0; Shape2DSW *shape = Physics2DServerSW::singletonsw->shape_owner.get(p_shape); ERR_FAIL_COND_V(!shape, 0); Rect2 aabb = p_xform.xform(shape->get_aabb()); aabb = aabb.grow(p_margin); int amount = space->broadphase->cull_aabb(aabb, space->intersection_query_results, p_result_max, space->intersection_query_subindex_results); int cc = 0; for (int i = 0; i < amount; i++) { if (!_match_object_type_query(space->intersection_query_results[i], p_collision_layer, p_object_type_mask)) continue; if (p_exclude.has(space->intersection_query_results[i]->get_self())) continue; const CollisionObject2DSW *col_obj = space->intersection_query_results[i]; int shape_idx = space->intersection_query_subindex_results[i]; if (!CollisionSolver2DSW::solve(shape, p_xform, p_motion, col_obj->get_shape(shape_idx), col_obj->get_transform() * col_obj->get_shape_transform(shape_idx), Vector2(), NULL, NULL, NULL, p_margin)) continue; r_results[cc].collider_id = col_obj->get_instance_id(); if (r_results[cc].collider_id != 0) r_results[cc].collider = ObjectDB::get_instance(r_results[cc].collider_id); r_results[cc].rid = col_obj->get_self(); r_results[cc].shape = shape_idx; r_results[cc].metadata = col_obj->get_shape_metadata(shape_idx); cc++; } return cc; } bool Physics2DDirectSpaceStateSW::cast_motion(const RID &p_shape, const Transform2D &p_xform, const Vector2 &p_motion, real_t p_margin, real_t &p_closest_safe, real_t &p_closest_unsafe, const Set &p_exclude, uint32_t p_collision_layer, uint32_t p_object_type_mask) { Shape2DSW *shape = Physics2DServerSW::singletonsw->shape_owner.get(p_shape); ERR_FAIL_COND_V(!shape, false); Rect2 aabb = p_xform.xform(shape->get_aabb()); aabb = aabb.merge(Rect2(aabb.position + p_motion, aabb.size)); //motion aabb = aabb.grow(p_margin); /* if (p_motion!=Vector2()) print_line(p_motion); */ int amount = space->broadphase->cull_aabb(aabb, space->intersection_query_results, Space2DSW::INTERSECTION_QUERY_MAX, space->intersection_query_subindex_results); real_t best_safe = 1; real_t best_unsafe = 1; for (int i = 0; i < amount; i++) { if (!_match_object_type_query(space->intersection_query_results[i], p_collision_layer, p_object_type_mask)) continue; if (p_exclude.has(space->intersection_query_results[i]->get_self())) continue; //ignore excluded const CollisionObject2DSW *col_obj = space->intersection_query_results[i]; int shape_idx = space->intersection_query_subindex_results[i]; /*if (col_obj->get_type()==CollisionObject2DSW::TYPE_BODY) { const Body2DSW *body=static_cast(col_obj); if (body->get_one_way_collision_direction()!=Vector2() && p_motion.dot(body->get_one_way_collision_direction())<=CMP_EPSILON) { print_line("failed in motion dir"); continue; } }*/ Transform2D col_obj_xform = col_obj->get_transform() * col_obj->get_shape_transform(shape_idx); //test initial overlap, does it collide if going all the way? if (!CollisionSolver2DSW::solve(shape, p_xform, p_motion, col_obj->get_shape(shape_idx), col_obj_xform, Vector2(), NULL, NULL, NULL, p_margin)) { continue; } //test initial overlap if (CollisionSolver2DSW::solve(shape, p_xform, Vector2(), col_obj->get_shape(shape_idx), col_obj_xform, Vector2(), NULL, NULL, NULL, p_margin)) { return false; } //just do kinematic solving real_t low = 0; real_t hi = 1; Vector2 mnormal = p_motion.normalized(); for (int i = 0; i < 8; i++) { //steps should be customizable.. real_t ofs = (low + hi) * 0.5; Vector2 sep = mnormal; //important optimization for this to work fast enough bool collided = CollisionSolver2DSW::solve(shape, p_xform, p_motion * ofs, col_obj->get_shape(shape_idx), col_obj_xform, Vector2(), NULL, NULL, &sep, p_margin); if (collided) { hi = ofs; } else { low = ofs; } } if (low < best_safe) { best_safe = low; best_unsafe = hi; } } p_closest_safe = best_safe; p_closest_unsafe = best_unsafe; return true; } bool Physics2DDirectSpaceStateSW::collide_shape(RID p_shape, const Transform2D &p_shape_xform, const Vector2 &p_motion, real_t p_margin, Vector2 *r_results, int p_result_max, int &r_result_count, const Set &p_exclude, uint32_t p_collision_layer, uint32_t p_object_type_mask) { if (p_result_max <= 0) return 0; Shape2DSW *shape = Physics2DServerSW::singletonsw->shape_owner.get(p_shape); ERR_FAIL_COND_V(!shape, 0); Rect2 aabb = p_shape_xform.xform(shape->get_aabb()); aabb = aabb.merge(Rect2(aabb.position + p_motion, aabb.size)); //motion aabb = aabb.grow(p_margin); int amount = space->broadphase->cull_aabb(aabb, space->intersection_query_results, Space2DSW::INTERSECTION_QUERY_MAX, space->intersection_query_subindex_results); bool collided = false; r_result_count = 0; Physics2DServerSW::CollCbkData cbk; cbk.max = p_result_max; cbk.amount = 0; cbk.ptr = r_results; CollisionSolver2DSW::CallbackResult cbkres = NULL; Physics2DServerSW::CollCbkData *cbkptr = NULL; if (p_result_max > 0) { cbkptr = &cbk; cbkres = Physics2DServerSW::_shape_col_cbk; } for (int i = 0; i < amount; i++) { if (!_match_object_type_query(space->intersection_query_results[i], p_collision_layer, p_object_type_mask)) continue; const CollisionObject2DSW *col_obj = space->intersection_query_results[i]; int shape_idx = space->intersection_query_subindex_results[i]; if (p_exclude.has(col_obj->get_self())) continue; cbk.valid_dir = Vector2(); cbk.valid_depth = 0; if (CollisionSolver2DSW::solve(shape, p_shape_xform, p_motion, col_obj->get_shape(shape_idx), col_obj->get_transform() * col_obj->get_shape_transform(shape_idx), Vector2(), cbkres, cbkptr, NULL, p_margin)) { collided = p_result_max == 0 || cbk.amount > 0; } } r_result_count = cbk.amount; return collided; } struct _RestCallbackData2D { const CollisionObject2DSW *object; const CollisionObject2DSW *best_object; int shape; int best_shape; Vector2 best_contact; Vector2 best_normal; real_t best_len; Vector2 valid_dir; real_t valid_depth; }; static void _rest_cbk_result(const Vector2 &p_point_A, const Vector2 &p_point_B, void *p_userdata) { _RestCallbackData2D *rd = (_RestCallbackData2D *)p_userdata; if (rd->valid_dir != Vector2()) { if (p_point_A.distance_squared_to(p_point_B) > rd->valid_depth * rd->valid_depth) return; if (rd->valid_dir.dot((p_point_A - p_point_B).normalized()) < Math_PI * 0.25) return; } Vector2 contact_rel = p_point_B - p_point_A; real_t len = contact_rel.length(); if (len <= rd->best_len) return; rd->best_len = len; rd->best_contact = p_point_B; rd->best_normal = contact_rel / len; rd->best_object = rd->object; rd->best_shape = rd->shape; } bool Physics2DDirectSpaceStateSW::rest_info(RID p_shape, const Transform2D &p_shape_xform, const Vector2 &p_motion, real_t p_margin, ShapeRestInfo *r_info, const Set &p_exclude, uint32_t p_collision_layer, uint32_t p_object_type_mask) { Shape2DSW *shape = Physics2DServerSW::singletonsw->shape_owner.get(p_shape); ERR_FAIL_COND_V(!shape, 0); Rect2 aabb = p_shape_xform.xform(shape->get_aabb()); aabb = aabb.merge(Rect2(aabb.position + p_motion, aabb.size)); //motion aabb = aabb.grow(p_margin); int amount = space->broadphase->cull_aabb(aabb, space->intersection_query_results, Space2DSW::INTERSECTION_QUERY_MAX, space->intersection_query_subindex_results); _RestCallbackData2D rcd; rcd.best_len = 0; rcd.best_object = NULL; rcd.best_shape = 0; for (int i = 0; i < amount; i++) { if (!_match_object_type_query(space->intersection_query_results[i], p_collision_layer, p_object_type_mask)) continue; const CollisionObject2DSW *col_obj = space->intersection_query_results[i]; int shape_idx = space->intersection_query_subindex_results[i]; if (p_exclude.has(col_obj->get_self())) continue; rcd.valid_dir = Vector2(); rcd.valid_depth = 0; rcd.object = col_obj; rcd.shape = shape_idx; bool sc = CollisionSolver2DSW::solve(shape, p_shape_xform, p_motion, col_obj->get_shape(shape_idx), col_obj->get_transform() * col_obj->get_shape_transform(shape_idx), Vector2(), _rest_cbk_result, &rcd, NULL, p_margin); if (!sc) continue; } if (rcd.best_len == 0) return false; r_info->collider_id = rcd.best_object->get_instance_id(); r_info->shape = rcd.best_shape; r_info->normal = rcd.best_normal; r_info->point = rcd.best_contact; r_info->rid = rcd.best_object->get_self(); r_info->metadata = rcd.best_object->get_shape_metadata(rcd.best_shape); if (rcd.best_object->get_type() == CollisionObject2DSW::TYPE_BODY) { const Body2DSW *body = static_cast(rcd.best_object); Vector2 rel_vec = r_info->point - body->get_transform().get_origin(); r_info->linear_velocity = Vector2(-body->get_angular_velocity() * rel_vec.y, body->get_angular_velocity() * rel_vec.x) + body->get_linear_velocity(); } else { r_info->linear_velocity = Vector2(); } return true; } Physics2DDirectSpaceStateSW::Physics2DDirectSpaceStateSW() { space = NULL; } //////////////////////////////////////////////////////////////////////////////////////////////////////////// int Space2DSW::_cull_aabb_for_body(Body2DSW *p_body, const Rect2 &p_aabb) { int amount = broadphase->cull_aabb(p_aabb, intersection_query_results, INTERSECTION_QUERY_MAX, intersection_query_subindex_results); for (int i = 0; i < amount; i++) { bool keep = true; if (intersection_query_results[i] == p_body) keep = false; else if (intersection_query_results[i]->get_type() == CollisionObject2DSW::TYPE_AREA) keep = false; else if ((static_cast(intersection_query_results[i])->test_collision_mask(p_body)) == 0) keep = false; else if (static_cast(intersection_query_results[i])->has_exception(p_body->get_self()) || p_body->has_exception(intersection_query_results[i]->get_self())) keep = false; else if (static_cast(intersection_query_results[i])->is_shape_set_as_disabled(intersection_query_subindex_results[i])) keep = false; if (!keep) { if (i < amount - 1) { SWAP(intersection_query_results[i], intersection_query_results[amount - 1]); SWAP(intersection_query_subindex_results[i], intersection_query_subindex_results[amount - 1]); } amount--; i--; } } return amount; } bool Space2DSW::test_body_motion(Body2DSW *p_body, const Transform2D &p_from, const Vector2 &p_motion, real_t p_margin, Physics2DServer::MotionResult *r_result) { //give me back regular physics engine logic //this is madness //and most people using this function will think //what it does is simpler than using physics //this took about a week to get right.. //but is it right? who knows at this point.. if (r_result) { r_result->collider_id = 0; r_result->collider_shape = 0; } Rect2 body_aabb; for (int i = 0; i < p_body->get_shape_count(); i++) { if (i == 0) body_aabb = p_body->get_shape_aabb(i); else body_aabb = body_aabb.merge(p_body->get_shape_aabb(i)); } // Undo the currently transform the physics server is aware of and apply the provided one body_aabb = p_from.xform(p_body->get_inv_transform().xform(body_aabb)); body_aabb = body_aabb.grow(p_margin); Transform2D body_transform = p_from; { //STEP 1, FREE BODY IF STUCK const int max_results = 32; int recover_attempts = 4; Vector2 sr[max_results * 2]; do { Physics2DServerSW::CollCbkData cbk; cbk.max = max_results; cbk.amount = 0; cbk.ptr = sr; CollisionSolver2DSW::CallbackResult cbkres = NULL; Physics2DServerSW::CollCbkData *cbkptr = NULL; cbkptr = &cbk; cbkres = Physics2DServerSW::_shape_col_cbk; bool collided = false; int amount = _cull_aabb_for_body(p_body, body_aabb); for (int j = 0; j < p_body->get_shape_count(); j++) { if (p_body->is_shape_set_as_disabled(j)) continue; Transform2D body_shape_xform = body_transform * p_body->get_shape_transform(j); Shape2DSW *body_shape = p_body->get_shape(j); for (int i = 0; i < amount; i++) { const CollisionObject2DSW *col_obj = intersection_query_results[i]; int shape_idx = intersection_query_subindex_results[i]; if (col_obj->is_shape_set_as_one_way_collision(j)) { cbk.valid_dir = body_shape_xform.get_axis(1).normalized(); cbk.valid_depth = p_margin; //only valid depth is the collision margin } else { cbk.valid_dir = Vector2(); cbk.valid_depth = 0; } if (CollisionSolver2DSW::solve(body_shape, body_shape_xform, Vector2(), col_obj->get_shape(shape_idx), col_obj->get_transform() * col_obj->get_shape_transform(shape_idx), Vector2(), cbkres, cbkptr, NULL, p_margin)) { collided = cbk.amount > 0; } } } if (!collided) { break; } Vector2 recover_motion; for (int i = 0; i < cbk.amount; i++) { Vector2 a = sr[i * 2 + 0]; Vector2 b = sr[i * 2 + 1]; #if 0 Vector2 rel = b-a; real_t d = rel.length(); if (d==0) continue; Vector2 n = rel/d; real_t traveled = n.dot(recover_motion); a+=n*traveled; real_t d = a.distance_to(b); if (dget_shape_count(); j++) { if (p_body->is_shape_set_as_disabled(j)) continue; Transform2D body_shape_xform = body_transform * p_body->get_shape_transform(j); Shape2DSW *body_shape = p_body->get_shape(j); bool stuck = false; real_t best_safe = 1; real_t best_unsafe = 1; for (int i = 0; i < amount; i++) { const CollisionObject2DSW *col_obj = intersection_query_results[i]; int shape_idx = intersection_query_subindex_results[i]; Transform2D col_obj_xform = col_obj->get_transform() * col_obj->get_shape_transform(shape_idx); //test initial overlap, does it collide if going all the way? if (!CollisionSolver2DSW::solve(body_shape, body_shape_xform, p_motion, col_obj->get_shape(shape_idx), col_obj_xform, Vector2(), NULL, NULL, NULL, 0)) { continue; } //test initial overlap if (CollisionSolver2DSW::solve(body_shape, body_shape_xform, Vector2(), col_obj->get_shape(shape_idx), col_obj_xform, Vector2(), NULL, NULL, NULL, 0)) { if (col_obj->is_shape_set_as_one_way_collision(j)) { continue; } stuck = true; break; } //just do kinematic solving real_t low = 0; real_t hi = 1; Vector2 mnormal = p_motion.normalized(); for (int k = 0; k < 8; k++) { //steps should be customizable.. real_t ofs = (low + hi) * 0.5; Vector2 sep = mnormal; //important optimization for this to work fast enough bool collided = CollisionSolver2DSW::solve(body_shape, body_shape_xform, p_motion * ofs, col_obj->get_shape(shape_idx), col_obj_xform, Vector2(), NULL, NULL, &sep, 0); if (collided) { hi = ofs; } else { low = ofs; } } if (col_obj->get_type() == CollisionObject2DSW::TYPE_BODY) { const Body2DSW *body = static_cast(col_obj); if (col_obj->is_shape_set_as_one_way_collision(j)) { Vector2 cd[2]; Physics2DServerSW::CollCbkData cbk; cbk.max = 1; cbk.amount = 0; cbk.ptr = cd; cbk.valid_dir = body_shape_xform.get_axis(1).normalized(); ; cbk.valid_depth = 10e20; Vector2 sep = mnormal; //important optimization for this to work fast enough bool collided = CollisionSolver2DSW::solve(body_shape, body_shape_xform, p_motion * (hi + contact_max_allowed_penetration), col_obj->get_shape(shape_idx), col_obj_xform, Vector2(), Physics2DServerSW::_shape_col_cbk, &cbk, &sep, 0); if (!collided || cbk.amount == 0) { continue; } } } if (low < best_safe) { best_safe = low; best_unsafe = hi; } } if (stuck) { safe = 0; unsafe = 0; best_shape = j; //sadly it's the best break; } if (best_safe == 1.0) { continue; } if (best_safe < safe) { safe = best_safe; unsafe = best_unsafe; best_shape = j; } } } bool collided = false; if (safe >= 1) { //not collided collided = false; if (r_result) { r_result->motion = p_motion; r_result->remainder = Vector2(); r_result->motion += (body_transform.get_origin() - p_from.get_origin()); } } else { //it collided, let's get the rest info in unsafe advance Transform2D ugt = body_transform; ugt.elements[2] += p_motion * unsafe; _RestCallbackData2D rcd; rcd.best_len = 0; rcd.best_object = NULL; rcd.best_shape = 0; Transform2D body_shape_xform = ugt * p_body->get_shape_transform(best_shape); Shape2DSW *body_shape = p_body->get_shape(best_shape); body_aabb.position += p_motion * unsafe; int amount = _cull_aabb_for_body(p_body, body_aabb); for (int i = 0; i < amount; i++) { const CollisionObject2DSW *col_obj = intersection_query_results[i]; int shape_idx = intersection_query_subindex_results[i]; if (col_obj->is_shape_set_as_one_way_collision(shape_idx)) { rcd.valid_dir = body_shape_xform.get_axis(1).normalized(); rcd.valid_depth = 10e20; } else { rcd.valid_dir = Vector2(); rcd.valid_depth = 0; } rcd.object = col_obj; rcd.shape = shape_idx; bool sc = CollisionSolver2DSW::solve(body_shape, body_shape_xform, Vector2(), col_obj->get_shape(shape_idx), col_obj->get_transform() * col_obj->get_shape_transform(shape_idx), Vector2(), _rest_cbk_result, &rcd, NULL, p_margin); if (!sc) continue; } if (rcd.best_len != 0) { if (r_result) { r_result->collider = rcd.best_object->get_self(); r_result->collider_id = rcd.best_object->get_instance_id(); r_result->collider_shape = rcd.best_shape; r_result->collision_local_shape = best_shape; r_result->collision_normal = rcd.best_normal; r_result->collision_point = rcd.best_contact; r_result->collider_metadata = rcd.best_object->get_shape_metadata(rcd.best_shape); const Body2DSW *body = static_cast(rcd.best_object); Vector2 rel_vec = r_result->collision_point - body->get_transform().get_origin(); r_result->collider_velocity = Vector2(-body->get_angular_velocity() * rel_vec.y, body->get_angular_velocity() * rel_vec.x) + body->get_linear_velocity(); r_result->motion = safe * p_motion; r_result->remainder = p_motion - safe * p_motion; r_result->motion += (body_transform.get_origin() - p_from.get_origin()); } collided = true; } else { if (r_result) { r_result->motion = p_motion; r_result->remainder = Vector2(); r_result->motion += (body_transform.get_origin() - p_from.get_origin()); } collided = false; } } return collided; } void *Space2DSW::_broadphase_pair(CollisionObject2DSW *A, int p_subindex_A, CollisionObject2DSW *B, int p_subindex_B, void *p_self) { CollisionObject2DSW::Type type_A = A->get_type(); CollisionObject2DSW::Type type_B = B->get_type(); if (type_A > type_B) { SWAP(A, B); SWAP(p_subindex_A, p_subindex_B); SWAP(type_A, type_B); } Space2DSW *self = (Space2DSW *)p_self; self->collision_pairs++; if (type_A == CollisionObject2DSW::TYPE_AREA) { Area2DSW *area = static_cast(A); if (type_B == CollisionObject2DSW::TYPE_AREA) { Area2DSW *area_b = static_cast(B); Area2Pair2DSW *area2_pair = memnew(Area2Pair2DSW(area_b, p_subindex_B, area, p_subindex_A)); return area2_pair; } else { Body2DSW *body = static_cast(B); AreaPair2DSW *area_pair = memnew(AreaPair2DSW(body, p_subindex_B, area, p_subindex_A)); return area_pair; } } else { BodyPair2DSW *b = memnew(BodyPair2DSW((Body2DSW *)A, p_subindex_A, (Body2DSW *)B, p_subindex_B)); return b; } return NULL; } void Space2DSW::_broadphase_unpair(CollisionObject2DSW *A, int p_subindex_A, CollisionObject2DSW *B, int p_subindex_B, void *p_data, void *p_self) { Space2DSW *self = (Space2DSW *)p_self; self->collision_pairs--; Constraint2DSW *c = (Constraint2DSW *)p_data; memdelete(c); } const SelfList::List &Space2DSW::get_active_body_list() const { return active_list; } void Space2DSW::body_add_to_active_list(SelfList *p_body) { active_list.add(p_body); } void Space2DSW::body_remove_from_active_list(SelfList *p_body) { active_list.remove(p_body); } void Space2DSW::body_add_to_inertia_update_list(SelfList *p_body) { inertia_update_list.add(p_body); } void Space2DSW::body_remove_from_inertia_update_list(SelfList *p_body) { inertia_update_list.remove(p_body); } BroadPhase2DSW *Space2DSW::get_broadphase() { return broadphase; } void Space2DSW::add_object(CollisionObject2DSW *p_object) { ERR_FAIL_COND(objects.has(p_object)); objects.insert(p_object); } void Space2DSW::remove_object(CollisionObject2DSW *p_object) { ERR_FAIL_COND(!objects.has(p_object)); objects.erase(p_object); } const Set &Space2DSW::get_objects() const { return objects; } void Space2DSW::body_add_to_state_query_list(SelfList *p_body) { state_query_list.add(p_body); } void Space2DSW::body_remove_from_state_query_list(SelfList *p_body) { state_query_list.remove(p_body); } void Space2DSW::area_add_to_monitor_query_list(SelfList *p_area) { monitor_query_list.add(p_area); } void Space2DSW::area_remove_from_monitor_query_list(SelfList *p_area) { monitor_query_list.remove(p_area); } void Space2DSW::area_add_to_moved_list(SelfList *p_area) { area_moved_list.add(p_area); } void Space2DSW::area_remove_from_moved_list(SelfList *p_area) { area_moved_list.remove(p_area); } const SelfList::List &Space2DSW::get_moved_area_list() const { return area_moved_list; } void Space2DSW::call_queries() { while (state_query_list.first()) { Body2DSW *b = state_query_list.first()->self(); b->call_queries(); state_query_list.remove(state_query_list.first()); } while (monitor_query_list.first()) { Area2DSW *a = monitor_query_list.first()->self(); a->call_queries(); monitor_query_list.remove(monitor_query_list.first()); } } void Space2DSW::setup() { contact_debug_count = 0; while (inertia_update_list.first()) { inertia_update_list.first()->self()->update_inertias(); inertia_update_list.remove(inertia_update_list.first()); } } void Space2DSW::update() { broadphase->update(); } void Space2DSW::set_param(Physics2DServer::SpaceParameter p_param, real_t p_value) { switch (p_param) { case Physics2DServer::SPACE_PARAM_CONTACT_RECYCLE_RADIUS: contact_recycle_radius = p_value; break; case Physics2DServer::SPACE_PARAM_CONTACT_MAX_SEPARATION: contact_max_separation = p_value; break; case Physics2DServer::SPACE_PARAM_BODY_MAX_ALLOWED_PENETRATION: contact_max_allowed_penetration = p_value; break; case Physics2DServer::SPACE_PARAM_BODY_LINEAR_VELOCITY_SLEEP_THRESHOLD: body_linear_velocity_sleep_threshold = p_value; break; case Physics2DServer::SPACE_PARAM_BODY_ANGULAR_VELOCITY_SLEEP_THRESHOLD: body_angular_velocity_sleep_threshold = p_value; break; case Physics2DServer::SPACE_PARAM_BODY_TIME_TO_SLEEP: body_time_to_sleep = p_value; break; case Physics2DServer::SPACE_PARAM_CONSTRAINT_DEFAULT_BIAS: constraint_bias = p_value; break; } } real_t Space2DSW::get_param(Physics2DServer::SpaceParameter p_param) const { switch (p_param) { case Physics2DServer::SPACE_PARAM_CONTACT_RECYCLE_RADIUS: return contact_recycle_radius; case Physics2DServer::SPACE_PARAM_CONTACT_MAX_SEPARATION: return contact_max_separation; case Physics2DServer::SPACE_PARAM_BODY_MAX_ALLOWED_PENETRATION: return contact_max_allowed_penetration; case Physics2DServer::SPACE_PARAM_BODY_LINEAR_VELOCITY_SLEEP_THRESHOLD: return body_linear_velocity_sleep_threshold; case Physics2DServer::SPACE_PARAM_BODY_ANGULAR_VELOCITY_SLEEP_THRESHOLD: return body_angular_velocity_sleep_threshold; case Physics2DServer::SPACE_PARAM_BODY_TIME_TO_SLEEP: return body_time_to_sleep; case Physics2DServer::SPACE_PARAM_CONSTRAINT_DEFAULT_BIAS: return constraint_bias; } return 0; } void Space2DSW::lock() { locked = true; } void Space2DSW::unlock() { locked = false; } bool Space2DSW::is_locked() const { return locked; } Physics2DDirectSpaceStateSW *Space2DSW::get_direct_state() { return direct_access; } Space2DSW::Space2DSW() { collision_pairs = 0; active_objects = 0; island_count = 0; contact_debug_count = 0; locked = false; contact_recycle_radius = 1.0; contact_max_separation = 1.5; contact_max_allowed_penetration = 0.3; constraint_bias = 0.2; body_linear_velocity_sleep_threshold = GLOBAL_DEF("physics/2d/sleep_threshold_linear", 2.0); body_angular_velocity_sleep_threshold = GLOBAL_DEF("physics/2d/sleep_threshold_angular", (8.0 / 180.0 * Math_PI)); body_time_to_sleep = GLOBAL_DEF("physics/2d/time_before_sleep", 0.5); broadphase = BroadPhase2DSW::create_func(); broadphase->set_pair_callback(_broadphase_pair, this); broadphase->set_unpair_callback(_broadphase_unpair, this); area = NULL; direct_access = memnew(Physics2DDirectSpaceStateSW); direct_access->space = this; for (int i = 0; i < ELAPSED_TIME_MAX; i++) elapsed_time[i] = 0; } Space2DSW::~Space2DSW() { memdelete(broadphase); memdelete(direct_access); }