/*************************************************************************/ /* godot_body_pair_2d.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "godot_body_pair_2d.h" #include "godot_collision_solver_2d.h" #include "godot_space_2d.h" #define ACCUMULATE_IMPULSES #define MIN_VELOCITY 0.001 #define MAX_BIAS_ROTATION (Math_PI / 8) void GodotBodyPair2D::_add_contact(const Vector2 &p_point_A, const Vector2 &p_point_B, void *p_self) { GodotBodyPair2D *self = static_cast(p_self); self->_contact_added_callback(p_point_A, p_point_B); } void GodotBodyPair2D::_contact_added_callback(const Vector2 &p_point_A, const Vector2 &p_point_B) { Vector2 local_A = A->get_inv_transform().basis_xform(p_point_A); Vector2 local_B = B->get_inv_transform().basis_xform(p_point_B - offset_B); int new_index = contact_count; ERR_FAIL_COND(new_index >= (MAX_CONTACTS + 1)); Contact contact; contact.local_A = local_A; contact.local_B = local_B; contact.normal = (p_point_A - p_point_B).normalized(); contact.used = true; // Attempt to determine if the contact will be reused. real_t recycle_radius_2 = space->get_contact_recycle_radius() * space->get_contact_recycle_radius(); for (int i = 0; i < contact_count; i++) { Contact &c = contacts[i]; if (c.local_A.distance_squared_to(local_A) < (recycle_radius_2) && c.local_B.distance_squared_to(local_B) < (recycle_radius_2)) { contact.acc_normal_impulse = c.acc_normal_impulse; contact.acc_tangent_impulse = c.acc_tangent_impulse; contact.acc_bias_impulse = c.acc_bias_impulse; contact.acc_bias_impulse_center_of_mass = c.acc_bias_impulse_center_of_mass; c = contact; return; } } // Figure out if the contact amount must be reduced to fit the new contact. if (new_index == MAX_CONTACTS) { // Remove the contact with the minimum depth. const Transform2D &transform_A = A->get_transform(); const Transform2D &transform_B = B->get_transform(); int least_deep = -1; real_t min_depth; // Start with depth for new contact. { Vector2 global_A = transform_A.basis_xform(contact.local_A); Vector2 global_B = transform_B.basis_xform(contact.local_B) + offset_B; Vector2 axis = global_A - global_B; min_depth = axis.dot(contact.normal); } for (int i = 0; i < contact_count; i++) { const Contact &c = contacts[i]; Vector2 global_A = transform_A.basis_xform(c.local_A); Vector2 global_B = transform_B.basis_xform(c.local_B) + offset_B; Vector2 axis = global_A - global_B; real_t depth = axis.dot(c.normal); if (depth < min_depth) { min_depth = depth; least_deep = i; } } if (least_deep > -1) { // Replace the least deep contact by the new one. contacts[least_deep] = contact; } return; } contacts[new_index] = contact; contact_count++; } void GodotBodyPair2D::_validate_contacts() { // Make sure to erase contacts that are no longer valid. real_t max_separation = space->get_contact_max_separation(); real_t max_separation2 = max_separation * max_separation; const Transform2D &transform_A = A->get_transform(); const Transform2D &transform_B = B->get_transform(); for (int i = 0; i < contact_count; i++) { Contact &c = contacts[i]; bool erase = false; if (!c.used) { // Was left behind in previous frame. erase = true; } else { c.used = false; Vector2 global_A = transform_A.basis_xform(c.local_A); Vector2 global_B = transform_B.basis_xform(c.local_B) + offset_B; Vector2 axis = global_A - global_B; real_t depth = axis.dot(c.normal); if (depth < -max_separation || (global_B + c.normal * depth - global_A).length_squared() > max_separation2) { erase = true; } } if (erase) { // Contact no longer needed, remove. if ((i + 1) < contact_count) { // Swap with the last one. SWAP(contacts[i], contacts[contact_count - 1]); } i--; contact_count--; } } } // _test_ccd prevents tunneling by slowing down a high velocity body that is about to collide so that next frame it will be at an appropriate location to collide (i.e. slight overlap) // Warning: the way velocity is adjusted down to cause a collision means the momentum will be weaker than it should for a bounce! // Process: only proceed if body A's motion is high relative to its size. // cast forward along motion vector to see if A is going to enter/pass B's collider next frame, only proceed if it does. // adjust the velocity of A down so that it will just slightly intersect the collider instead of blowing right past it. bool GodotBodyPair2D::_test_ccd(real_t p_step, GodotBody2D *p_A, int p_shape_A, const Transform2D &p_xform_A, GodotBody2D *p_B, int p_shape_B, const Transform2D &p_xform_B) { Vector2 motion = p_A->get_linear_velocity() * p_step; real_t mlen = motion.length(); if (mlen < CMP_EPSILON) { return false; } Vector2 mnormal = motion / mlen; real_t min = 0.0, max = 0.0; p_A->get_shape(p_shape_A)->project_rangev(mnormal, p_xform_A, min, max); // Did it move enough in this direction to even attempt raycast? // Let's say it should move more than 1/3 the size of the object in that axis. bool fast_object = mlen > (max - min) * 0.3; if (!fast_object) { return false; } // A is moving fast enough that tunneling might occur. See if it's really about to collide. // Cast a segment from support in motion normal, in the same direction of motion by motion length. // Support point will the farthest forward collision point along the movement vector. // i.e. the point that should hit B first if any collision does occur. // convert mnormal into body A's local xform because get_support requires (and returns) local coordinates. int a; Vector2 s[2]; p_A->get_shape(p_shape_A)->get_supports(p_xform_A.basis_xform_inv(mnormal).normalized(), s, a); Vector2 from = p_xform_A.xform(s[0]); // Back up 10% of the per-frame motion behind the support point and use that as the beginning of our cast. // This should ensure the calculated new velocity will really cause a bit of overlap instead of just getting us very close. from -= motion * 0.1; Vector2 to = from + motion; Transform2D from_inv = p_xform_B.affine_inverse(); // Start from a little inside the bounding box. Vector2 local_from = from_inv.xform(from); Vector2 local_to = from_inv.xform(to); Vector2 rpos, rnorm; if (!p_B->get_shape(p_shape_B)->intersect_segment(local_from, local_to, rpos, rnorm)) { // there was no hit. Since the segment is the length of per-frame motion, this means the bodies will not // actually collide yet on next frame. We'll probably check again next frame once they're closer. return false; } // Check one-way collision based on motion direction. if (p_A->get_shape(p_shape_A)->allows_one_way_collision() && p_B->is_shape_set_as_one_way_collision(p_shape_B)) { Vector2 direction = p_xform_B.columns[1].normalized(); if (direction.dot(mnormal) < CMP_EPSILON) { collided = false; oneway_disabled = true; return false; } } // Shorten the linear velocity so it does not hit, but gets close enough, // next frame will hit softly or soft enough. Vector2 hitpos = p_xform_B.xform(rpos); real_t newlen = hitpos.distance_to(from); p_A->set_linear_velocity(mnormal * (newlen / p_step)); return true; } real_t combine_bounce(GodotBody2D *A, GodotBody2D *B) { return CLAMP(A->get_bounce() + B->get_bounce(), 0, 1); } real_t combine_friction(GodotBody2D *A, GodotBody2D *B) { return ABS(MIN(A->get_friction(), B->get_friction())); } bool GodotBodyPair2D::setup(real_t p_step) { check_ccd = false; if (!A->interacts_with(B) || A->has_exception(B->get_self()) || B->has_exception(A->get_self())) { collided = false; return false; } collide_A = (A->get_mode() > PhysicsServer2D::BODY_MODE_KINEMATIC) && A->collides_with(B); collide_B = (B->get_mode() > PhysicsServer2D::BODY_MODE_KINEMATIC) && B->collides_with(A); report_contacts_only = false; if (!collide_A && !collide_B) { if ((A->get_max_contacts_reported() > 0) || (B->get_max_contacts_reported() > 0)) { report_contacts_only = true; } else { collided = false; return false; } } //use local A coordinates to avoid numerical issues on collision detection offset_B = B->get_transform().get_origin() - A->get_transform().get_origin(); _validate_contacts(); const Vector2 &offset_A = A->get_transform().get_origin(); Transform2D xform_Au = A->get_transform().untranslated(); Transform2D xform_A = xform_Au * A->get_shape_transform(shape_A); Transform2D xform_Bu = B->get_transform(); xform_Bu.columns[2] -= offset_A; Transform2D xform_B = xform_Bu * B->get_shape_transform(shape_B); GodotShape2D *shape_A_ptr = A->get_shape(shape_A); GodotShape2D *shape_B_ptr = B->get_shape(shape_B); Vector2 motion_A, motion_B; if (A->get_continuous_collision_detection_mode() == PhysicsServer2D::CCD_MODE_CAST_SHAPE) { motion_A = A->get_motion(); } if (B->get_continuous_collision_detection_mode() == PhysicsServer2D::CCD_MODE_CAST_SHAPE) { motion_B = B->get_motion(); } bool prev_collided = collided; collided = GodotCollisionSolver2D::solve(shape_A_ptr, xform_A, motion_A, shape_B_ptr, xform_B, motion_B, _add_contact, this, &sep_axis); if (!collided) { oneway_disabled = false; if (A->get_continuous_collision_detection_mode() == PhysicsServer2D::CCD_MODE_CAST_RAY && collide_A) { check_ccd = true; return true; } if (B->get_continuous_collision_detection_mode() == PhysicsServer2D::CCD_MODE_CAST_RAY && collide_B) { check_ccd = true; return true; } return false; } if (oneway_disabled) { return false; } if (!prev_collided) { if (shape_B_ptr->allows_one_way_collision() && A->is_shape_set_as_one_way_collision(shape_A)) { Vector2 direction = xform_A.columns[1].normalized(); bool valid = false; for (int i = 0; i < contact_count; i++) { Contact &c = contacts[i]; if (c.normal.dot(direction) > -CMP_EPSILON) { // Greater (normal inverted). continue; } valid = true; break; } if (!valid) { collided = false; oneway_disabled = true; return false; } } if (shape_A_ptr->allows_one_way_collision() && B->is_shape_set_as_one_way_collision(shape_B)) { Vector2 direction = xform_B.columns[1].normalized(); bool valid = false; for (int i = 0; i < contact_count; i++) { Contact &c = contacts[i]; if (c.normal.dot(direction) < CMP_EPSILON) { // Less (normal ok). continue; } valid = true; break; } if (!valid) { collided = false; oneway_disabled = true; return false; } } } return true; } bool GodotBodyPair2D::pre_solve(real_t p_step) { if (oneway_disabled) { return false; } if (!collided) { if (check_ccd) { const Vector2 &offset_A = A->get_transform().get_origin(); Transform2D xform_Au = A->get_transform().untranslated(); Transform2D xform_A = xform_Au * A->get_shape_transform(shape_A); Transform2D xform_Bu = B->get_transform(); xform_Bu.columns[2] -= offset_A; Transform2D xform_B = xform_Bu * B->get_shape_transform(shape_B); if (A->get_continuous_collision_detection_mode() == PhysicsServer2D::CCD_MODE_CAST_RAY && collide_A) { _test_ccd(p_step, A, shape_A, xform_A, B, shape_B, xform_B); } if (B->get_continuous_collision_detection_mode() == PhysicsServer2D::CCD_MODE_CAST_RAY && collide_B) { _test_ccd(p_step, B, shape_B, xform_B, A, shape_A, xform_A); } } return false; } real_t max_penetration = space->get_contact_max_allowed_penetration(); real_t bias = space->get_contact_bias(); GodotShape2D *shape_A_ptr = A->get_shape(shape_A); GodotShape2D *shape_B_ptr = B->get_shape(shape_B); if (shape_A_ptr->get_custom_bias() || shape_B_ptr->get_custom_bias()) { if (shape_A_ptr->get_custom_bias() == 0) { bias = shape_B_ptr->get_custom_bias(); } else if (shape_B_ptr->get_custom_bias() == 0) { bias = shape_A_ptr->get_custom_bias(); } else { bias = (shape_B_ptr->get_custom_bias() + shape_A_ptr->get_custom_bias()) * 0.5; } } real_t inv_dt = 1.0 / p_step; bool do_process = false; const Vector2 &offset_A = A->get_transform().get_origin(); const Transform2D &transform_A = A->get_transform(); const Transform2D &transform_B = B->get_transform(); real_t inv_inertia_A = collide_A ? A->get_inv_inertia() : 0.0; real_t inv_inertia_B = collide_B ? B->get_inv_inertia() : 0.0; real_t inv_mass_A = collide_A ? A->get_inv_mass() : 0.0; real_t inv_mass_B = collide_B ? B->get_inv_mass() : 0.0; for (int i = 0; i < contact_count; i++) { Contact &c = contacts[i]; c.active = false; Vector2 global_A = transform_A.basis_xform(c.local_A); Vector2 global_B = transform_B.basis_xform(c.local_B) + offset_B; Vector2 axis = global_A - global_B; real_t depth = axis.dot(c.normal); if (depth <= 0.0) { continue; } #ifdef DEBUG_ENABLED if (space->is_debugging_contacts()) { space->add_debug_contact(global_A + offset_A); space->add_debug_contact(global_B + offset_A); } #endif c.rA = global_A - A->get_center_of_mass(); c.rB = global_B - B->get_center_of_mass() - offset_B; if (A->can_report_contacts()) { Vector2 crB(-B->get_angular_velocity() * c.rB.y, B->get_angular_velocity() * c.rB.x); A->add_contact(global_A + offset_A, -c.normal, depth, shape_A, global_B + offset_A, shape_B, B->get_instance_id(), B->get_self(), crB + B->get_linear_velocity()); } if (B->can_report_contacts()) { Vector2 crA(-A->get_angular_velocity() * c.rA.y, A->get_angular_velocity() * c.rA.x); B->add_contact(global_B + offset_A, c.normal, depth, shape_B, global_A + offset_A, shape_A, A->get_instance_id(), A->get_self(), crA + A->get_linear_velocity()); } if (report_contacts_only) { collided = false; continue; } // Precompute normal mass, tangent mass, and bias. real_t rnA = c.rA.dot(c.normal); real_t rnB = c.rB.dot(c.normal); real_t kNormal = inv_mass_A + inv_mass_B; kNormal += inv_inertia_A * (c.rA.dot(c.rA) - rnA * rnA) + inv_inertia_B * (c.rB.dot(c.rB) - rnB * rnB); c.mass_normal = 1.0f / kNormal; Vector2 tangent = c.normal.orthogonal(); real_t rtA = c.rA.dot(tangent); real_t rtB = c.rB.dot(tangent); real_t kTangent = inv_mass_A + inv_mass_B; kTangent += inv_inertia_A * (c.rA.dot(c.rA) - rtA * rtA) + inv_inertia_B * (c.rB.dot(c.rB) - rtB * rtB); c.mass_tangent = 1.0f / kTangent; c.bias = -bias * inv_dt * MIN(0.0f, -depth + max_penetration); c.depth = depth; #ifdef ACCUMULATE_IMPULSES { // Apply normal + friction impulse Vector2 P = c.acc_normal_impulse * c.normal + c.acc_tangent_impulse * tangent; if (collide_A) { A->apply_impulse(-P, c.rA + A->get_center_of_mass()); } if (collide_B) { B->apply_impulse(P, c.rB + B->get_center_of_mass()); } } #endif c.bounce = combine_bounce(A, B); if (c.bounce) { Vector2 crA(-A->get_prev_angular_velocity() * c.rA.y, A->get_prev_angular_velocity() * c.rA.x); Vector2 crB(-B->get_prev_angular_velocity() * c.rB.y, B->get_prev_angular_velocity() * c.rB.x); Vector2 dv = B->get_prev_linear_velocity() + crB - A->get_prev_linear_velocity() - crA; c.bounce = c.bounce * dv.dot(c.normal); } c.active = true; do_process = true; } return do_process; } void GodotBodyPair2D::solve(real_t p_step) { if (!collided || oneway_disabled) { return; } const real_t max_bias_av = MAX_BIAS_ROTATION / p_step; real_t inv_mass_A = collide_A ? A->get_inv_mass() : 0.0; real_t inv_mass_B = collide_B ? B->get_inv_mass() : 0.0; for (int i = 0; i < contact_count; ++i) { Contact &c = contacts[i]; if (!c.active) { continue; } // Relative velocity at contact Vector2 crA(-A->get_angular_velocity() * c.rA.y, A->get_angular_velocity() * c.rA.x); Vector2 crB(-B->get_angular_velocity() * c.rB.y, B->get_angular_velocity() * c.rB.x); Vector2 dv = B->get_linear_velocity() + crB - A->get_linear_velocity() - crA; Vector2 crbA(-A->get_biased_angular_velocity() * c.rA.y, A->get_biased_angular_velocity() * c.rA.x); Vector2 crbB(-B->get_biased_angular_velocity() * c.rB.y, B->get_biased_angular_velocity() * c.rB.x); Vector2 dbv = B->get_biased_linear_velocity() + crbB - A->get_biased_linear_velocity() - crbA; real_t vn = dv.dot(c.normal); real_t vbn = dbv.dot(c.normal); Vector2 tangent = c.normal.orthogonal(); real_t vt = dv.dot(tangent); real_t jbn = (c.bias - vbn) * c.mass_normal; real_t jbnOld = c.acc_bias_impulse; c.acc_bias_impulse = MAX(jbnOld + jbn, 0.0f); Vector2 jb = c.normal * (c.acc_bias_impulse - jbnOld); if (collide_A) { A->apply_bias_impulse(-jb, c.rA + A->get_center_of_mass(), max_bias_av); } if (collide_B) { B->apply_bias_impulse(jb, c.rB + B->get_center_of_mass(), max_bias_av); } crbA = Vector2(-A->get_biased_angular_velocity() * c.rA.y, A->get_biased_angular_velocity() * c.rA.x); crbB = Vector2(-B->get_biased_angular_velocity() * c.rB.y, B->get_biased_angular_velocity() * c.rB.x); dbv = B->get_biased_linear_velocity() + crbB - A->get_biased_linear_velocity() - crbA; vbn = dbv.dot(c.normal); if (Math::abs(-vbn + c.bias) > MIN_VELOCITY) { real_t jbn_com = (-vbn + c.bias) / (inv_mass_A + inv_mass_B); real_t jbnOld_com = c.acc_bias_impulse_center_of_mass; c.acc_bias_impulse_center_of_mass = MAX(jbnOld_com + jbn_com, 0.0f); Vector2 jb_com = c.normal * (c.acc_bias_impulse_center_of_mass - jbnOld_com); if (collide_A) { A->apply_bias_impulse(-jb_com, A->get_center_of_mass(), 0.0f); } if (collide_B) { B->apply_bias_impulse(jb_com, B->get_center_of_mass(), 0.0f); } } real_t jn = -(c.bounce + vn) * c.mass_normal; real_t jnOld = c.acc_normal_impulse; c.acc_normal_impulse = MAX(jnOld + jn, 0.0f); real_t friction = combine_friction(A, B); real_t jtMax = friction * c.acc_normal_impulse; real_t jt = -vt * c.mass_tangent; real_t jtOld = c.acc_tangent_impulse; c.acc_tangent_impulse = CLAMP(jtOld + jt, -jtMax, jtMax); Vector2 j = c.normal * (c.acc_normal_impulse - jnOld) + tangent * (c.acc_tangent_impulse - jtOld); if (collide_A) { A->apply_impulse(-j, c.rA + A->get_center_of_mass()); } if (collide_B) { B->apply_impulse(j, c.rB + B->get_center_of_mass()); } } } GodotBodyPair2D::GodotBodyPair2D(GodotBody2D *p_A, int p_shape_A, GodotBody2D *p_B, int p_shape_B) : GodotConstraint2D(_arr, 2) { A = p_A; B = p_B; shape_A = p_shape_A; shape_B = p_shape_B; space = A->get_space(); A->add_constraint(this, 0); B->add_constraint(this, 1); } GodotBodyPair2D::~GodotBodyPair2D() { A->remove_constraint(this, 0); B->remove_constraint(this, 1); }