/*************************************************************************/ /* body_2d_sw.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "body_2d_sw.h" #include "area_2d_sw.h" #include "body_direct_state_2d_sw.h" #include "space_2d_sw.h" void Body2DSW::_mass_properties_changed() { if (get_space() && !mass_properties_update_list.in_list() && (calculate_inertia || calculate_center_of_mass)) { get_space()->body_add_to_mass_properties_update_list(&mass_properties_update_list); } } void Body2DSW::update_mass_properties() { //update shapes and motions switch (mode) { case PhysicsServer2D::BODY_MODE_DYNAMIC: { real_t total_area = 0; for (int i = 0; i < get_shape_count(); i++) { if (is_shape_disabled(i)) { continue; } total_area += get_shape_aabb(i).get_area(); } if (calculate_center_of_mass) { // We have to recompute the center of mass. center_of_mass = Vector2(); if (total_area != 0.0) { for (int i = 0; i < get_shape_count(); i++) { if (is_shape_disabled(i)) { continue; } real_t area = get_shape_aabb(i).get_area(); real_t mass = area * this->mass / total_area; // NOTE: we assume that the shape origin is also its center of mass. center_of_mass += mass * get_shape_transform(i).get_origin(); } center_of_mass /= mass; } } if (calculate_inertia) { inertia = 0; for (int i = 0; i < get_shape_count(); i++) { if (is_shape_disabled(i)) { continue; } const Shape2DSW *shape = get_shape(i); real_t area = get_shape_aabb(i).get_area(); if (area == 0.0) { continue; } real_t mass = area * this->mass / total_area; Transform2D mtx = get_shape_transform(i); Vector2 scale = mtx.get_scale(); Vector2 shape_origin = mtx.get_origin() - center_of_mass; inertia += shape->get_moment_of_inertia(mass, scale) + mass * shape_origin.length_squared(); } } _inv_inertia = inertia > 0.0 ? (1.0 / inertia) : 0.0; if (mass) { _inv_mass = 1.0 / mass; } else { _inv_mass = 0; } } break; case PhysicsServer2D::BODY_MODE_KINEMATIC: case PhysicsServer2D::BODY_MODE_STATIC: { _inv_inertia = 0; _inv_mass = 0; } break; case PhysicsServer2D::BODY_MODE_DYNAMIC_LOCKED: { _inv_inertia = 0; _inv_mass = 1.0 / mass; } break; } } void Body2DSW::reset_mass_properties() { calculate_inertia = true; calculate_center_of_mass = true; _mass_properties_changed(); } void Body2DSW::set_active(bool p_active) { if (active == p_active) { return; } active = p_active; if (active) { if (mode == PhysicsServer2D::BODY_MODE_STATIC) { // Static bodies can't be active. active = false; } else if (get_space()) { get_space()->body_add_to_active_list(&active_list); } } else if (get_space()) { get_space()->body_remove_from_active_list(&active_list); } } void Body2DSW::set_param(PhysicsServer2D::BodyParameter p_param, const Variant &p_value) { switch (p_param) { case PhysicsServer2D::BODY_PARAM_BOUNCE: { bounce = p_value; } break; case PhysicsServer2D::BODY_PARAM_FRICTION: { friction = p_value; } break; case PhysicsServer2D::BODY_PARAM_MASS: { real_t mass_value = p_value; ERR_FAIL_COND(mass_value <= 0); mass = mass_value; if (mode >= PhysicsServer2D::BODY_MODE_DYNAMIC) { _mass_properties_changed(); } } break; case PhysicsServer2D::BODY_PARAM_INERTIA: { real_t inertia_value = p_value; if (inertia_value <= 0.0) { calculate_inertia = true; if (mode == PhysicsServer2D::BODY_MODE_DYNAMIC) { _mass_properties_changed(); } } else { calculate_inertia = false; inertia = inertia_value; if (mode == PhysicsServer2D::BODY_MODE_DYNAMIC) { _inv_inertia = 1.0 / inertia; } } } break; case PhysicsServer2D::BODY_PARAM_CENTER_OF_MASS: { calculate_center_of_mass = false; center_of_mass = p_value; } break; case PhysicsServer2D::BODY_PARAM_GRAVITY_SCALE: { gravity_scale = p_value; } break; case PhysicsServer2D::BODY_PARAM_LINEAR_DAMP: { linear_damp = p_value; } break; case PhysicsServer2D::BODY_PARAM_ANGULAR_DAMP: { angular_damp = p_value; } break; default: { } } } Variant Body2DSW::get_param(PhysicsServer2D::BodyParameter p_param) const { switch (p_param) { case PhysicsServer2D::BODY_PARAM_BOUNCE: { return bounce; } case PhysicsServer2D::BODY_PARAM_FRICTION: { return friction; } case PhysicsServer2D::BODY_PARAM_MASS: { return mass; } case PhysicsServer2D::BODY_PARAM_INERTIA: { return inertia; } case PhysicsServer2D::BODY_PARAM_CENTER_OF_MASS: { return center_of_mass; } case PhysicsServer2D::BODY_PARAM_GRAVITY_SCALE: { return gravity_scale; } case PhysicsServer2D::BODY_PARAM_LINEAR_DAMP: { return linear_damp; } case PhysicsServer2D::BODY_PARAM_ANGULAR_DAMP: { return angular_damp; } default: { } } return 0; } void Body2DSW::set_mode(PhysicsServer2D::BodyMode p_mode) { PhysicsServer2D::BodyMode prev = mode; mode = p_mode; switch (p_mode) { //CLEAR UP EVERYTHING IN CASE IT NOT WORKS! case PhysicsServer2D::BODY_MODE_STATIC: case PhysicsServer2D::BODY_MODE_KINEMATIC: { _set_inv_transform(get_transform().affine_inverse()); _inv_mass = 0; _inv_inertia = 0; _set_static(p_mode == PhysicsServer2D::BODY_MODE_STATIC); set_active(p_mode == PhysicsServer2D::BODY_MODE_KINEMATIC && contacts.size()); linear_velocity = Vector2(); angular_velocity = 0; if (mode == PhysicsServer2D::BODY_MODE_KINEMATIC && prev != mode) { first_time_kinematic = true; } } break; case PhysicsServer2D::BODY_MODE_DYNAMIC: { _inv_mass = mass > 0 ? (1.0 / mass) : 0; if (!calculate_inertia) { _inv_inertia = 1.0 / inertia; } _mass_properties_changed(); _set_static(false); set_active(true); } break; case PhysicsServer2D::BODY_MODE_DYNAMIC_LOCKED: { _inv_mass = mass > 0 ? (1.0 / mass) : 0; _inv_inertia = 0; angular_velocity = 0; _set_static(false); set_active(true); } } } PhysicsServer2D::BodyMode Body2DSW::get_mode() const { return mode; } void Body2DSW::_shapes_changed() { _mass_properties_changed(); wakeup_neighbours(); } void Body2DSW::set_state(PhysicsServer2D::BodyState p_state, const Variant &p_variant) { switch (p_state) { case PhysicsServer2D::BODY_STATE_TRANSFORM: { if (mode == PhysicsServer2D::BODY_MODE_KINEMATIC) { new_transform = p_variant; //wakeup_neighbours(); set_active(true); if (first_time_kinematic) { _set_transform(p_variant); _set_inv_transform(get_transform().affine_inverse()); first_time_kinematic = false; } } else if (mode == PhysicsServer2D::BODY_MODE_STATIC) { _set_transform(p_variant); _set_inv_transform(get_transform().affine_inverse()); wakeup_neighbours(); } else { Transform2D t = p_variant; t.orthonormalize(); new_transform = get_transform(); //used as old to compute motion if (t == new_transform) { break; } _set_transform(t); _set_inv_transform(get_transform().inverse()); } wakeup(); } break; case PhysicsServer2D::BODY_STATE_LINEAR_VELOCITY: { linear_velocity = p_variant; constant_linear_velocity = linear_velocity; wakeup(); } break; case PhysicsServer2D::BODY_STATE_ANGULAR_VELOCITY: { angular_velocity = p_variant; constant_angular_velocity = angular_velocity; wakeup(); } break; case PhysicsServer2D::BODY_STATE_SLEEPING: { if (mode == PhysicsServer2D::BODY_MODE_STATIC || mode == PhysicsServer2D::BODY_MODE_KINEMATIC) { break; } bool do_sleep = p_variant; if (do_sleep) { linear_velocity = Vector2(); //biased_linear_velocity=Vector3(); angular_velocity = 0; //biased_angular_velocity=Vector3(); set_active(false); } else { if (mode != PhysicsServer2D::BODY_MODE_STATIC) { set_active(true); } } } break; case PhysicsServer2D::BODY_STATE_CAN_SLEEP: { can_sleep = p_variant; if (mode >= PhysicsServer2D::BODY_MODE_DYNAMIC && !active && !can_sleep) { set_active(true); } } break; } } Variant Body2DSW::get_state(PhysicsServer2D::BodyState p_state) const { switch (p_state) { case PhysicsServer2D::BODY_STATE_TRANSFORM: { return get_transform(); } case PhysicsServer2D::BODY_STATE_LINEAR_VELOCITY: { return linear_velocity; } case PhysicsServer2D::BODY_STATE_ANGULAR_VELOCITY: { return angular_velocity; } case PhysicsServer2D::BODY_STATE_SLEEPING: { return !is_active(); } case PhysicsServer2D::BODY_STATE_CAN_SLEEP: { return can_sleep; } } return Variant(); } void Body2DSW::set_space(Space2DSW *p_space) { if (get_space()) { wakeup_neighbours(); if (mass_properties_update_list.in_list()) { get_space()->body_remove_from_mass_properties_update_list(&mass_properties_update_list); } if (active_list.in_list()) { get_space()->body_remove_from_active_list(&active_list); } if (direct_state_query_list.in_list()) { get_space()->body_remove_from_state_query_list(&direct_state_query_list); } } _set_space(p_space); if (get_space()) { _mass_properties_changed(); if (active) { get_space()->body_add_to_active_list(&active_list); } } } void Body2DSW::_compute_area_gravity_and_damping(const Area2DSW *p_area) { Vector2 area_gravity; p_area->compute_gravity(get_transform().get_origin(), area_gravity); gravity += area_gravity; area_linear_damp += p_area->get_linear_damp(); area_angular_damp += p_area->get_angular_damp(); } void Body2DSW::integrate_forces(real_t p_step) { if (mode == PhysicsServer2D::BODY_MODE_STATIC) { return; } Area2DSW *def_area = get_space()->get_default_area(); // Area2DSW *damp_area = def_area; ERR_FAIL_COND(!def_area); int ac = areas.size(); bool stopped = false; gravity = Vector2(0, 0); area_angular_damp = 0; area_linear_damp = 0; if (ac) { areas.sort(); const AreaCMP *aa = &areas[0]; // damp_area = aa[ac-1].area; for (int i = ac - 1; i >= 0 && !stopped; i--) { PhysicsServer2D::AreaSpaceOverrideMode mode = aa[i].area->get_space_override_mode(); switch (mode) { case PhysicsServer2D::AREA_SPACE_OVERRIDE_COMBINE: case PhysicsServer2D::AREA_SPACE_OVERRIDE_COMBINE_REPLACE: { _compute_area_gravity_and_damping(aa[i].area); stopped = mode == PhysicsServer2D::AREA_SPACE_OVERRIDE_COMBINE_REPLACE; } break; case PhysicsServer2D::AREA_SPACE_OVERRIDE_REPLACE: case PhysicsServer2D::AREA_SPACE_OVERRIDE_REPLACE_COMBINE: { gravity = Vector2(0, 0); area_angular_damp = 0; area_linear_damp = 0; _compute_area_gravity_and_damping(aa[i].area); stopped = mode == PhysicsServer2D::AREA_SPACE_OVERRIDE_REPLACE; } break; default: { } } } } if (!stopped) { _compute_area_gravity_and_damping(def_area); } gravity *= gravity_scale; // If less than 0, override dampenings with that of the Body2D if (angular_damp >= 0) { area_angular_damp = angular_damp; } /* else area_angular_damp=damp_area->get_angular_damp(); */ if (linear_damp >= 0) { area_linear_damp = linear_damp; } /* else area_linear_damp=damp_area->get_linear_damp(); */ Vector2 motion; bool do_motion = false; if (mode == PhysicsServer2D::BODY_MODE_KINEMATIC) { //compute motion, angular and etc. velocities from prev transform motion = new_transform.get_origin() - get_transform().get_origin(); linear_velocity = constant_linear_velocity + motion / p_step; real_t rot = new_transform.get_rotation() - get_transform().get_rotation(); angular_velocity = constant_angular_velocity + remainder(rot, 2.0 * Math_PI) / p_step; do_motion = true; /* for(int i=0;ibody_add_to_state_query_list(&direct_state_query_list); } if (mode == PhysicsServer2D::BODY_MODE_KINEMATIC) { _set_transform(new_transform, false); _set_inv_transform(new_transform.affine_inverse()); if (contacts.size() == 0 && linear_velocity == Vector2() && angular_velocity == 0) { set_active(false); //stopped moving, deactivate } return; } real_t total_angular_velocity = angular_velocity + biased_angular_velocity; Vector2 total_linear_velocity = linear_velocity + biased_linear_velocity; real_t angle = get_transform().get_rotation() + total_angular_velocity * p_step; Vector2 pos = get_transform().get_origin() + total_linear_velocity * p_step; real_t center_of_mass_distance = center_of_mass.length(); if (center_of_mass_distance > CMP_EPSILON) { // Calculate displacement due to center of mass offset. real_t prev_angle = get_transform().get_rotation(); real_t angle_base = Math::atan2(center_of_mass.y, center_of_mass.x); Vector2 point1(Math::cos(angle_base + prev_angle), Math::sin(angle_base + prev_angle)); Vector2 point2(Math::cos(angle_base + angle), Math::sin(angle_base + angle)); pos += center_of_mass_distance * (point1 - point2); } _set_transform(Transform2D(angle, pos), continuous_cd_mode == PhysicsServer2D::CCD_MODE_DISABLED); _set_inv_transform(get_transform().inverse()); if (continuous_cd_mode != PhysicsServer2D::CCD_MODE_DISABLED) { new_transform = get_transform(); } } void Body2DSW::wakeup_neighbours() { for (const Pair &E : constraint_list) { const Constraint2DSW *c = E.first; Body2DSW **n = c->get_body_ptr(); int bc = c->get_body_count(); for (int i = 0; i < bc; i++) { if (i == E.second) { continue; } Body2DSW *b = n[i]; if (b->mode < PhysicsServer2D::BODY_MODE_DYNAMIC) { continue; } if (!b->is_active()) { b->set_active(true); } } } } void Body2DSW::call_queries() { if (fi_callback_data) { if (!fi_callback_data->callable.get_object()) { set_force_integration_callback(Callable()); } else { Variant direct_state_variant = get_direct_state(); const Variant *vp[2] = { &direct_state_variant, &fi_callback_data->udata }; Callable::CallError ce; Variant rv; if (fi_callback_data->udata.get_type() != Variant::NIL) { fi_callback_data->callable.call(vp, 2, rv, ce); } else { fi_callback_data->callable.call(vp, 1, rv, ce); } } } if (body_state_callback) { (body_state_callback)(body_state_callback_instance, get_direct_state()); } } bool Body2DSW::sleep_test(real_t p_step) { if (mode == PhysicsServer2D::BODY_MODE_STATIC || mode == PhysicsServer2D::BODY_MODE_KINEMATIC) { return true; } else if (!can_sleep) { return false; } if (Math::abs(angular_velocity) < get_space()->get_body_angular_velocity_sleep_threshold() && Math::abs(linear_velocity.length_squared()) < get_space()->get_body_linear_velocity_sleep_threshold() * get_space()->get_body_linear_velocity_sleep_threshold()) { still_time += p_step; return still_time > get_space()->get_body_time_to_sleep(); } else { still_time = 0; //maybe this should be set to 0 on set_active? return false; } } void Body2DSW::set_state_sync_callback(void *p_instance, PhysicsServer2D::BodyStateCallback p_callback) { body_state_callback_instance = p_instance; body_state_callback = p_callback; } void Body2DSW::set_force_integration_callback(const Callable &p_callable, const Variant &p_udata) { if (p_callable.get_object()) { if (!fi_callback_data) { fi_callback_data = memnew(ForceIntegrationCallbackData); } fi_callback_data->callable = p_callable; fi_callback_data->udata = p_udata; } else if (fi_callback_data) { memdelete(fi_callback_data); fi_callback_data = nullptr; } } PhysicsDirectBodyState2DSW *Body2DSW::get_direct_state() { if (!direct_state) { direct_state = memnew(PhysicsDirectBodyState2DSW); direct_state->body = this; } return direct_state; } Body2DSW::Body2DSW() : CollisionObject2DSW(TYPE_BODY), active_list(this), mass_properties_update_list(this), direct_state_query_list(this) { _set_static(false); } Body2DSW::~Body2DSW() { if (fi_callback_data) { memdelete(fi_callback_data); } if (direct_state) { memdelete(direct_state); } }