#ifndef GENERIC_6DOF_JOINT_SW_H #define GENERIC_6DOF_JOINT_SW_H #include "servers/physics/joints_sw.h" #include "servers/physics/joints/jacobian_entry_sw.h" /* Bullet Continuous Collision Detection and Physics Library Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ /* 2007-09-09 Generic6DOFJointSW Refactored by Francisco Le?n email: projectileman@yahoo.com http://gimpact.sf.net */ //! Rotation Limit structure for generic joints class G6DOFRotationalLimitMotorSW { public: //! limit_parameters //!@{ real_t m_loLimit;//!< joint limit real_t m_hiLimit;//!< joint limit real_t m_targetVelocity;//!< target motor velocity real_t m_maxMotorForce;//!< max force on motor real_t m_maxLimitForce;//!< max force on limit real_t m_damping;//!< Damping. real_t m_limitSoftness;//! Relaxation factor real_t m_ERP;//!< Error tolerance factor when joint is at limit real_t m_bounce;//!< restitution factor bool m_enableMotor; bool m_enableLimit; //!@} //! temp_variables //!@{ real_t m_currentLimitError;//! How much is violated this limit int m_currentLimit;//!< 0=free, 1=at lo limit, 2=at hi limit real_t m_accumulatedImpulse; //!@} G6DOFRotationalLimitMotorSW() { m_accumulatedImpulse = 0.f; m_targetVelocity = 0; m_maxMotorForce = 0.1f; m_maxLimitForce = 300.0f; m_loLimit = -1e30; m_hiLimit = 1e30; m_ERP = 0.5f; m_bounce = 0.0f; m_damping = 1.0f; m_limitSoftness = 0.5f; m_currentLimit = 0; m_currentLimitError = 0; m_enableMotor = false; m_enableLimit=false; } G6DOFRotationalLimitMotorSW(const G6DOFRotationalLimitMotorSW & limot) { m_targetVelocity = limot.m_targetVelocity; m_maxMotorForce = limot.m_maxMotorForce; m_limitSoftness = limot.m_limitSoftness; m_loLimit = limot.m_loLimit; m_hiLimit = limot.m_hiLimit; m_ERP = limot.m_ERP; m_bounce = limot.m_bounce; m_currentLimit = limot.m_currentLimit; m_currentLimitError = limot.m_currentLimitError; m_enableMotor = limot.m_enableMotor; } //! Is limited bool isLimited() { if(m_loLimit>=m_hiLimit) return false; return true; } //! Need apply correction bool needApplyTorques() { if(m_currentLimit == 0 && m_enableMotor == false) return false; return true; } //! calculates error /*! calculates m_currentLimit and m_currentLimitError. */ int testLimitValue(real_t test_value); //! apply the correction impulses for two bodies real_t solveAngularLimits(real_t timeStep,Vector3& axis, real_t jacDiagABInv,BodySW * body0, BodySW * body1); }; class G6DOFTranslationalLimitMotorSW { public: Vector3 m_lowerLimit;//!< the constraint lower limits Vector3 m_upperLimit;//!< the constraint upper limits Vector3 m_accumulatedImpulse; //! Linear_Limit_parameters //!@{ Vector3 m_limitSoftness;//!< Softness for linear limit Vector3 m_damping;//!< Damping for linear limit Vector3 m_restitution;//! Bounce parameter for linear limit //!@} bool enable_limit[3]; G6DOFTranslationalLimitMotorSW() { m_lowerLimit=Vector3(0.f,0.f,0.f); m_upperLimit=Vector3(0.f,0.f,0.f); m_accumulatedImpulse=Vector3(0.f,0.f,0.f); m_limitSoftness = Vector3(1,1,1)*0.7f; m_damping = Vector3(1,1,1)*real_t(1.0f); m_restitution = Vector3(1,1,1)*real_t(0.5f); enable_limit[0]=true; enable_limit[1]=true; enable_limit[2]=true; } G6DOFTranslationalLimitMotorSW(const G6DOFTranslationalLimitMotorSW & other ) { m_lowerLimit = other.m_lowerLimit; m_upperLimit = other.m_upperLimit; m_accumulatedImpulse = other.m_accumulatedImpulse; m_limitSoftness = other.m_limitSoftness ; m_damping = other.m_damping; m_restitution = other.m_restitution; } //! Test limit /*! - free means upper < lower, - locked means upper == lower - limited means upper > lower - limitIndex: first 3 are linear, next 3 are angular */ inline bool isLimited(int limitIndex) { return (m_upperLimit[limitIndex] >= m_lowerLimit[limitIndex]); } real_t solveLinearAxis( real_t timeStep, real_t jacDiagABInv, BodySW* body1,const Vector3 &pointInA, BodySW* body2,const Vector3 &pointInB, int limit_index, const Vector3 & axis_normal_on_a, const Vector3 & anchorPos); }; class Generic6DOFJointSW : public JointSW { protected: union { struct { BodySW *A; BodySW *B; }; BodySW *_arr[2]; }; //! relative_frames //!@{ Transform m_frameInA;//!< the constraint space w.r.t body A Transform m_frameInB;//!< the constraint space w.r.t body B //!@} //! Jacobians //!@{ JacobianEntrySW m_jacLinear[3];//!< 3 orthogonal linear constraints JacobianEntrySW m_jacAng[3];//!< 3 orthogonal angular constraints //!@} //! Linear_Limit_parameters //!@{ G6DOFTranslationalLimitMotorSW m_linearLimits; //!@} //! hinge_parameters //!@{ G6DOFRotationalLimitMotorSW m_angularLimits[3]; //!@} protected: //! temporal variables //!@{ real_t m_timeStep; Transform m_calculatedTransformA; Transform m_calculatedTransformB; Vector3 m_calculatedAxisAngleDiff; Vector3 m_calculatedAxis[3]; Vector3 m_AnchorPos; // point betwen pivots of bodies A and B to solve linear axes bool m_useLinearReferenceFrameA; //!@} Generic6DOFJointSW& operator=(Generic6DOFJointSW& other) { ERR_PRINT("pito"); (void) other; return *this; } void buildLinearJacobian( JacobianEntrySW & jacLinear,const Vector3 & normalWorld, const Vector3 & pivotAInW,const Vector3 & pivotBInW); void buildAngularJacobian(JacobianEntrySW & jacAngular,const Vector3 & jointAxisW); //! calcs the euler angles between the two bodies. void calculateAngleInfo(); public: Generic6DOFJointSW(BodySW* rbA, BodySW* rbB, const Transform& frameInA, const Transform& frameInB ,bool useLinearReferenceFrameA); virtual PhysicsServer::JointType get_type() const { return PhysicsServer::JOINT_6DOF; } virtual bool setup(float p_step); virtual void solve(float p_step); //! Calcs global transform of the offsets /*! Calcs the global transform for the joint offset for body A an B, and also calcs the agle differences between the bodies. \sa Generic6DOFJointSW.getCalculatedTransformA , Generic6DOFJointSW.getCalculatedTransformB, Generic6DOFJointSW.calculateAngleInfo */ void calculateTransforms(); //! Gets the global transform of the offset for body A /*! \sa Generic6DOFJointSW.getFrameOffsetA, Generic6DOFJointSW.getFrameOffsetB, Generic6DOFJointSW.calculateAngleInfo. */ const Transform & getCalculatedTransformA() const { return m_calculatedTransformA; } //! Gets the global transform of the offset for body B /*! \sa Generic6DOFJointSW.getFrameOffsetA, Generic6DOFJointSW.getFrameOffsetB, Generic6DOFJointSW.calculateAngleInfo. */ const Transform & getCalculatedTransformB() const { return m_calculatedTransformB; } const Transform & getFrameOffsetA() const { return m_frameInA; } const Transform & getFrameOffsetB() const { return m_frameInB; } Transform & getFrameOffsetA() { return m_frameInA; } Transform & getFrameOffsetB() { return m_frameInB; } //! performs Jacobian calculation, and also calculates angle differences and axis void updateRHS(real_t timeStep); //! Get the rotation axis in global coordinates /*! \pre Generic6DOFJointSW.buildJacobian must be called previously. */ Vector3 getAxis(int axis_index) const; //! Get the relative Euler angle /*! \pre Generic6DOFJointSW.buildJacobian must be called previously. */ real_t getAngle(int axis_index) const; //! Test angular limit. /*! Calculates angular correction and returns true if limit needs to be corrected. \pre Generic6DOFJointSW.buildJacobian must be called previously. */ bool testAngularLimitMotor(int axis_index); void setLinearLowerLimit(const Vector3& linearLower) { m_linearLimits.m_lowerLimit = linearLower; } void setLinearUpperLimit(const Vector3& linearUpper) { m_linearLimits.m_upperLimit = linearUpper; } void setAngularLowerLimit(const Vector3& angularLower) { m_angularLimits[0].m_loLimit = angularLower.x; m_angularLimits[1].m_loLimit = angularLower.y; m_angularLimits[2].m_loLimit = angularLower.z; } void setAngularUpperLimit(const Vector3& angularUpper) { m_angularLimits[0].m_hiLimit = angularUpper.x; m_angularLimits[1].m_hiLimit = angularUpper.y; m_angularLimits[2].m_hiLimit = angularUpper.z; } //! Retrieves the angular limit informacion G6DOFRotationalLimitMotorSW * getRotationalLimitMotor(int index) { return &m_angularLimits[index]; } //! Retrieves the limit informacion G6DOFTranslationalLimitMotorSW * getTranslationalLimitMotor() { return &m_linearLimits; } //first 3 are linear, next 3 are angular void setLimit(int axis, real_t lo, real_t hi) { if(axis<3) { m_linearLimits.m_lowerLimit[axis] = lo; m_linearLimits.m_upperLimit[axis] = hi; } else { m_angularLimits[axis-3].m_loLimit = lo; m_angularLimits[axis-3].m_hiLimit = hi; } } //! Test limit /*! - free means upper < lower, - locked means upper == lower - limited means upper > lower - limitIndex: first 3 are linear, next 3 are angular */ bool isLimited(int limitIndex) { if(limitIndex<3) { return m_linearLimits.isLimited(limitIndex); } return m_angularLimits[limitIndex-3].isLimited(); } const BodySW* getRigidBodyA() const { return A; } const BodySW* getRigidBodyB() const { return B; } virtual void calcAnchorPos(void); // overridable void set_param(Vector3::Axis p_axis,PhysicsServer::G6DOFJointAxisParam p_param, float p_value); float get_param(Vector3::Axis p_axis,PhysicsServer::G6DOFJointAxisParam p_param) const; void set_flag(Vector3::Axis p_axis,PhysicsServer::G6DOFJointAxisFlag p_flag, bool p_value); bool get_flag(Vector3::Axis p_axis,PhysicsServer::G6DOFJointAxisFlag p_flag) const; }; #endif // GENERIC_6DOF_JOINT_SW_H