/*************************************************************************/ /* body_sw.h */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* http://www.godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #ifndef BODY_SW_H #define BODY_SW_H #include "collision_object_sw.h" #include "vset.h" #include "area_sw.h" class ConstraintSW; class BodySW : public CollisionObjectSW { PhysicsServer::BodyMode mode; Vector3 linear_velocity; Vector3 angular_velocity; Vector3 biased_linear_velocity; Vector3 biased_angular_velocity; real_t mass; real_t bounce; real_t friction; real_t linear_damp; real_t angular_damp; real_t gravity_scale; PhysicsServer::BodyAxisLock axis_lock; real_t _inv_mass; Vector3 _inv_inertia; // Relative to the principal axes of inertia // Relative to the local frame of reference Basis principal_inertia_axes_local; Vector3 center_of_mass_local; // In world orientation with local origin Basis _inv_inertia_tensor; Basis principal_inertia_axes; Vector3 center_of_mass; Vector3 gravity; real_t still_time; Vector3 applied_force; Vector3 applied_torque; float area_angular_damp; float area_linear_damp; SelfList active_list; SelfList inertia_update_list; SelfList direct_state_query_list; VSet exceptions; bool omit_force_integration; bool active; bool first_integration; bool continuous_cd; bool can_sleep; bool first_time_kinematic; void _update_inertia(); virtual void _shapes_changed(); Transform new_transform; Map constraint_map; struct AreaCMP { AreaSW *area; int refCount; _FORCE_INLINE_ bool operator==(const AreaCMP& p_cmp) const { return area->get_self() == p_cmp.area->get_self();} _FORCE_INLINE_ bool operator<(const AreaCMP& p_cmp) const { return area->get_priority() < p_cmp.area->get_priority();} _FORCE_INLINE_ AreaCMP() {} _FORCE_INLINE_ AreaCMP(AreaSW *p_area) { area=p_area; refCount=1;} }; Vector areas; struct Contact { Vector3 local_pos; Vector3 local_normal; float depth; int local_shape; Vector3 collider_pos; int collider_shape; ObjectID collider_instance_id; RID collider; Vector3 collider_velocity_at_pos; }; Vector contacts; //no contacts by default int contact_count; struct ForceIntegrationCallback { ObjectID id; StringName method; Variant udata; }; ForceIntegrationCallback *fi_callback; uint64_t island_step; BodySW *island_next; BodySW *island_list_next; _FORCE_INLINE_ void _compute_area_gravity_and_dampenings(const AreaSW *p_area); _FORCE_INLINE_ void _update_transform_dependant(); friend class PhysicsDirectBodyStateSW; // i give up, too many functions to expose public: void set_force_integration_callback(ObjectID p_id,const StringName& p_method,const Variant& p_udata=Variant()); _FORCE_INLINE_ void add_area(AreaSW *p_area) { int index = areas.find(AreaCMP(p_area)); if( index > -1 ) { areas[index].refCount += 1; } else { areas.ordered_insert(AreaCMP(p_area)); } } _FORCE_INLINE_ void remove_area(AreaSW *p_area) { int index = areas.find(AreaCMP(p_area)); if( index > -1 ) { areas[index].refCount -= 1; if( areas[index].refCount < 1 ) areas.remove(index); } } _FORCE_INLINE_ void set_max_contacts_reported(int p_size) { contacts.resize(p_size); contact_count=0; if (mode==PhysicsServer::BODY_MODE_KINEMATIC && p_size) set_active(true);} _FORCE_INLINE_ int get_max_contacts_reported() const { return contacts.size(); } _FORCE_INLINE_ bool can_report_contacts() const { return !contacts.empty(); } _FORCE_INLINE_ void add_contact(const Vector3& p_local_pos,const Vector3& p_local_normal, float p_depth, int p_local_shape, const Vector3& p_collider_pos, int p_collider_shape, ObjectID p_collider_instance_id, const RID& p_collider,const Vector3& p_collider_velocity_at_pos); _FORCE_INLINE_ void add_exception(const RID& p_exception) { exceptions.insert(p_exception);} _FORCE_INLINE_ void remove_exception(const RID& p_exception) { exceptions.erase(p_exception);} _FORCE_INLINE_ bool has_exception(const RID& p_exception) const { return exceptions.has(p_exception);} _FORCE_INLINE_ const VSet& get_exceptions() const { return exceptions;} _FORCE_INLINE_ uint64_t get_island_step() const { return island_step; } _FORCE_INLINE_ void set_island_step(uint64_t p_step) { island_step=p_step; } _FORCE_INLINE_ BodySW* get_island_next() const { return island_next; } _FORCE_INLINE_ void set_island_next(BodySW* p_next) { island_next=p_next; } _FORCE_INLINE_ BodySW* get_island_list_next() const { return island_list_next; } _FORCE_INLINE_ void set_island_list_next(BodySW* p_next) { island_list_next=p_next; } _FORCE_INLINE_ void add_constraint(ConstraintSW* p_constraint, int p_pos) { constraint_map[p_constraint]=p_pos; } _FORCE_INLINE_ void remove_constraint(ConstraintSW* p_constraint) { constraint_map.erase(p_constraint); } const Map& get_constraint_map() const { return constraint_map; } _FORCE_INLINE_ void set_omit_force_integration(bool p_omit_force_integration) { omit_force_integration=p_omit_force_integration; } _FORCE_INLINE_ bool get_omit_force_integration() const { return omit_force_integration; } _FORCE_INLINE_ Basis get_principal_inertia_axes() const { return principal_inertia_axes; } _FORCE_INLINE_ Vector3 get_center_of_mass() const { return center_of_mass; } _FORCE_INLINE_ Vector3 xform_local_to_principal(const Vector3& p_pos) const { return principal_inertia_axes_local.xform(p_pos - center_of_mass_local); } _FORCE_INLINE_ void set_linear_velocity(const Vector3& p_velocity) {linear_velocity=p_velocity; } _FORCE_INLINE_ Vector3 get_linear_velocity() const { return linear_velocity; } _FORCE_INLINE_ void set_angular_velocity(const Vector3& p_velocity) { angular_velocity=p_velocity; } _FORCE_INLINE_ Vector3 get_angular_velocity() const { return angular_velocity; } _FORCE_INLINE_ const Vector3& get_biased_linear_velocity() const { return biased_linear_velocity; } _FORCE_INLINE_ const Vector3& get_biased_angular_velocity() const { return biased_angular_velocity; } _FORCE_INLINE_ void apply_impulse(const Vector3& p_pos, const Vector3& p_j) { linear_velocity += p_j * _inv_mass; angular_velocity += _inv_inertia_tensor.xform( (p_pos-center_of_mass).cross(p_j) ); } _FORCE_INLINE_ void apply_torque_impulse(const Vector3& p_j) { angular_velocity += _inv_inertia_tensor.xform(p_j); } _FORCE_INLINE_ void apply_bias_impulse(const Vector3& p_pos, const Vector3& p_j) { biased_linear_velocity += p_j * _inv_mass; biased_angular_velocity += _inv_inertia_tensor.xform( (p_pos-center_of_mass).cross(p_j) ); } _FORCE_INLINE_ void apply_bias_torque_impulse(const Vector3& p_j) { biased_angular_velocity += _inv_inertia_tensor.xform(p_j); } _FORCE_INLINE_ void add_force(const Vector3& p_force, const Vector3& p_pos) { applied_force += p_force; applied_torque += p_pos.cross(p_force); } void set_active(bool p_active); _FORCE_INLINE_ bool is_active() const { return active; } _FORCE_INLINE_ void wakeup() { if ((!get_space()) || mode==PhysicsServer::BODY_MODE_STATIC || mode==PhysicsServer::BODY_MODE_KINEMATIC) return; set_active(true); } void set_param(PhysicsServer::BodyParameter p_param, float); float get_param(PhysicsServer::BodyParameter p_param) const; void set_mode(PhysicsServer::BodyMode p_mode); PhysicsServer::BodyMode get_mode() const; void set_state(PhysicsServer::BodyState p_state, const Variant& p_variant); Variant get_state(PhysicsServer::BodyState p_state) const; void set_applied_force(const Vector3& p_force) { applied_force=p_force; } Vector3 get_applied_force() const { return applied_force; } void set_applied_torque(const Vector3& p_torque) { applied_torque=p_torque; } Vector3 get_applied_torque() const { return applied_torque; } _FORCE_INLINE_ void set_continuous_collision_detection(bool p_enable) { continuous_cd=p_enable; } _FORCE_INLINE_ bool is_continuous_collision_detection_enabled() const { return continuous_cd; } void set_space(SpaceSW *p_space); void update_inertias(); _FORCE_INLINE_ real_t get_inv_mass() const { return _inv_mass; } _FORCE_INLINE_ Vector3 get_inv_inertia() const { return _inv_inertia; } _FORCE_INLINE_ Basis get_inv_inertia_tensor() const { return _inv_inertia_tensor; } _FORCE_INLINE_ real_t get_friction() const { return friction; } _FORCE_INLINE_ Vector3 get_gravity() const { return gravity; } _FORCE_INLINE_ real_t get_bounce() const { return bounce; } _FORCE_INLINE_ void set_axis_lock(PhysicsServer::BodyAxisLock p_lock) { axis_lock=p_lock; } _FORCE_INLINE_ PhysicsServer::BodyAxisLock get_axis_lock() const { return axis_lock; } void integrate_forces(real_t p_step); void integrate_velocities(real_t p_step); _FORCE_INLINE_ Vector3 get_velocity_in_local_point(const Vector3& rel_pos) const { return linear_velocity + angular_velocity.cross(rel_pos-center_of_mass); } _FORCE_INLINE_ real_t compute_impulse_denominator(const Vector3& p_pos, const Vector3& p_normal) const { Vector3 r0 = p_pos - get_transform().origin - center_of_mass; Vector3 c0 = (r0).cross(p_normal); Vector3 vec = (_inv_inertia_tensor.xform_inv(c0)).cross(r0); return _inv_mass + p_normal.dot(vec); } _FORCE_INLINE_ real_t compute_angular_impulse_denominator(const Vector3& p_axis) const { return p_axis.dot( _inv_inertia_tensor.xform_inv(p_axis) ); } //void simulate_motion(const Transform& p_xform,real_t p_step); void call_queries(); void wakeup_neighbours(); bool sleep_test(real_t p_step); BodySW(); ~BodySW(); }; //add contact inline void BodySW::add_contact(const Vector3& p_local_pos,const Vector3& p_local_normal, float p_depth, int p_local_shape, const Vector3& p_collider_pos, int p_collider_shape, ObjectID p_collider_instance_id, const RID& p_collider,const Vector3& p_collider_velocity_at_pos) { int c_max=contacts.size(); if (c_max==0) return; Contact *c = &contacts[0]; int idx=-1; if (contact_count=0 && least_depthgravity; } // get gravity vector working on this body space/area virtual float get_total_angular_damp() const { return body->area_angular_damp; } // get density of this body space/area virtual float get_total_linear_damp() const { return body->area_linear_damp; } // get density of this body space/area virtual Vector3 get_center_of_mass() const { return body->get_center_of_mass(); } virtual Basis get_principal_inertia_axes() const { return body->get_principal_inertia_axes(); } virtual float get_inverse_mass() const { return body->get_inv_mass(); } // get the mass virtual Vector3 get_inverse_inertia() const { return body->get_inv_inertia(); } // get density of this body space virtual Basis get_inverse_inertia_tensor() const { return body->get_inv_inertia_tensor(); } // get density of this body space virtual void set_linear_velocity(const Vector3& p_velocity) { body->set_linear_velocity(p_velocity); } virtual Vector3 get_linear_velocity() const { return body->get_linear_velocity(); } virtual void set_angular_velocity(const Vector3& p_velocity) { body->set_angular_velocity(p_velocity); } virtual Vector3 get_angular_velocity() const { return body->get_angular_velocity(); } virtual void set_transform(const Transform& p_transform) { body->set_state(PhysicsServer::BODY_STATE_TRANSFORM,p_transform); } virtual Transform get_transform() const { return body->get_transform(); } virtual void add_force(const Vector3& p_force, const Vector3& p_pos) { body->add_force(p_force,p_pos); } virtual void apply_impulse(const Vector3& p_pos, const Vector3& p_j) { body->apply_impulse(p_pos,p_j); } virtual void apply_torque_impulse(const Vector3& p_j) { body->apply_torque_impulse(p_j); } virtual void set_sleep_state(bool p_enable) { body->set_active(!p_enable); } virtual bool is_sleeping() const { return !body->is_active(); } virtual int get_contact_count() const { return body->contact_count; } virtual Vector3 get_contact_local_pos(int p_contact_idx) const { ERR_FAIL_INDEX_V(p_contact_idx,body->contact_count,Vector3()); return body->contacts[p_contact_idx].local_pos; } virtual Vector3 get_contact_local_normal(int p_contact_idx) const { ERR_FAIL_INDEX_V(p_contact_idx,body->contact_count,Vector3()); return body->contacts[p_contact_idx].local_normal; } virtual int get_contact_local_shape(int p_contact_idx) const { ERR_FAIL_INDEX_V(p_contact_idx,body->contact_count,-1); return body->contacts[p_contact_idx].local_shape; } virtual RID get_contact_collider(int p_contact_idx) const { ERR_FAIL_INDEX_V(p_contact_idx,body->contact_count,RID()); return body->contacts[p_contact_idx].collider; } virtual Vector3 get_contact_collider_pos(int p_contact_idx) const { ERR_FAIL_INDEX_V(p_contact_idx,body->contact_count,Vector3()); return body->contacts[p_contact_idx].collider_pos; } virtual ObjectID get_contact_collider_id(int p_contact_idx) const { ERR_FAIL_INDEX_V(p_contact_idx,body->contact_count,0); return body->contacts[p_contact_idx].collider_instance_id; } virtual int get_contact_collider_shape(int p_contact_idx) const { ERR_FAIL_INDEX_V(p_contact_idx,body->contact_count,0); return body->contacts[p_contact_idx].collider_shape; } virtual Vector3 get_contact_collider_velocity_at_pos(int p_contact_idx) const { ERR_FAIL_INDEX_V(p_contact_idx,body->contact_count,Vector3()); return body->contacts[p_contact_idx].collider_velocity_at_pos; } virtual PhysicsDirectSpaceState* get_space_state(); virtual real_t get_step() const { return step; } PhysicsDirectBodyStateSW() { singleton=this; body=NULL; } }; #endif // BODY__SW_H