/*************************************************************************/ /* body_sw.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* http://www.godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2016 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "body_sw.h" #include "space_sw.h" #include "area_sw.h" void BodySW::_update_inertia() { if (get_space() && !inertia_update_list.in_list()) get_space()->body_add_to_inertia_update_list(&inertia_update_list); } void BodySW::_update_inertia_tensor() { Matrix3 tb = get_transform().basis; tb.scale(_inv_inertia); _inv_inertia_tensor = tb * get_transform().basis.transposed(); } void BodySW::update_inertias() { //update shapes and motions switch(mode) { case PhysicsServer::BODY_MODE_RIGID: { //update tensor for allshapes, not the best way but should be somehow OK. (inspired from bullet) float total_area=0; for (int i=0;imass / total_area; _inertia += shape->get_moment_of_inertia(mass) + mass * get_shape_transform(i).get_origin(); } if (_inertia!=Vector3()) _inv_inertia=_inertia.inverse(); else _inv_inertia=Vector3(); if (mass) _inv_mass=1.0/mass; else _inv_mass=0; } break; case PhysicsServer::BODY_MODE_KINEMATIC: case PhysicsServer::BODY_MODE_STATIC: { _inv_inertia=Vector3(); _inv_mass=0; } break; case PhysicsServer::BODY_MODE_CHARACTER: { _inv_inertia=Vector3(); _inv_mass=1.0/mass; } break; } _update_inertia_tensor(); //_update_shapes(); } void BodySW::set_active(bool p_active) { if (active==p_active) return; active=p_active; if (!p_active) { if (get_space()) get_space()->body_remove_from_active_list(&active_list); } else { if (mode==PhysicsServer::BODY_MODE_STATIC) return; //static bodies can't become active if (get_space()) get_space()->body_add_to_active_list(&active_list); //still_time=0; } /* if (!space) return; for(int i=0;i0) { get_space()->get_broadphase()->set_active(s.bpid,active); } } */ } void BodySW::set_param(PhysicsServer::BodyParameter p_param, float p_value) { switch(p_param) { case PhysicsServer::BODY_PARAM_BOUNCE: { bounce=p_value; } break; case PhysicsServer::BODY_PARAM_FRICTION: { friction=p_value; } break; case PhysicsServer::BODY_PARAM_MASS: { ERR_FAIL_COND(p_value<=0); mass=p_value; _update_inertia(); } break; case PhysicsServer::BODY_PARAM_GRAVITY_SCALE: { gravity_scale=p_value; } break; case PhysicsServer::BODY_PARAM_LINEAR_DAMP: { linear_damp=p_value; } break; case PhysicsServer::BODY_PARAM_ANGULAR_DAMP: { angular_damp=p_value; } break; default:{} } } float BodySW::get_param(PhysicsServer::BodyParameter p_param) const { switch(p_param) { case PhysicsServer::BODY_PARAM_BOUNCE: { return bounce; } break; case PhysicsServer::BODY_PARAM_FRICTION: { return friction; } break; case PhysicsServer::BODY_PARAM_MASS: { return mass; } break; case PhysicsServer::BODY_PARAM_GRAVITY_SCALE: { return gravity_scale; } break; case PhysicsServer::BODY_PARAM_LINEAR_DAMP: { return linear_damp; } break; case PhysicsServer::BODY_PARAM_ANGULAR_DAMP: { return angular_damp; } break; default:{} } return 0; } void BodySW::set_mode(PhysicsServer::BodyMode p_mode) { PhysicsServer::BodyMode prev=mode; mode=p_mode; switch(p_mode) { //CLEAR UP EVERYTHING IN CASE IT NOT WORKS! case PhysicsServer::BODY_MODE_STATIC: case PhysicsServer::BODY_MODE_KINEMATIC: { _set_inv_transform(get_transform().affine_inverse()); _inv_mass=0; _set_static(p_mode==PhysicsServer::BODY_MODE_STATIC); //set_active(p_mode==PhysicsServer::BODY_MODE_KINEMATIC); set_active(p_mode==PhysicsServer::BODY_MODE_KINEMATIC && contacts.size()); linear_velocity=Vector3(); angular_velocity=Vector3(); if (mode==PhysicsServer::BODY_MODE_KINEMATIC && prev!=mode) { first_time_kinematic=true; } } break; case PhysicsServer::BODY_MODE_RIGID: { _inv_mass=mass>0?(1.0/mass):0; _set_static(false); } break; case PhysicsServer::BODY_MODE_CHARACTER: { _inv_mass=mass>0?(1.0/mass):0; _set_static(false); } break; } _update_inertia(); //if (get_space()) // _update_queries(); } PhysicsServer::BodyMode BodySW::get_mode() const { return mode; } void BodySW::_shapes_changed() { _update_inertia(); } void BodySW::set_state(PhysicsServer::BodyState p_state, const Variant& p_variant) { switch(p_state) { case PhysicsServer::BODY_STATE_TRANSFORM: { if (mode==PhysicsServer::BODY_MODE_KINEMATIC) { new_transform=p_variant; //wakeup_neighbours(); set_active(true); if (first_time_kinematic) { _set_transform(p_variant); _set_inv_transform(get_transform().affine_inverse()); first_time_kinematic=false; } } else if (mode==PhysicsServer::BODY_MODE_STATIC) { _set_transform(p_variant); _set_inv_transform(get_transform().affine_inverse()); wakeup_neighbours(); } else { Transform t = p_variant; t.orthonormalize(); new_transform=get_transform(); //used as old to compute motion if (new_transform==t) break; _set_transform(t); _set_inv_transform(get_transform().inverse()); } wakeup(); } break; case PhysicsServer::BODY_STATE_LINEAR_VELOCITY: { //if (mode==PhysicsServer::BODY_MODE_STATIC) // break; linear_velocity=p_variant; wakeup(); } break; case PhysicsServer::BODY_STATE_ANGULAR_VELOCITY: { //if (mode!=PhysicsServer::BODY_MODE_RIGID) // break; angular_velocity=p_variant; wakeup(); } break; case PhysicsServer::BODY_STATE_SLEEPING: { //? if (mode==PhysicsServer::BODY_MODE_STATIC || mode==PhysicsServer::BODY_MODE_KINEMATIC) break; bool do_sleep=p_variant; if (do_sleep) { linear_velocity=Vector3(); //biased_linear_velocity=Vector3(); angular_velocity=Vector3(); //biased_angular_velocity=Vector3(); set_active(false); } else { if (mode!=PhysicsServer::BODY_MODE_STATIC) set_active(true); } } break; case PhysicsServer::BODY_STATE_CAN_SLEEP: { can_sleep=p_variant; if (mode==PhysicsServer::BODY_MODE_RIGID && !active && !can_sleep) set_active(true); } break; } } Variant BodySW::get_state(PhysicsServer::BodyState p_state) const { switch(p_state) { case PhysicsServer::BODY_STATE_TRANSFORM: { return get_transform(); } break; case PhysicsServer::BODY_STATE_LINEAR_VELOCITY: { return linear_velocity; } break; case PhysicsServer::BODY_STATE_ANGULAR_VELOCITY: { return angular_velocity; } break; case PhysicsServer::BODY_STATE_SLEEPING: { return !is_active(); } break; case PhysicsServer::BODY_STATE_CAN_SLEEP: { return can_sleep; } break; } return Variant(); } void BodySW::set_space(SpaceSW *p_space){ if (get_space()) { if (inertia_update_list.in_list()) get_space()->body_remove_from_inertia_update_list(&inertia_update_list); if (active_list.in_list()) get_space()->body_remove_from_active_list(&active_list); if (direct_state_query_list.in_list()) get_space()->body_remove_from_state_query_list(&direct_state_query_list); } _set_space(p_space); if (get_space()) { _update_inertia(); if (active) get_space()->body_add_to_active_list(&active_list); // _update_queries(); //if (is_active()) { // active=false; // set_active(true); //} } } void BodySW::_compute_area_gravity_and_dampenings(const AreaSW *p_area) { if (p_area->is_gravity_point()) { if(p_area->get_gravity_distance_scale() > 0) { Vector3 v = p_area->get_transform().xform(p_area->get_gravity_vector()) - get_transform().get_origin(); gravity += v.normalized() * (p_area->get_gravity() / Math::pow(v.length() * p_area->get_gravity_distance_scale()+1, 2) ); } else { gravity += (p_area->get_transform().xform(p_area->get_gravity_vector()) - get_transform().get_origin()).normalized() * p_area->get_gravity(); } } else { gravity += p_area->get_gravity_vector() * p_area->get_gravity(); } area_linear_damp += p_area->get_linear_damp(); area_angular_damp += p_area->get_angular_damp(); } void BodySW::integrate_forces(real_t p_step) { if (mode==PhysicsServer::BODY_MODE_STATIC) return; AreaSW *def_area = get_space()->get_default_area(); // AreaSW *damp_area = def_area; ERR_FAIL_COND(!def_area); int ac = areas.size(); bool stopped = false; gravity = Vector3(0,0,0); area_linear_damp = 0; area_angular_damp = 0; if (ac) { areas.sort(); const AreaCMP *aa = &areas[0]; // damp_area = aa[ac-1].area; for(int i=ac-1;i>=0 && !stopped;i--) { PhysicsServer::AreaSpaceOverrideMode mode=aa[i].area->get_space_override_mode(); switch (mode) { case PhysicsServer::AREA_SPACE_OVERRIDE_COMBINE: case PhysicsServer::AREA_SPACE_OVERRIDE_COMBINE_REPLACE: { _compute_area_gravity_and_dampenings(aa[i].area); stopped = mode==PhysicsServer::AREA_SPACE_OVERRIDE_COMBINE_REPLACE; } break; case PhysicsServer::AREA_SPACE_OVERRIDE_REPLACE: case PhysicsServer::AREA_SPACE_OVERRIDE_REPLACE_COMBINE: { gravity = Vector3(0,0,0); area_angular_damp = 0; area_linear_damp = 0; _compute_area_gravity_and_dampenings(aa[i].area); stopped = mode==PhysicsServer::AREA_SPACE_OVERRIDE_REPLACE; } break; default: {} } } } if( !stopped ) { _compute_area_gravity_and_dampenings(def_area); } gravity*=gravity_scale; // If less than 0, override dampenings with that of the Body if (angular_damp>=0) area_angular_damp=angular_damp; //else // area_angular_damp=damp_area->get_angular_damp(); if (linear_damp>=0) area_linear_damp=linear_damp; //else // area_linear_damp=damp_area->get_linear_damp(); Vector3 motion; bool do_motion=false; if (mode==PhysicsServer::BODY_MODE_KINEMATIC) { //compute motion, angular and etc. velocities from prev transform linear_velocity = (new_transform.origin - get_transform().origin)/p_step; //compute a FAKE angular velocity, not so easy Matrix3 rot=new_transform.basis.orthonormalized().transposed() * get_transform().basis.orthonormalized(); Vector3 axis; float angle; rot.get_axis_and_angle(axis,angle); axis.normalize(); angular_velocity=axis.normalized() * (angle/p_step); motion = new_transform.origin - get_transform().origin; do_motion=true; } else { if (!omit_force_integration) { //overriden by direct state query Vector3 force=gravity*mass; force+=applied_force; Vector3 torque=applied_torque; real_t damp = 1.0 - p_step * area_linear_damp; if (damp<0) // reached zero in the given time damp=0; real_t angular_damp = 1.0 - p_step * area_angular_damp; if (angular_damp<0) // reached zero in the given time angular_damp=0; linear_velocity*=damp; angular_velocity*=angular_damp; linear_velocity+=_inv_mass * force * p_step; angular_velocity+=_inv_inertia_tensor.xform(torque)*p_step; } if (continuous_cd) { motion=linear_velocity*p_step; do_motion=true; } } applied_force=Vector3(); applied_torque=Vector3(); //motion=linear_velocity*p_step; biased_angular_velocity=Vector3(); biased_linear_velocity=Vector3(); if (do_motion) {//shapes temporarily extend for raycast _update_shapes_with_motion(motion); } def_area=NULL; // clear the area, so it is set in the next frame contact_count=0; } void BodySW::integrate_velocities(real_t p_step) { if (mode==PhysicsServer::BODY_MODE_STATIC) return; if (fi_callback) get_space()->body_add_to_state_query_list(&direct_state_query_list); if (mode==PhysicsServer::BODY_MODE_KINEMATIC) { _set_transform(new_transform,false); _set_inv_transform(new_transform.affine_inverse()); if (contacts.size()==0 && linear_velocity==Vector3() && angular_velocity==Vector3()) set_active(false); //stopped moving, deactivate return; } //apply axis lock if (axis_lock!=PhysicsServer::BODY_AXIS_LOCK_DISABLED) { int axis=axis_lock-1; for(int i=0;i<3;i++) { if (i==axis) { linear_velocity[i]=0; biased_linear_velocity[i]=0; } else { angular_velocity[i]=0; biased_angular_velocity[i]=0; } } } Vector3 total_angular_velocity = angular_velocity+biased_angular_velocity; float ang_vel = total_angular_velocity.length(); Transform transform = get_transform(); if (ang_vel!=0.0) { Vector3 ang_vel_axis = total_angular_velocity / ang_vel; Matrix3 rot( ang_vel_axis, -ang_vel*p_step ); transform.basis = rot * transform.basis; transform.orthonormalize(); } Vector3 total_linear_velocity=linear_velocity+biased_linear_velocity; /*for(int i=0;i<3;i++) { if (axis_lock&(1<body_add_to_state_query_list(&direct_state_query_list); // } /* void BodySW::simulate_motion(const Transform& p_xform,real_t p_step) { Transform inv_xform = p_xform.affine_inverse(); if (!get_space()) { _set_transform(p_xform); _set_inv_transform(inv_xform); return; } //compute a FAKE linear velocity - this is easy linear_velocity=(p_xform.origin - get_transform().origin)/p_step; //compute a FAKE angular velocity, not so easy Matrix3 rot=get_transform().basis.orthonormalized().transposed() * p_xform.basis.orthonormalized(); Vector3 axis; float angle; rot.get_axis_and_angle(axis,angle); axis.normalize(); angular_velocity=axis.normalized() * (angle/p_step); linear_velocity = (p_xform.origin - get_transform().origin)/p_step; if (!direct_state_query_list.in_list())// - callalways, so lv and av are cleared && (state_query || direct_state_query)) get_space()->body_add_to_state_query_list(&direct_state_query_list); simulated_motion=true; _set_transform(p_xform); } */ void BodySW::wakeup_neighbours() { for(Map::Element *E=constraint_map.front();E;E=E->next()) { const ConstraintSW *c=E->key(); BodySW **n = c->get_body_ptr(); int bc=c->get_body_count(); for(int i=0;iget()) continue; BodySW *b = n[i]; if (b->mode!=PhysicsServer::BODY_MODE_RIGID) continue; if (!b->is_active()) b->set_active(true); } } } void BodySW::call_queries() { if (fi_callback) { PhysicsDirectBodyStateSW *dbs = PhysicsDirectBodyStateSW::singleton; dbs->body=this; Variant v=dbs; Object *obj = ObjectDB::get_instance(fi_callback->id); if (!obj) { set_force_integration_callback(0,StringName()); } else { const Variant *vp[2]={&v,&fi_callback->udata}; Variant::CallError ce; int argc=(fi_callback->udata.get_type()==Variant::NIL)?1:2; obj->call(fi_callback->method,vp,argc,ce); } } } bool BodySW::sleep_test(real_t p_step) { if (mode==PhysicsServer::BODY_MODE_STATIC || mode==PhysicsServer::BODY_MODE_KINEMATIC) return true; // else if (mode==PhysicsServer::BODY_MODE_CHARACTER) return !active; // characters don't sleep unless asked to sleep else if (!can_sleep) return false; if (Math::abs(angular_velocity.length())get_body_angular_velocity_sleep_treshold() && Math::abs(linear_velocity.length_squared()) < get_space()->get_body_linear_velocity_sleep_treshold()*get_space()->get_body_linear_velocity_sleep_treshold()) { still_time+=p_step; return still_time > get_space()->get_body_time_to_sleep(); } else { still_time=0; //maybe this should be set to 0 on set_active? return false; } } void BodySW::set_force_integration_callback(ObjectID p_id,const StringName& p_method,const Variant& p_udata) { if (fi_callback) { memdelete(fi_callback); fi_callback=NULL; } if (p_id!=0) { fi_callback=memnew(ForceIntegrationCallback); fi_callback->id=p_id; fi_callback->method=p_method; fi_callback->udata=p_udata; } } BodySW::BodySW() : CollisionObjectSW(TYPE_BODY), active_list(this), inertia_update_list(this), direct_state_query_list(this) { mode=PhysicsServer::BODY_MODE_RIGID; active=true; mass=1; // _inv_inertia=Transform(); _inv_mass=1; bounce=0; friction=1; omit_force_integration=false; // applied_torque=0; island_step=0; island_next=NULL; island_list_next=NULL; first_time_kinematic=false; _set_static(false); contact_count=0; gravity_scale=1.0; area_angular_damp=0; area_linear_damp=0; still_time=0; continuous_cd=false; can_sleep=false; fi_callback=NULL; axis_lock=PhysicsServer::BODY_AXIS_LOCK_DISABLED; } BodySW::~BodySW() { if (fi_callback) memdelete(fi_callback); } PhysicsDirectBodyStateSW *PhysicsDirectBodyStateSW::singleton=NULL; PhysicsDirectSpaceState* PhysicsDirectBodyStateSW::get_space_state() { return body->get_space()->get_direct_state(); }