/*************************************************************************/ /* body_pair_sw.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* http://www.godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "body_pair_sw.h" #include "collision_solver_sw.h" #include "space_sw.h" #include "os/os.h" /* #define NO_ACCUMULATE_IMPULSES #define NO_SPLIT_IMPULSES #define NO_FRICTION */ #define NO_TANGENTIALS /* BODY PAIR */ //#define ALLOWED_PENETRATION 0.01 #define RELAXATION_TIMESTEPS 3 #define MIN_VELOCITY 0.0001 void BodyPairSW::_contact_added_callback(const Vector3& p_point_A,const Vector3& p_point_B,void *p_userdata) { BodyPairSW* pair = (BodyPairSW*)p_userdata; pair->contact_added_callback(p_point_A,p_point_B); } void BodyPairSW::contact_added_callback(const Vector3& p_point_A,const Vector3& p_point_B) { // check if we already have the contact //Vector3 local_A = A->get_inv_transform().xform(p_point_A); //Vector3 local_B = B->get_inv_transform().xform(p_point_B); Vector3 local_A = A->get_inv_transform().basis.xform(p_point_A); Vector3 local_B = B->get_inv_transform().basis.xform(p_point_B-offset_B); int new_index = contact_count; ERR_FAIL_COND( new_index >= (MAX_CONTACTS+1) ); Contact contact; contact.acc_normal_impulse=0; contact.acc_bias_impulse=0; contact.acc_tangent_impulse=Vector3(); contact.local_A=local_A; contact.local_B=local_B; contact.normal=(p_point_A-p_point_B).normalized(); // attempt to determine if the contact will be reused real_t contact_recycle_radius=space->get_contact_recycle_radius(); for (int i=0;iget_transform().basis.xform(c.local_A); Vector3 global_B = B->get_transform().basis.xform(c.local_B)+offset_B; Vector3 axis = global_A - global_B; float depth = axis.dot( c.normal ); if (depthget_contact_max_separation(); for (int i=0;iget_transform().basis.xform(c.local_A); Vector3 global_B = B->get_transform().basis.xform(c.local_B)+offset_B; Vector3 axis = global_A - global_B; float depth = axis.dot( c.normal ); if (depth < -contact_max_separation || (global_B + c.normal * depth - global_A).length() > contact_max_separation) { // contact no longer needed, remove if ((i+1) < contact_count) { // swap with the last one SWAP( contacts[i], contacts[ contact_count-1 ] ); } i--; contact_count--; } } } bool BodyPairSW::_test_ccd(float p_step,BodySW *p_A, int p_shape_A,const Transform& p_xform_A,BodySW *p_B, int p_shape_B,const Transform& p_xform_B) { Vector3 motion = p_A->get_linear_velocity()*p_step; real_t mlen = motion.length(); if (mlenget_shape(p_shape_A)->project_range(mnormal,p_xform_A,min,max); bool fast_object = mlen > (max-min)*0.3; //going too fast in that direction if (!fast_object) { //did it move enough in this direction to even attempt raycast? let's say it should move more than 1/3 the size of the object in that axis return false; } //cast a segment from support in motion normal, in the same direction of motion by motion length //support is the worst case collision point, so real collision happened before Vector3 s=p_A->get_shape(p_shape_A)->get_support(p_xform_A.basis.xform(mnormal).normalized()); Vector3 from = p_xform_A.xform(s); Vector3 to = from + motion; Transform from_inv = p_xform_B.affine_inverse(); Vector3 local_from = from_inv.xform(from-mnormal*mlen*0.1); //start from a little inside the bounding box Vector3 local_to = from_inv.xform(to); Vector3 rpos,rnorm; if (!p_B->get_shape(p_shape_B)->intersect_segment(local_from,local_to,rpos,rnorm)) { return false; } //shorten the linear velocity so it does not hit, but gets close enough, next frame will hit softly or soft enough Vector3 hitpos = p_xform_B.xform(rpos); float newlen = hitpos.distance_to(from)-(max-min)*0.01; p_A->set_linear_velocity((mnormal*newlen)/p_step); return true; } bool BodyPairSW::setup(float p_step) { //cannot collide if (!A->test_collision_mask(B) || A->has_exception(B->get_self()) || B->has_exception(A->get_self()) || (A->get_mode()<=PhysicsServer::BODY_MODE_KINEMATIC && B->get_mode()<=PhysicsServer::BODY_MODE_KINEMATIC && A->get_max_contacts_reported()==0 && B->get_max_contacts_reported()==0)) { collided=false; return false; } offset_B = B->get_transform().get_origin() - A->get_transform().get_origin(); validate_contacts(); Vector3 offset_A = A->get_transform().get_origin(); Transform xform_Au = Transform(A->get_transform().basis,Vector3()); Transform xform_A = xform_Au * A->get_shape_transform(shape_A); Transform xform_Bu = B->get_transform(); xform_Bu.origin-=offset_A; Transform xform_B = xform_Bu * B->get_shape_transform(shape_B); ShapeSW *shape_A_ptr=A->get_shape(shape_A); ShapeSW *shape_B_ptr=B->get_shape(shape_B); bool collided = CollisionSolverSW::solve_static(shape_A_ptr,xform_A,shape_B_ptr,xform_B,_contact_added_callback,this,&sep_axis); this->collided=collided; if (!collided) { //test ccd (currently just a raycast) if (A->is_continuous_collision_detection_enabled() && A->get_mode()>PhysicsServer::BODY_MODE_KINEMATIC && B->get_mode()<=PhysicsServer::BODY_MODE_KINEMATIC) { _test_ccd(p_step,A,shape_A,xform_A,B,shape_B,xform_B); } if (B->is_continuous_collision_detection_enabled() && B->get_mode()>PhysicsServer::BODY_MODE_KINEMATIC && A->get_mode()<=PhysicsServer::BODY_MODE_KINEMATIC) { _test_ccd(p_step,B,shape_B,xform_B,A,shape_A,xform_A); } return false; } real_t max_penetration = space->get_contact_max_allowed_penetration(); float bias = 0.3f; if (shape_A_ptr->get_custom_bias() || shape_B_ptr->get_custom_bias()) { if (shape_A_ptr->get_custom_bias()==0) bias=shape_B_ptr->get_custom_bias(); else if (shape_B_ptr->get_custom_bias()==0) bias=shape_A_ptr->get_custom_bias(); else bias=(shape_B_ptr->get_custom_bias()+shape_A_ptr->get_custom_bias())*0.5; } real_t inv_dt = 1.0/p_step; for(int i=0;iis_debugging_contacts()) { space->add_debug_contact(global_A+offset_A); space->add_debug_contact(global_B+offset_A); } #endif c.rA = global_A-A->get_center_of_mass(); c.rB = global_B-B->get_center_of_mass()-offset_B; // contact query reporting... #if 0 if (A->get_body_type() == PhysicsServer::BODY_CHARACTER) static_cast(A)->report_character_contact( global_A, global_B, B ); if (B->get_body_type() == PhysicsServer::BODY_CHARACTER) static_cast(B)->report_character_contact( global_B, global_A, A ); if (A->has_contact_query()) A->report_contact( global_A, global_B, B ); if (B->has_contact_query()) B->report_contact( global_B, global_A, A ); #endif if (A->can_report_contacts()) { Vector3 crA = A->get_angular_velocity().cross( c.rA ) + A->get_linear_velocity(); A->add_contact(global_A,-c.normal,depth,shape_A,global_B,shape_B,B->get_instance_id(),B->get_self(),crA); } if (B->can_report_contacts()) { Vector3 crB = B->get_angular_velocity().cross( c.rB ) + B->get_linear_velocity(); B->add_contact(global_B,c.normal,depth,shape_B,global_A,shape_A,A->get_instance_id(),A->get_self(),crB); } if (A->is_shape_set_as_trigger(shape_A) || B->is_shape_set_as_trigger(shape_B) || (A->get_mode()<=PhysicsServer::BODY_MODE_KINEMATIC && B->get_mode()<=PhysicsServer::BODY_MODE_KINEMATIC)) { c.active=false; collided=false; continue; } c.active=true; // Precompute normal mass, tangent mass, and bias. Vector3 inertia_A = A->get_inv_inertia_tensor().xform( c.rA.cross( c.normal ) ); Vector3 inertia_B = B->get_inv_inertia_tensor().xform( c.rB.cross( c.normal ) ); real_t kNormal = A->get_inv_mass() + B->get_inv_mass(); kNormal += c.normal.dot( inertia_A.cross(c.rA ) ) + c.normal.dot( inertia_B.cross( c.rB )); c.mass_normal = 1.0f / kNormal; #if 1 c.bias = -bias * inv_dt * MIN(0.0f, -depth + max_penetration); #else if (depth > max_penetration) { c.bias = (depth - max_penetration) * (1.0/(p_step*(1.0/RELAXATION_TIMESTEPS))); } else { float approach = -0.1f * (depth - max_penetration) / (CMP_EPSILON + max_penetration); approach = CLAMP( approach, CMP_EPSILON, 1.0 ); c.bias = approach * (depth - max_penetration) * (1.0/p_step); } #endif c.depth=depth; Vector3 j_vec = c.normal * c.acc_normal_impulse + c.acc_tangent_impulse; A->apply_impulse( c.rA+A->get_center_of_mass(), -j_vec ); B->apply_impulse( c.rB+B->get_center_of_mass(), j_vec ); c.acc_bias_impulse=0; Vector3 jb_vec = c.normal * c.acc_bias_impulse; A->apply_bias_impulse( c.rA+A->get_center_of_mass(), -jb_vec ); B->apply_bias_impulse( c.rB+B->get_center_of_mass(), jb_vec ); c.bounce = MAX(A->get_bounce(),B->get_bounce()); if (c.bounce) { Vector3 crA = A->get_angular_velocity().cross( c.rA ); Vector3 crB = B->get_angular_velocity().cross( c.rB ); Vector3 dv = B->get_linear_velocity() + crB - A->get_linear_velocity() - crA; //normal impule c.bounce = c.bounce * dv.dot(c.normal); } } return true; } void BodyPairSW::solve(float p_step) { if (!collided) return; for(int i=0;iget_biased_angular_velocity().cross( c.rA ); Vector3 crbB = B->get_biased_angular_velocity().cross( c.rB ); Vector3 dbv = B->get_biased_linear_velocity() + crbB - A->get_biased_linear_velocity() - crbA; real_t vbn = dbv.dot(c.normal); if (Math::abs(-vbn+c.bias)>MIN_VELOCITY) { real_t jbn = (-vbn + c.bias)*c.mass_normal; real_t jbnOld = c.acc_bias_impulse; c.acc_bias_impulse = MAX(jbnOld + jbn, 0.0f); Vector3 jb = c.normal * (c.acc_bias_impulse - jbnOld); A->apply_bias_impulse(c.rA+A->get_center_of_mass(),-jb); B->apply_bias_impulse(c.rB+B->get_center_of_mass(), jb); c.active=true; } Vector3 crA = A->get_angular_velocity().cross( c.rA ); Vector3 crB = B->get_angular_velocity().cross( c.rB ); Vector3 dv = B->get_linear_velocity() + crB - A->get_linear_velocity() - crA; //normal impule real_t vn = dv.dot(c.normal); if (Math::abs(vn)>MIN_VELOCITY) { real_t jn = -(c.bounce + vn)*c.mass_normal; real_t jnOld = c.acc_normal_impulse; c.acc_normal_impulse = MAX(jnOld + jn, 0.0f); Vector3 j =c.normal * (c.acc_normal_impulse - jnOld); A->apply_impulse(c.rA+A->get_center_of_mass(),-j); B->apply_impulse(c.rB+B->get_center_of_mass(), j); c.active=true; } //friction impule real_t friction = A->get_friction() * B->get_friction(); Vector3 lvA = A->get_linear_velocity() + A->get_angular_velocity().cross( c.rA ); Vector3 lvB = B->get_linear_velocity() + B->get_angular_velocity().cross( c.rB ); Vector3 dtv = lvB - lvA; real_t tn = c.normal.dot(dtv); // tangential velocity Vector3 tv = dtv - c.normal * tn; real_t tvl = tv.length(); if (tvl > MIN_VELOCITY) { tv /= tvl; Vector3 temp1 = A->get_inv_inertia_tensor().xform( c.rA.cross( tv ) ); Vector3 temp2 = B->get_inv_inertia_tensor().xform( c.rB.cross( tv ) ); real_t t = -tvl / (A->get_inv_mass() + B->get_inv_mass() + tv.dot(temp1.cross(c.rA) + temp2.cross(c.rB))); Vector3 jt = t * tv; Vector3 jtOld = c.acc_tangent_impulse; c.acc_tangent_impulse += jt; real_t fi_len = c.acc_tangent_impulse.length(); real_t jtMax = c.acc_normal_impulse * friction; if (fi_len > CMP_EPSILON && fi_len > jtMax) { c.acc_tangent_impulse*=jtMax / fi_len; } jt = c.acc_tangent_impulse - jtOld; A->apply_impulse( c.rA+A->get_center_of_mass(), -jt ); B->apply_impulse( c.rB+B->get_center_of_mass(), jt ); c.active=true; } } } BodyPairSW::BodyPairSW(BodySW *p_A, int p_shape_A,BodySW *p_B, int p_shape_B) : ConstraintSW(_arr,2) { A=p_A; B=p_B; shape_A=p_shape_A; shape_B=p_shape_B; space=A->get_space(); A->add_constraint(this,0); B->add_constraint(this,1); contact_count=0; collided=false; } BodyPairSW::~BodyPairSW() { A->remove_constraint(this); B->remove_constraint(this); }