// // C++ Interface: eq // // Description: // // // Author: reduzio@gmail.com (C) 2006 // // Copyright: See COPYING file that comes with this distribution // // #include "eq.h" #include <math.h> #include "error_macros.h" #include "math_funcs.h" #define POW2(v) ((v)*(v)) /* Helper */ static int solve_quadratic(double a,double b,double c,double *r1, double *r2) { //solves quadractic and returns number of roots double base=2*a; if (base == 0.0f) return 0; double squared=b*b-4*a*c; if (squared<0.0) return 0; squared=sqrt(squared); *r1=(-b+squared)/base; *r2=(-b-squared)/base; if (*r1==*r2) return 1; else return 2; } EQ::BandProcess::BandProcess() { c1=c2=c3=history.a1=history.a2=history.a3=0; history.b1=history.b2=history.b3=0; } void EQ::recalculate_band_coefficients() { #define BAND_LOG( m_f ) ( log((m_f)) / log(2) ) for (int i=0;i<band.size();i++) { double octave_size; double frq=band[i].freq; if (i==0) { octave_size=BAND_LOG(band[1].freq)-BAND_LOG(frq); } else if (i==(band.size()-1)) { octave_size=BAND_LOG(frq)-BAND_LOG(band[i-1].freq); } else { double next=BAND_LOG(band[i+1].freq)-BAND_LOG(frq); double prev=BAND_LOG(frq)-BAND_LOG(band[i-1].freq); octave_size=(next+prev)/2.0; } double frq_l=round(frq/pow(2.0,octave_size/2.0)); double side_gain2=POW2(Math_SQRT12); double th=2.0*Math_PI*frq/mix_rate; double th_l=2.0*Math_PI*frq_l/mix_rate; double c2a=side_gain2 * POW2(cos(th)) - 2.0 * side_gain2 * cos(th_l) * cos(th) + side_gain2 - POW2(sin(th_l)); double c2b=2.0 * side_gain2 * POW2(cos(th_l)) + side_gain2 * POW2(cos(th)) - 2.0 * side_gain2 * cos(th_l) * cos(th) - side_gain2 + POW2(sin(th_l)); double c2c=0.25 * side_gain2 * POW2(cos(th)) - 0.5 * side_gain2 * cos(th_l) * cos(th) + 0.25 * side_gain2 - 0.25 * POW2(sin(th_l)); //printf("band %i, precoefs = %f,%f,%f\n",i,c2a,c2b,c2c); double r1,r2; //roots int roots=solve_quadratic(c2a,c2b,c2c,&r1,&r2); ERR_CONTINUE( roots==0 ); band[i].c1=2.0 * ((0.5-r1)/2.0); band[i].c2=2.0 * r1; band[i].c3=2.0 * (0.5+r1) * cos(th); //printf("band %i, coefs = %f,%f,%f\n",i,(float)bands[i].c1,(float)bands[i].c2,(float)bands[i].c3); } } void EQ::set_preset_band_mode(Preset p_preset) { band.clear(); #define PUSH_BANDS(m_bands) \ for (int i=0;i<m_bands;i++) { \ Band b; \ b.freq=bands[i];\ band.push_back(b);\ } switch (p_preset) { case PRESET_6_BANDS: { static const double bands[] = { 32 , 100 , 320 , 1e3, 3200, 10e3 }; PUSH_BANDS(6); } break; case PRESET_8_BANDS: { static const double bands[] = { 32,72,192,512,1200,3000,7500,16e3 }; PUSH_BANDS(8); } break; case PRESET_10_BANDS: { static const double bands[] = { 31.25, 62.5, 125 , 250 , 500 , 1e3, 2e3, 4e3, 8e3, 16e3 }; PUSH_BANDS(10); } break; case PRESET_21_BANDS: { static const double bands[] = { 22 , 32 , 44 , 63 , 90 , 125 , 175 , 250 , 350 , 500 , 700 , 1e3, 1400 , 2e3, 2800 , 4e3, 5600 , 8e3, 11e3, 16e3, 22e3 }; PUSH_BANDS(21); } break; case PRESET_31_BANDS: { static const double bands[] = { 20, 25, 31.5, 40 , 50 , 63 , 80 , 100 , 125 , 160 , 200 , 250 , 315 , 400 , 500 , 630 , 800 , 1e3 , 1250 , 1600 , 2e3, 2500 , 3150 , 4e3, 5e3, 6300 , 8e3, 10e3, 12500 , 16e3, 20e3 }; PUSH_BANDS(31); } break; }; recalculate_band_coefficients(); } int EQ::get_band_count() const { return band.size(); } float EQ::get_band_frequency(int p_band) { ERR_FAIL_INDEX_V(p_band,band.size(),0); return band[p_band].freq; } void EQ::set_bands(const Vector<float>& p_bands) { band.resize(p_bands.size()); for (int i=0;i<p_bands.size();i++) { band[i].freq=p_bands[i]; } recalculate_band_coefficients(); } void EQ::set_mix_rate(float p_mix_rate) { mix_rate=p_mix_rate; recalculate_band_coefficients(); } EQ::BandProcess EQ::get_band_processor(int p_band) const { EQ::BandProcess band_proc; ERR_FAIL_INDEX_V(p_band,band.size(),band_proc); band_proc.c1=band[p_band].c1; band_proc.c2=band[p_band].c2; band_proc.c3=band[p_band].c3; return band_proc; } EQ::EQ() { mix_rate=44100; } EQ::~EQ() { }