/*************************************************************************/ /* audio_rb_resampler.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2017 Godot Engine contributors (cf. AUTHORS.md) */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "audio_rb_resampler.h" int AudioRBResampler::get_channel_count() const { if (!rb) return 0; return channels; } template uint32_t AudioRBResampler::_resample(int32_t *p_dest, int p_todo, int32_t p_increment) { uint32_t read = offset & MIX_FRAC_MASK; for (int i = 0; i < p_todo; i++) { offset = (offset + p_increment) & (((1 << (rb_bits + MIX_FRAC_BITS)) - 1)); read += p_increment; uint32_t pos = offset >> MIX_FRAC_BITS; uint32_t frac = offset & MIX_FRAC_MASK; #ifndef FAST_AUDIO ERR_FAIL_COND_V(pos >= rb_len, 0); #endif uint32_t pos_next = (pos + 1) & rb_mask; //printf("rb pos %i\n",pos); // since this is a template with a known compile time value (C), conditionals go away when compiling. if (C == 1) { int32_t v0 = rb[pos]; int32_t v0n = rb[pos_next]; #ifndef FAST_AUDIO v0 += (v0n - v0) * (int32_t)frac >> MIX_FRAC_BITS; #endif v0 <<= 16; p_dest[i] = v0; } if (C == 2) { int32_t v0 = rb[(pos << 1) + 0]; int32_t v1 = rb[(pos << 1) + 1]; int32_t v0n = rb[(pos_next << 1) + 0]; int32_t v1n = rb[(pos_next << 1) + 1]; #ifndef FAST_AUDIO v0 += (v0n - v0) * (int32_t)frac >> MIX_FRAC_BITS; v1 += (v1n - v1) * (int32_t)frac >> MIX_FRAC_BITS; #endif v0 <<= 16; v1 <<= 16; p_dest[(i << 1) + 0] = v0; p_dest[(i << 1) + 1] = v1; } if (C == 4) { int32_t v0 = rb[(pos << 2) + 0]; int32_t v1 = rb[(pos << 2) + 1]; int32_t v2 = rb[(pos << 2) + 2]; int32_t v3 = rb[(pos << 2) + 3]; int32_t v0n = rb[(pos_next << 2) + 0]; int32_t v1n = rb[(pos_next << 2) + 1]; int32_t v2n = rb[(pos_next << 2) + 2]; int32_t v3n = rb[(pos_next << 2) + 3]; #ifndef FAST_AUDIO v0 += (v0n - v0) * (int32_t)frac >> MIX_FRAC_BITS; v1 += (v1n - v1) * (int32_t)frac >> MIX_FRAC_BITS; v2 += (v2n - v2) * (int32_t)frac >> MIX_FRAC_BITS; v3 += (v3n - v3) * (int32_t)frac >> MIX_FRAC_BITS; #endif v0 <<= 16; v1 <<= 16; v2 <<= 16; v3 <<= 16; p_dest[(i << 2) + 0] = v0; p_dest[(i << 2) + 1] = v1; p_dest[(i << 2) + 2] = v2; p_dest[(i << 2) + 3] = v3; } if (C == 6) { int32_t v0 = rb[(pos * 6) + 0]; int32_t v1 = rb[(pos * 6) + 1]; int32_t v2 = rb[(pos * 6) + 2]; int32_t v3 = rb[(pos * 6) + 3]; int32_t v4 = rb[(pos * 6) + 4]; int32_t v5 = rb[(pos * 6) + 5]; int32_t v0n = rb[(pos_next * 6) + 0]; int32_t v1n = rb[(pos_next * 6) + 1]; int32_t v2n = rb[(pos_next * 6) + 2]; int32_t v3n = rb[(pos_next * 6) + 3]; int32_t v4n = rb[(pos_next * 6) + 4]; int32_t v5n = rb[(pos_next * 6) + 5]; #ifndef FAST_AUDIO v0 += (v0n - v0) * (int32_t)frac >> MIX_FRAC_BITS; v1 += (v1n - v1) * (int32_t)frac >> MIX_FRAC_BITS; v2 += (v2n - v2) * (int32_t)frac >> MIX_FRAC_BITS; v3 += (v3n - v3) * (int32_t)frac >> MIX_FRAC_BITS; v4 += (v4n - v4) * (int32_t)frac >> MIX_FRAC_BITS; v5 += (v5n - v5) * (int32_t)frac >> MIX_FRAC_BITS; #endif v0 <<= 16; v1 <<= 16; v2 <<= 16; v3 <<= 16; v4 <<= 16; v5 <<= 16; p_dest[(i * 6) + 0] = v0; p_dest[(i * 6) + 1] = v1; p_dest[(i * 6) + 2] = v2; p_dest[(i * 6) + 3] = v3; p_dest[(i * 6) + 4] = v4; p_dest[(i * 6) + 5] = v5; } } return read >> MIX_FRAC_BITS; //rb_read_pos=offset>>MIX_FRAC_BITS; } bool AudioRBResampler::mix(int32_t *p_dest, int p_frames) { if (!rb) return false; int write_pos_cache = rb_write_pos; int32_t increment = (src_mix_rate * MIX_FRAC_LEN) / target_mix_rate; int rb_todo; if (write_pos_cache == rb_read_pos) { return false; //out of buffer } else if (rb_read_pos < write_pos_cache) { rb_todo = write_pos_cache - rb_read_pos; //-1? } else { rb_todo = (rb_len - rb_read_pos) + write_pos_cache; //-1? } int todo = MIN(((int64_t(rb_todo) << MIX_FRAC_BITS) / increment) + 1, p_frames); { uint32_t read = 0; switch (channels) { case 1: read = _resample<1>(p_dest, todo, increment); break; case 2: read = _resample<2>(p_dest, todo, increment); break; case 4: read = _resample<4>(p_dest, todo, increment); break; case 6: read = _resample<6>(p_dest, todo, increment); break; } //end of stream, fadeout int remaining = p_frames - todo; if (remaining && todo > 0) { //print_line("fadeout"); for (int c = 0; c < channels; c++) { for (int i = 0; i < todo; i++) { int32_t samp = p_dest[i * channels + c] >> 8; uint32_t mul = (todo - i) * 256 / todo; //print_line("mul: "+itos(i)+" "+itos(mul)); p_dest[i * channels + c] = samp * mul; } } } //zero out what remains there to avoid glitches for (int i = todo * channels; i < int(p_frames) * channels; i++) { p_dest[i] = 0; } if (read > rb_todo) read = rb_todo; rb_read_pos = (rb_read_pos + read) & rb_mask; } return true; } Error AudioRBResampler::setup(int p_channels, int p_src_mix_rate, int p_target_mix_rate, int p_buffer_msec, int p_minbuff_needed) { ERR_FAIL_COND_V(p_channels != 1 && p_channels != 2 && p_channels != 4 && p_channels != 6, ERR_INVALID_PARAMETER); //float buffering_sec = int(GLOBAL_DEF("audio/stream_buffering_ms",500))/1000.0; int desired_rb_bits = nearest_shift(MAX((p_buffer_msec / 1000.0) * p_src_mix_rate, p_minbuff_needed)); bool recreate = !rb; if (rb && (uint32_t(desired_rb_bits) != rb_bits || channels != uint32_t(p_channels))) { //recreate memdelete_arr(rb); memdelete_arr(read_buf); recreate = true; } if (recreate) { channels = p_channels; rb_bits = desired_rb_bits; rb_len = (1 << rb_bits); rb_mask = rb_len - 1; rb = memnew_arr(int16_t, rb_len * p_channels); read_buf = memnew_arr(int16_t, rb_len * p_channels); } src_mix_rate = p_src_mix_rate; target_mix_rate = p_target_mix_rate; offset = 0; rb_read_pos = 0; rb_write_pos = 0; //avoid maybe strange noises upon load for (int i = 0; i < (rb_len * channels); i++) { rb[i] = 0; read_buf[i] = 0; } return OK; } void AudioRBResampler::clear() { if (!rb) return; //should be stopped at this point but just in case if (rb) { memdelete_arr(rb); memdelete_arr(read_buf); } rb = NULL; offset = 0; rb_read_pos = 0; rb_write_pos = 0; read_buf = NULL; } AudioRBResampler::AudioRBResampler() { rb = NULL; offset = 0; read_buf = NULL; rb_read_pos = 0; rb_write_pos = 0; rb_bits = 0; rb_len = 0; rb_mask = 0; read_buff_len = 0; channels = 0; src_mix_rate = 0; target_mix_rate = 0; } AudioRBResampler::~AudioRBResampler() { if (rb) { memdelete_arr(rb); memdelete_arr(read_buf); } }