/*************************************************************************/ /* mesh.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "mesh.h" #include "core/pair.h" #include "scene/resources/concave_polygon_shape_3d.h" #include "scene/resources/convex_polygon_shape_3d.h" #include "surface_tool.h" #include Mesh::ConvexDecompositionFunc Mesh::convex_composition_function = nullptr; Ref Mesh::generate_triangle_mesh() const { if (triangle_mesh.is_valid()) { return triangle_mesh; } int facecount = 0; for (int i = 0; i < get_surface_count(); i++) { if (surface_get_primitive_type(i) != PRIMITIVE_TRIANGLES) { continue; } if (surface_get_format(i) & ARRAY_FORMAT_INDEX) { facecount += surface_get_array_index_len(i); } else { facecount += surface_get_array_len(i); } } if (facecount == 0 || (facecount % 3) != 0) { return triangle_mesh; } Vector faces; faces.resize(facecount); Vector3 *facesw = faces.ptrw(); int widx = 0; for (int i = 0; i < get_surface_count(); i++) { if (surface_get_primitive_type(i) != PRIMITIVE_TRIANGLES) { continue; } Array a = surface_get_arrays(i); ERR_FAIL_COND_V(a.empty(), Ref()); int vc = surface_get_array_len(i); Vector vertices = a[ARRAY_VERTEX]; const Vector3 *vr = vertices.ptr(); if (surface_get_format(i) & ARRAY_FORMAT_INDEX) { int ic = surface_get_array_index_len(i); Vector indices = a[ARRAY_INDEX]; const int *ir = indices.ptr(); for (int j = 0; j < ic; j++) { int index = ir[j]; facesw[widx++] = vr[index]; } } else { for (int j = 0; j < vc; j++) { facesw[widx++] = vr[j]; } } } triangle_mesh = Ref(memnew(TriangleMesh)); triangle_mesh->create(faces); return triangle_mesh; } void Mesh::generate_debug_mesh_lines(Vector &r_lines) { if (debug_lines.size() > 0) { r_lines = debug_lines; return; } Ref tm = generate_triangle_mesh(); if (tm.is_null()) { return; } Vector triangle_indices; tm->get_indices(&triangle_indices); const int triangles_num = tm->get_triangles().size(); Vector vertices = tm->get_vertices(); debug_lines.resize(tm->get_triangles().size() * 6); // 3 lines x 2 points each line const int *ind_r = triangle_indices.ptr(); const Vector3 *ver_r = vertices.ptr(); for (int j = 0, x = 0, i = 0; i < triangles_num; j += 6, x += 3, ++i) { // Triangle line 1 debug_lines.write[j + 0] = ver_r[ind_r[x + 0]]; debug_lines.write[j + 1] = ver_r[ind_r[x + 1]]; // Triangle line 2 debug_lines.write[j + 2] = ver_r[ind_r[x + 1]]; debug_lines.write[j + 3] = ver_r[ind_r[x + 2]]; // Triangle line 3 debug_lines.write[j + 4] = ver_r[ind_r[x + 2]]; debug_lines.write[j + 5] = ver_r[ind_r[x + 0]]; } r_lines = debug_lines; } void Mesh::generate_debug_mesh_indices(Vector &r_points) { Ref tm = generate_triangle_mesh(); if (tm.is_null()) { return; } Vector vertices = tm->get_vertices(); int vertices_size = vertices.size(); r_points.resize(vertices_size); for (int i = 0; i < vertices_size; ++i) { r_points.write[i] = vertices[i]; } } bool Mesh::surface_is_softbody_friendly(int p_idx) const { const uint32_t surface_format = surface_get_format(p_idx); return (surface_format & Mesh::ARRAY_FLAG_USE_DYNAMIC_UPDATE && (!(surface_format & Mesh::ARRAY_COMPRESS_NORMAL))); } Vector Mesh::get_faces() const { Ref tm = generate_triangle_mesh(); if (tm.is_valid()) { return tm->get_faces(); } return Vector(); /* for (int i=0;imesh_surface_get_primitive_type( mesh, i ) != RenderingServer::PRIMITIVE_TRIANGLES ) continue; Vector indices; Vector vertices; vertices=RenderingServer::get_singleton()->mesh_surface_get_array(mesh, i,RenderingServer::ARRAY_VERTEX); int len=RenderingServer::get_singleton()->mesh_surface_get_array_index_len(mesh, i); bool has_indices; if (len>0) { indices=RenderingServer::get_singleton()->mesh_surface_get_array(mesh, i,RenderingServer::ARRAY_INDEX); has_indices=true; } else { len=vertices.size(); has_indices=false; } if (len<=0) continue; const int* indicesr = indices.ptr(); const int *indicesptr = indicesr.ptr(); const Vector3* verticesr = vertices.ptr(); const Vector3 *verticesptr = verticesr.ptr(); int old_faces=faces.size(); int new_faces=old_faces+(len/3); faces.resize(new_faces); Face3* facesw = faces.ptrw(); Face3 *facesptr=facesw.ptr(); for (int i=0;i Mesh::create_convex_shape() const { Vector vertices; for (int i = 0; i < get_surface_count(); i++) { Array a = surface_get_arrays(i); ERR_FAIL_COND_V(a.empty(), Ref()); Vector v = a[ARRAY_VERTEX]; vertices.append_array(v); } Ref shape = memnew(ConvexPolygonShape3D); shape->set_points(vertices); return shape; } Ref Mesh::create_trimesh_shape() const { Vector faces = get_faces(); if (faces.size() == 0) { return Ref(); } Vector face_points; face_points.resize(faces.size() * 3); for (int i = 0; i < face_points.size(); i += 3) { Face3 f = faces.get(i / 3); face_points.set(i, f.vertex[0]); face_points.set(i + 1, f.vertex[1]); face_points.set(i + 2, f.vertex[2]); } Ref shape = memnew(ConcavePolygonShape3D); shape->set_faces(face_points); return shape; } Ref Mesh::create_outline(float p_margin) const { Array arrays; int index_accum = 0; for (int i = 0; i < get_surface_count(); i++) { if (surface_get_primitive_type(i) != PRIMITIVE_TRIANGLES) { continue; } Array a = surface_get_arrays(i); ERR_FAIL_COND_V(a.empty(), Ref()); if (i == 0) { arrays = a; Vector v = a[ARRAY_VERTEX]; index_accum += v.size(); } else { int vcount = 0; for (int j = 0; j < arrays.size(); j++) { if (arrays[j].get_type() == Variant::NIL || a[j].get_type() == Variant::NIL) { //mismatch, do not use arrays[j] = Variant(); continue; } switch (j) { case ARRAY_VERTEX: case ARRAY_NORMAL: { Vector dst = arrays[j]; Vector src = a[j]; if (j == ARRAY_VERTEX) { vcount = src.size(); } if (dst.size() == 0 || src.size() == 0) { arrays[j] = Variant(); continue; } dst.append_array(src); arrays[j] = dst; } break; case ARRAY_TANGENT: case ARRAY_BONES: case ARRAY_WEIGHTS: { Vector dst = arrays[j]; Vector src = a[j]; if (dst.size() == 0 || src.size() == 0) { arrays[j] = Variant(); continue; } dst.append_array(src); arrays[j] = dst; } break; case ARRAY_COLOR: { Vector dst = arrays[j]; Vector src = a[j]; if (dst.size() == 0 || src.size() == 0) { arrays[j] = Variant(); continue; } dst.append_array(src); arrays[j] = dst; } break; case ARRAY_TEX_UV: case ARRAY_TEX_UV2: { Vector dst = arrays[j]; Vector src = a[j]; if (dst.size() == 0 || src.size() == 0) { arrays[j] = Variant(); continue; } dst.append_array(src); arrays[j] = dst; } break; case ARRAY_INDEX: { Vector dst = arrays[j]; Vector src = a[j]; if (dst.size() == 0 || src.size() == 0) { arrays[j] = Variant(); continue; } { int ss = src.size(); int *w = src.ptrw(); for (int k = 0; k < ss; k++) { w[k] += index_accum; } } dst.append_array(src); arrays[j] = dst; index_accum += vcount; } break; } } } } ERR_FAIL_COND_V(arrays.size() != ARRAY_MAX, Ref()); { int *ir = nullptr; Vector indices = arrays[ARRAY_INDEX]; bool has_indices = false; Vector vertices = arrays[ARRAY_VERTEX]; int vc = vertices.size(); ERR_FAIL_COND_V(!vc, Ref()); Vector3 *r = vertices.ptrw(); if (indices.size()) { ERR_FAIL_COND_V(indices.size() % 3 != 0, Ref()); vc = indices.size(); ir = indices.ptrw(); has_indices = true; } Map normal_accum; //fill normals with triangle normals for (int i = 0; i < vc; i += 3) { Vector3 t[3]; if (has_indices) { t[0] = r[ir[i + 0]]; t[1] = r[ir[i + 1]]; t[2] = r[ir[i + 2]]; } else { t[0] = r[i + 0]; t[1] = r[i + 1]; t[2] = r[i + 2]; } Vector3 n = Plane(t[0], t[1], t[2]).normal; for (int j = 0; j < 3; j++) { Map::Element *E = normal_accum.find(t[j]); if (!E) { normal_accum[t[j]] = n; } else { float d = n.dot(E->get()); if (d < 1.0) { E->get() += n * (1.0 - d); } //E->get()+=n; } } } //normalize for (Map::Element *E = normal_accum.front(); E; E = E->next()) { E->get().normalize(); } //displace normals int vc2 = vertices.size(); for (int i = 0; i < vc2; i++) { Vector3 t = r[i]; Map::Element *E = normal_accum.find(t); ERR_CONTINUE(!E); t += E->get() * p_margin; r[i] = t; } arrays[ARRAY_VERTEX] = vertices; if (!has_indices) { Vector new_indices; new_indices.resize(vertices.size()); int *iw = new_indices.ptrw(); for (int j = 0; j < vc2; j += 3) { iw[j] = j; iw[j + 1] = j + 2; iw[j + 2] = j + 1; } arrays[ARRAY_INDEX] = new_indices; } else { for (int j = 0; j < vc; j += 3) { SWAP(ir[j + 1], ir[j + 2]); } arrays[ARRAY_INDEX] = indices; } } Ref newmesh = memnew(ArrayMesh); newmesh->add_surface_from_arrays(PRIMITIVE_TRIANGLES, arrays); return newmesh; } void Mesh::set_lightmap_size_hint(const Size2i &p_size) { lightmap_size_hint = p_size; } Size2i Mesh::get_lightmap_size_hint() const { return lightmap_size_hint; } void Mesh::_bind_methods() { ClassDB::bind_method(D_METHOD("set_lightmap_size_hint", "size"), &Mesh::set_lightmap_size_hint); ClassDB::bind_method(D_METHOD("get_lightmap_size_hint"), &Mesh::get_lightmap_size_hint); ClassDB::bind_method(D_METHOD("get_aabb"), &Mesh::get_aabb); ADD_PROPERTY(PropertyInfo(Variant::VECTOR2I, "lightmap_size_hint"), "set_lightmap_size_hint", "get_lightmap_size_hint"); ClassDB::bind_method(D_METHOD("get_surface_count"), &Mesh::get_surface_count); ClassDB::bind_method(D_METHOD("surface_get_arrays", "surf_idx"), &Mesh::surface_get_arrays); ClassDB::bind_method(D_METHOD("surface_get_blend_shape_arrays", "surf_idx"), &Mesh::surface_get_blend_shape_arrays); ClassDB::bind_method(D_METHOD("surface_set_material", "surf_idx", "material"), &Mesh::surface_set_material); ClassDB::bind_method(D_METHOD("surface_get_material", "surf_idx"), &Mesh::surface_get_material); BIND_ENUM_CONSTANT(PRIMITIVE_POINTS); BIND_ENUM_CONSTANT(PRIMITIVE_LINES); BIND_ENUM_CONSTANT(PRIMITIVE_LINE_STRIP); BIND_ENUM_CONSTANT(PRIMITIVE_TRIANGLES); BIND_ENUM_CONSTANT(PRIMITIVE_TRIANGLE_STRIP); BIND_ENUM_CONSTANT(BLEND_SHAPE_MODE_NORMALIZED); BIND_ENUM_CONSTANT(BLEND_SHAPE_MODE_RELATIVE); BIND_ENUM_CONSTANT(ARRAY_FORMAT_VERTEX); BIND_ENUM_CONSTANT(ARRAY_FORMAT_NORMAL); BIND_ENUM_CONSTANT(ARRAY_FORMAT_TANGENT); BIND_ENUM_CONSTANT(ARRAY_FORMAT_COLOR); BIND_ENUM_CONSTANT(ARRAY_FORMAT_TEX_UV); BIND_ENUM_CONSTANT(ARRAY_FORMAT_TEX_UV2); BIND_ENUM_CONSTANT(ARRAY_FORMAT_BONES); BIND_ENUM_CONSTANT(ARRAY_FORMAT_WEIGHTS); BIND_ENUM_CONSTANT(ARRAY_FORMAT_INDEX); BIND_ENUM_CONSTANT(ARRAY_COMPRESS_NORMAL); BIND_ENUM_CONSTANT(ARRAY_COMPRESS_TANGENT); BIND_ENUM_CONSTANT(ARRAY_COMPRESS_COLOR); BIND_ENUM_CONSTANT(ARRAY_COMPRESS_TEX_UV); BIND_ENUM_CONSTANT(ARRAY_COMPRESS_TEX_UV2); BIND_ENUM_CONSTANT(ARRAY_COMPRESS_INDEX); BIND_ENUM_CONSTANT(ARRAY_FLAG_USE_2D_VERTICES); BIND_ENUM_CONSTANT(ARRAY_COMPRESS_DEFAULT); BIND_ENUM_CONSTANT(ARRAY_VERTEX); BIND_ENUM_CONSTANT(ARRAY_NORMAL); BIND_ENUM_CONSTANT(ARRAY_TANGENT); BIND_ENUM_CONSTANT(ARRAY_COLOR); BIND_ENUM_CONSTANT(ARRAY_TEX_UV); BIND_ENUM_CONSTANT(ARRAY_TEX_UV2); BIND_ENUM_CONSTANT(ARRAY_BONES); BIND_ENUM_CONSTANT(ARRAY_WEIGHTS); BIND_ENUM_CONSTANT(ARRAY_INDEX); BIND_ENUM_CONSTANT(ARRAY_MAX); } void Mesh::clear_cache() const { triangle_mesh.unref(); debug_lines.clear(); } Vector> Mesh::convex_decompose() const { ERR_FAIL_COND_V(!convex_composition_function, Vector>()); const Vector faces = get_faces(); Vector> decomposed = convex_composition_function(faces); Vector> ret; for (int i = 0; i < decomposed.size(); i++) { Set points; for (int j = 0; j < decomposed[i].size(); j++) { points.insert(decomposed[i][j].vertex[0]); points.insert(decomposed[i][j].vertex[1]); points.insert(decomposed[i][j].vertex[2]); } Vector convex_points; convex_points.resize(points.size()); { Vector3 *w = convex_points.ptrw(); int idx = 0; for (Set::Element *E = points.front(); E; E = E->next()) { w[idx++] = E->get(); } } Ref shape; shape.instance(); shape->set_points(convex_points); ret.push_back(shape); } return ret; } Mesh::Mesh() { } static Vector _fix_array_compatibility(const Vector &p_src, uint32_t p_format, uint32_t p_elements) { bool vertex_16bit = p_format & ((1 << (Mesh::ARRAY_VERTEX + Mesh::ARRAY_COMPRESS_BASE))); bool has_bones = (p_format & Mesh::ARRAY_FORMAT_BONES); bool bone_8 = has_bones && !(p_format & (Mesh::ARRAY_COMPRESS_INDEX << 2)); bool weight_32 = has_bones && !(p_format & (Mesh::ARRAY_COMPRESS_TEX_UV2 << 2)); print_line("convert vertex16: " + itos(vertex_16bit) + " convert bone 8 " + itos(bone_8) + " convert weight 32 " + itos(weight_32)); if (!vertex_16bit && !bone_8 && !weight_32) { return p_src; } bool vertex_2d = (p_format & (Mesh::ARRAY_COMPRESS_INDEX << 1)); uint32_t src_stride = p_src.size() / p_elements; uint32_t dst_stride = src_stride + (vertex_16bit ? 4 : 0) + (bone_8 ? 4 : 0) - (weight_32 ? 8 : 0); Vector ret = p_src; ret.resize(dst_stride * p_elements); { uint8_t *w = ret.ptrw(); const uint8_t *r = p_src.ptr(); for (uint32_t i = 0; i < p_elements; i++) { uint32_t remaining = src_stride; const uint8_t *src = (const uint8_t *)(r + src_stride * i); uint8_t *dst = (uint8_t *)(w + dst_stride * i); if (!vertex_2d) { //3D if (vertex_16bit) { float *dstw = (float *)dst; const uint16_t *srcr = (const uint16_t *)src; dstw[0] = Math::half_to_float(srcr[0]); dstw[1] = Math::half_to_float(srcr[1]); dstw[2] = Math::half_to_float(srcr[2]); remaining -= 8; src += 8; } else { src += 12; remaining -= 12; } dst += 12; } else { if (vertex_16bit) { float *dstw = (float *)dst; const uint16_t *srcr = (const uint16_t *)src; dstw[0] = Math::half_to_float(srcr[0]); dstw[1] = Math::half_to_float(srcr[1]); remaining -= 4; src += 4; } else { src += 8; remaining -= 8; } dst += 8; } if (has_bones) { remaining -= bone_8 ? 4 : 8; remaining -= weight_32 ? 16 : 8; } for (uint32_t j = 0; j < remaining; j++) { dst[j] = src[j]; } if (has_bones) { dst += remaining; src += remaining; if (bone_8) { const uint8_t *src_bones = (const uint8_t *)src; uint16_t *dst_bones = (uint16_t *)dst; dst_bones[0] = src_bones[0]; dst_bones[1] = src_bones[1]; dst_bones[2] = src_bones[2]; dst_bones[3] = src_bones[3]; src += 4; } else { for (uint32_t j = 0; j < 8; j++) { dst[j] = src[j]; } src += 8; } dst += 8; if (weight_32) { const float *src_weights = (const float *)src; uint16_t *dst_weights = (uint16_t *)dst; dst_weights[0] = CLAMP(src_weights[0] * 65535, 0, 65535); //16bits unorm dst_weights[1] = CLAMP(src_weights[1] * 65535, 0, 65535); dst_weights[2] = CLAMP(src_weights[2] * 65535, 0, 65535); dst_weights[3] = CLAMP(src_weights[3] * 65535, 0, 65535); } else { for (uint32_t j = 0; j < 8; j++) { dst[j] = src[j]; } } } } } return ret; } bool ArrayMesh::_set(const StringName &p_name, const Variant &p_value) { String sname = p_name; if (p_name == "blend_shape/names") { Vector sk = p_value; int sz = sk.size(); const String *r = sk.ptr(); for (int i = 0; i < sz; i++) { add_blend_shape(r[i]); } return true; } if (p_name == "blend_shape/mode") { set_blend_shape_mode(BlendShapeMode(int(p_value))); return true; } if (sname.begins_with("surface_")) { int sl = sname.find("/"); if (sl == -1) { return false; } int idx = sname.substr(8, sl - 8).to_int() - 1; String what = sname.get_slicec('/', 1); if (what == "material") { surface_set_material(idx, p_value); } else if (what == "name") { surface_set_name(idx, p_value); } return true; } #ifndef DISABLE_DEPRECATED // Kept for compatibility from 3.x to 4.0. if (!sname.begins_with("surfaces")) { return false; } WARN_DEPRECATED_MSG("Mesh uses old surface format, which is deprecated (and loads slower). Consider re-importing or re-saving the scene."); int idx = sname.get_slicec('/', 1).to_int(); String what = sname.get_slicec('/', 2); if (idx == surfaces.size()) { //create Dictionary d = p_value; ERR_FAIL_COND_V(!d.has("primitive"), false); if (d.has("arrays")) { //oldest format (2.x) ERR_FAIL_COND_V(!d.has("morph_arrays"), false); add_surface_from_arrays(PrimitiveType(int(d["primitive"])), d["arrays"], d["morph_arrays"]); } else if (d.has("array_data")) { //print_line("array data (old style"); //older format (3.x) Vector array_data = d["array_data"]; Vector array_index_data; if (d.has("array_index_data")) { array_index_data = d["array_index_data"]; } ERR_FAIL_COND_V(!d.has("format"), false); uint32_t format = d["format"]; uint32_t primitive = d["primitive"]; uint32_t primitive_remap[7] = { PRIMITIVE_POINTS, PRIMITIVE_LINES, PRIMITIVE_LINE_STRIP, PRIMITIVE_LINES, PRIMITIVE_TRIANGLES, PRIMITIVE_TRIANGLE_STRIP, PRIMITIVE_TRIANGLE_STRIP }; primitive = primitive_remap[primitive]; //compatibility ERR_FAIL_COND_V(!d.has("vertex_count"), false); int vertex_count = d["vertex_count"]; array_data = _fix_array_compatibility(array_data, format, vertex_count); int index_count = 0; if (d.has("index_count")) { index_count = d["index_count"]; } Vector> blend_shapes; if (d.has("blend_shape_data")) { Array blend_shape_data = d["blend_shape_data"]; for (int i = 0; i < blend_shape_data.size(); i++) { Vector shape = blend_shape_data[i]; shape = _fix_array_compatibility(shape, format, vertex_count); blend_shapes.push_back(shape); } } //clear unused flags print_line("format pre: " + itos(format)); format &= ~uint32_t((1 << (ARRAY_VERTEX + ARRAY_COMPRESS_BASE)) | (ARRAY_COMPRESS_INDEX << 2) | (ARRAY_COMPRESS_TEX_UV2 << 2)); print_line("format post: " + itos(format)); ERR_FAIL_COND_V(!d.has("aabb"), false); AABB aabb = d["aabb"]; Vector bone_aabb; if (d.has("skeleton_aabb")) { Array baabb = d["skeleton_aabb"]; bone_aabb.resize(baabb.size()); for (int i = 0; i < baabb.size(); i++) { bone_aabb.write[i] = baabb[i]; } } add_surface(format, PrimitiveType(primitive), array_data, vertex_count, array_index_data, index_count, aabb, blend_shapes, bone_aabb); } else { ERR_FAIL_V(false); } if (d.has("material")) { surface_set_material(idx, d["material"]); } if (d.has("name")) { surface_set_name(idx, d["name"]); } return true; } #endif // DISABLE_DEPRECATED return false; } Array ArrayMesh::_get_surfaces() const { if (mesh.is_null()) { return Array(); } Array ret; for (int i = 0; i < surfaces.size(); i++) { RenderingServer::SurfaceData surface = RS::get_singleton()->mesh_get_surface(mesh, i); Dictionary data; data["format"] = surface.format; data["primitive"] = surface.primitive; data["vertex_data"] = surface.vertex_data; data["vertex_count"] = surface.vertex_count; data["aabb"] = surface.aabb; if (surface.index_count) { data["index_data"] = surface.index_data; data["index_count"] = surface.index_count; }; Array lods; for (int j = 0; j < surface.lods.size(); j++) { lods.push_back(surface.lods[j].edge_length); lods.push_back(surface.lods[j].index_data); } if (lods.size()) { data["lods"] = lods; } Array bone_aabbs; for (int j = 0; j < surface.bone_aabbs.size(); j++) { bone_aabbs.push_back(surface.bone_aabbs[j]); } if (bone_aabbs.size()) { data["bone_aabbs"] = bone_aabbs; } Array blend_shapes; for (int j = 0; j < surface.blend_shapes.size(); j++) { blend_shapes.push_back(surface.blend_shapes[j]); } if (surfaces[i].material.is_valid()) { data["material"] = surfaces[i].material; } if (surfaces[i].name != String()) { data["name"] = surfaces[i].name; } if (surfaces[i].is_2d) { data["2d"] = true; } ret.push_back(data); } return ret; } void ArrayMesh::_create_if_empty() const { if (!mesh.is_valid()) { mesh = RS::get_singleton()->mesh_create(); RS::get_singleton()->mesh_set_blend_shape_mode(mesh, (RS::BlendShapeMode)blend_shape_mode); } } void ArrayMesh::_set_surfaces(const Array &p_surfaces) { Vector surface_data; Vector> surface_materials; Vector surface_names; Vector surface_2d; for (int i = 0; i < p_surfaces.size(); i++) { RS::SurfaceData surface; Dictionary d = p_surfaces[i]; ERR_FAIL_COND(!d.has("format")); ERR_FAIL_COND(!d.has("primitive")); ERR_FAIL_COND(!d.has("vertex_data")); ERR_FAIL_COND(!d.has("vertex_count")); ERR_FAIL_COND(!d.has("aabb")); surface.format = d["format"]; surface.primitive = RS::PrimitiveType(int(d["primitive"])); surface.vertex_data = d["vertex_data"]; surface.vertex_count = d["vertex_count"]; surface.aabb = d["aabb"]; if (d.has("index_data")) { ERR_FAIL_COND(!d.has("index_count")); surface.index_data = d["index_data"]; surface.index_count = d["index_count"]; } if (d.has("lods")) { Array lods = d["lods"]; ERR_FAIL_COND(lods.size() & 1); //must be even for (int j = 0; j < lods.size(); j += 2) { RS::SurfaceData::LOD lod; lod.edge_length = lods[j + 0]; lod.index_data = lods[j + 1]; surface.lods.push_back(lod); } } if (d.has("bone_aabbs")) { Array bone_aabbs = d["bone_aabbs"]; for (int j = 0; j < bone_aabbs.size(); j++) { surface.bone_aabbs.push_back(bone_aabbs[j]); } } if (d.has("blend_shapes")) { Array blend_shapes; for (int j = 0; j < blend_shapes.size(); j++) { surface.blend_shapes.push_back(blend_shapes[j]); } } Ref material; if (d.has("material")) { material = d["material"]; if (material.is_valid()) { surface.material = material->get_rid(); } } String name; if (d.has("name")) { name = d["name"]; } bool _2d = false; if (d.has("2d")) { _2d = d["2d"]; } /* print_line("format: " + itos(surface.format)); print_line("aabb: " + surface.aabb); print_line("array size: " + itos(surface.vertex_data.size())); print_line("vertex count: " + itos(surface.vertex_count)); print_line("index size: " + itos(surface.index_data.size())); print_line("index count: " + itos(surface.index_count)); print_line("primitive: " + itos(surface.primitive)); */ surface_data.push_back(surface); surface_materials.push_back(material); surface_names.push_back(name); surface_2d.push_back(_2d); } if (mesh.is_valid()) { //if mesh exists, it needs to be updated RS::get_singleton()->mesh_clear(mesh); for (int i = 0; i < surface_data.size(); i++) { RS::get_singleton()->mesh_add_surface(mesh, surface_data[i]); } } else { // if mesh does not exist (first time this is loaded, most likely), // we can create it with a single call, which is a lot more efficient and thread friendly mesh = RS::get_singleton()->mesh_create_from_surfaces(surface_data); RS::get_singleton()->mesh_set_blend_shape_mode(mesh, (RS::BlendShapeMode)blend_shape_mode); } surfaces.clear(); aabb = AABB(); for (int i = 0; i < surface_data.size(); i++) { Surface s; s.aabb = surface_data[i].aabb; if (i == 0) { aabb = s.aabb; blend_shapes.resize(surface_data[i].blend_shapes.size()); } else { aabb.merge_with(s.aabb); } s.material = surface_materials[i]; s.is_2d = surface_2d[i]; s.name = surface_names[i]; s.format = surface_data[i].format; s.primitive = PrimitiveType(surface_data[i].primitive); s.array_length = surface_data[i].vertex_count; s.index_array_length = surface_data[i].index_count; surfaces.push_back(s); } } bool ArrayMesh::_get(const StringName &p_name, Variant &r_ret) const { if (_is_generated()) { return false; } String sname = p_name; if (p_name == "blend_shape/names") { Vector sk; for (int i = 0; i < blend_shapes.size(); i++) { sk.push_back(blend_shapes[i]); } r_ret = sk; return true; } else if (p_name == "blend_shape/mode") { r_ret = get_blend_shape_mode(); return true; } else if (sname.begins_with("surface_")) { int sl = sname.find("/"); if (sl == -1) { return false; } int idx = sname.substr(8, sl - 8).to_int() - 1; String what = sname.get_slicec('/', 1); if (what == "material") { r_ret = surface_get_material(idx); } else if (what == "name") { r_ret = surface_get_name(idx); } return true; } return true; } void ArrayMesh::_get_property_list(List *p_list) const { if (_is_generated()) { return; } if (blend_shapes.size()) { p_list->push_back(PropertyInfo(Variant::PACKED_STRING_ARRAY, "blend_shape/names", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR | PROPERTY_USAGE_INTERNAL)); p_list->push_back(PropertyInfo(Variant::INT, "blend_shape/mode", PROPERTY_HINT_ENUM, "Normalized,Relative")); } for (int i = 0; i < surfaces.size(); i++) { p_list->push_back(PropertyInfo(Variant::STRING, "surface_" + itos(i + 1) + "/name", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_EDITOR)); if (surfaces[i].is_2d) { p_list->push_back(PropertyInfo(Variant::OBJECT, "surface_" + itos(i + 1) + "/material", PROPERTY_HINT_RESOURCE_TYPE, "ShaderMaterial,CanvasItemMaterial", PROPERTY_USAGE_EDITOR)); } else { p_list->push_back(PropertyInfo(Variant::OBJECT, "surface_" + itos(i + 1) + "/material", PROPERTY_HINT_RESOURCE_TYPE, "ShaderMaterial,StandardMaterial3D", PROPERTY_USAGE_EDITOR)); } } } void ArrayMesh::_recompute_aabb() { // regenerate AABB aabb = AABB(); for (int i = 0; i < surfaces.size(); i++) { if (i == 0) { aabb = surfaces[i].aabb; } else { aabb.merge_with(surfaces[i].aabb); } } } #ifndef _MSC_VER #warning need to add binding to add_surface using future MeshSurfaceData object #endif void ArrayMesh::add_surface(uint32_t p_format, PrimitiveType p_primitive, const Vector &p_array, int p_vertex_count, const Vector &p_index_array, int p_index_count, const AABB &p_aabb, const Vector> &p_blend_shapes, const Vector &p_bone_aabb, const Vector &p_lods) { _create_if_empty(); Surface s; s.aabb = p_aabb; s.is_2d = p_format & ARRAY_FLAG_USE_2D_VERTICES; s.primitive = p_primitive; s.array_length = p_vertex_count; s.index_array_length = p_index_count; s.format = p_format; surfaces.push_back(s); _recompute_aabb(); RS::SurfaceData sd; sd.format = p_format; sd.primitive = RS::PrimitiveType(p_primitive); sd.aabb = p_aabb; sd.vertex_count = p_vertex_count; sd.vertex_data = p_array; sd.index_count = p_index_count; sd.index_data = p_index_array; sd.blend_shapes = p_blend_shapes; sd.bone_aabbs = p_bone_aabb; sd.lods = p_lods; RenderingServer::get_singleton()->mesh_add_surface(mesh, sd); clear_cache(); _change_notify(); emit_changed(); } void ArrayMesh::add_surface_from_arrays(PrimitiveType p_primitive, const Array &p_arrays, const Array &p_blend_shapes, const Dictionary &p_lods, uint32_t p_flags) { ERR_FAIL_COND(p_arrays.size() != ARRAY_MAX); RS::SurfaceData surface; Error err = RS::get_singleton()->mesh_create_surface_data_from_arrays(&surface, (RenderingServer::PrimitiveType)p_primitive, p_arrays, p_blend_shapes, p_lods, p_flags); ERR_FAIL_COND(err != OK); /* print_line("format: " + itos(surface.format)); print_line("aabb: " + surface.aabb); print_line("array size: " + itos(surface.vertex_data.size())); print_line("vertex count: " + itos(surface.vertex_count)); print_line("index size: " + itos(surface.index_data.size())); print_line("index count: " + itos(surface.index_count)); print_line("primitive: " + itos(surface.primitive)); */ add_surface(surface.format, PrimitiveType(surface.primitive), surface.vertex_data, surface.vertex_count, surface.index_data, surface.index_count, surface.aabb, surface.blend_shapes, surface.bone_aabbs, surface.lods); } Array ArrayMesh::surface_get_arrays(int p_surface) const { ERR_FAIL_INDEX_V(p_surface, surfaces.size(), Array()); return RenderingServer::get_singleton()->mesh_surface_get_arrays(mesh, p_surface); } Array ArrayMesh::surface_get_blend_shape_arrays(int p_surface) const { ERR_FAIL_INDEX_V(p_surface, surfaces.size(), Array()); return RenderingServer::get_singleton()->mesh_surface_get_blend_shape_arrays(mesh, p_surface); } Dictionary ArrayMesh::surface_get_lods(int p_surface) const { ERR_FAIL_INDEX_V(p_surface, surfaces.size(), Dictionary()); return RenderingServer::get_singleton()->mesh_surface_get_lods(mesh, p_surface); } int ArrayMesh::get_surface_count() const { return surfaces.size(); } void ArrayMesh::add_blend_shape(const StringName &p_name) { ERR_FAIL_COND_MSG(surfaces.size(), "Can't add a shape key count if surfaces are already created."); StringName name = p_name; if (blend_shapes.find(name) != -1) { int count = 2; do { name = String(p_name) + " " + itos(count); count++; } while (blend_shapes.find(name) != -1); } blend_shapes.push_back(name); //RS::get_singleton()->mesh_set_blend_shape_count(mesh, blend_shapes.size()); } int ArrayMesh::get_blend_shape_count() const { return blend_shapes.size(); } StringName ArrayMesh::get_blend_shape_name(int p_index) const { ERR_FAIL_INDEX_V(p_index, blend_shapes.size(), StringName()); return blend_shapes[p_index]; } void ArrayMesh::clear_blend_shapes() { ERR_FAIL_COND_MSG(surfaces.size(), "Can't set shape key count if surfaces are already created."); blend_shapes.clear(); } void ArrayMesh::set_blend_shape_mode(BlendShapeMode p_mode) { blend_shape_mode = p_mode; if (mesh.is_valid()) { RS::get_singleton()->mesh_set_blend_shape_mode(mesh, (RS::BlendShapeMode)p_mode); } } ArrayMesh::BlendShapeMode ArrayMesh::get_blend_shape_mode() const { return blend_shape_mode; } int ArrayMesh::surface_get_array_len(int p_idx) const { ERR_FAIL_INDEX_V(p_idx, surfaces.size(), -1); return surfaces[p_idx].array_length; } int ArrayMesh::surface_get_array_index_len(int p_idx) const { ERR_FAIL_INDEX_V(p_idx, surfaces.size(), -1); return surfaces[p_idx].index_array_length; } uint32_t ArrayMesh::surface_get_format(int p_idx) const { ERR_FAIL_INDEX_V(p_idx, surfaces.size(), 0); return surfaces[p_idx].format; } ArrayMesh::PrimitiveType ArrayMesh::surface_get_primitive_type(int p_idx) const { ERR_FAIL_INDEX_V(p_idx, surfaces.size(), PRIMITIVE_LINES); return surfaces[p_idx].primitive; } void ArrayMesh::surface_set_material(int p_idx, const Ref &p_material) { ERR_FAIL_INDEX(p_idx, surfaces.size()); if (surfaces[p_idx].material == p_material) { return; } surfaces.write[p_idx].material = p_material; RenderingServer::get_singleton()->mesh_surface_set_material(mesh, p_idx, p_material.is_null() ? RID() : p_material->get_rid()); _change_notify("material"); emit_changed(); } int ArrayMesh::surface_find_by_name(const String &p_name) const { for (int i = 0; i < surfaces.size(); i++) { if (surfaces[i].name == p_name) { return i; } } return -1; } void ArrayMesh::surface_set_name(int p_idx, const String &p_name) { ERR_FAIL_INDEX(p_idx, surfaces.size()); surfaces.write[p_idx].name = p_name; emit_changed(); } String ArrayMesh::surface_get_name(int p_idx) const { ERR_FAIL_INDEX_V(p_idx, surfaces.size(), String()); return surfaces[p_idx].name; } void ArrayMesh::surface_update_region(int p_surface, int p_offset, const Vector &p_data) { ERR_FAIL_INDEX(p_surface, surfaces.size()); RS::get_singleton()->mesh_surface_update_region(mesh, p_surface, p_offset, p_data); emit_changed(); } void ArrayMesh::surface_set_custom_aabb(int p_idx, const AABB &p_aabb) { ERR_FAIL_INDEX(p_idx, surfaces.size()); surfaces.write[p_idx].aabb = p_aabb; // set custom aabb too? emit_changed(); } Ref ArrayMesh::surface_get_material(int p_idx) const { ERR_FAIL_INDEX_V(p_idx, surfaces.size(), Ref()); return surfaces[p_idx].material; } RID ArrayMesh::get_rid() const { _create_if_empty(); return mesh; } AABB ArrayMesh::get_aabb() const { return aabb; } void ArrayMesh::clear_surfaces() { if (!mesh.is_valid()) { return; } RS::get_singleton()->mesh_clear(mesh); surfaces.clear(); aabb = AABB(); } void ArrayMesh::set_custom_aabb(const AABB &p_custom) { _create_if_empty(); custom_aabb = p_custom; RS::get_singleton()->mesh_set_custom_aabb(mesh, custom_aabb); emit_changed(); } AABB ArrayMesh::get_custom_aabb() const { return custom_aabb; } void ArrayMesh::regen_normalmaps() { if (surfaces.size() == 0) { return; } Vector> surfs; for (int i = 0; i < get_surface_count(); i++) { Ref st = memnew(SurfaceTool); st->create_from(Ref(this), i); surfs.push_back(st); } clear_surfaces(); for (int i = 0; i < surfs.size(); i++) { surfs.write[i]->generate_tangents(); surfs.write[i]->commit(Ref(this)); } } //dirty hack bool (*array_mesh_lightmap_unwrap_callback)(float p_texel_size, const float *p_vertices, const float *p_normals, int p_vertex_count, const int *p_indices, int p_index_count, float **r_uv, int **r_vertex, int *r_vertex_count, int **r_index, int *r_index_count, int *r_size_hint_x, int *r_size_hint_y, int *&r_cache_data, unsigned int &r_cache_size, bool &r_used_cache); struct ArrayMeshLightmapSurface { Ref material; Vector vertices; Mesh::PrimitiveType primitive; uint32_t format; }; Error ArrayMesh::lightmap_unwrap(const Transform &p_base_transform, float p_texel_size) { int *cache_data = nullptr; unsigned int cache_size = 0; bool use_cache = false; // Don't use cache return lightmap_unwrap_cached(cache_data, cache_size, use_cache, p_base_transform, p_texel_size); } Error ArrayMesh::lightmap_unwrap_cached(int *&r_cache_data, unsigned int &r_cache_size, bool &r_used_cache, const Transform &p_base_transform, float p_texel_size) { ERR_FAIL_COND_V(!array_mesh_lightmap_unwrap_callback, ERR_UNCONFIGURED); ERR_FAIL_COND_V_MSG(blend_shapes.size() != 0, ERR_UNAVAILABLE, "Can't unwrap mesh with blend shapes."); Vector vertices; Vector normals; Vector indices; Vector uv; Vector> uv_indices; Vector lightmap_surfaces; // Keep only the scale Transform transform = p_base_transform; transform.origin = Vector3(); transform.looking_at(Vector3(1, 0, 0), Vector3(0, 1, 0)); Basis normal_basis = transform.basis.inverse().transposed(); for (int i = 0; i < get_surface_count(); i++) { ArrayMeshLightmapSurface s; s.primitive = surface_get_primitive_type(i); ERR_FAIL_COND_V_MSG(s.primitive != Mesh::PRIMITIVE_TRIANGLES, ERR_UNAVAILABLE, "Only triangles are supported for lightmap unwrap."); s.format = surface_get_format(i); ERR_FAIL_COND_V_MSG(!(s.format & ARRAY_FORMAT_NORMAL), ERR_UNAVAILABLE, "Normals are required for lightmap unwrap."); Array arrays = surface_get_arrays(i); s.material = surface_get_material(i); s.vertices = SurfaceTool::create_vertex_array_from_triangle_arrays(arrays); Vector rvertices = arrays[Mesh::ARRAY_VERTEX]; int vc = rvertices.size(); const Vector3 *r = rvertices.ptr(); Vector rnormals = arrays[Mesh::ARRAY_NORMAL]; const Vector3 *rn = rnormals.ptr(); int vertex_ofs = vertices.size() / 3; vertices.resize((vertex_ofs + vc) * 3); normals.resize((vertex_ofs + vc) * 3); uv_indices.resize(vertex_ofs + vc); for (int j = 0; j < vc; j++) { Vector3 v = transform.xform(r[j]); Vector3 n = normal_basis.xform(rn[j]).normalized(); vertices.write[(j + vertex_ofs) * 3 + 0] = v.x; vertices.write[(j + vertex_ofs) * 3 + 1] = v.y; vertices.write[(j + vertex_ofs) * 3 + 2] = v.z; normals.write[(j + vertex_ofs) * 3 + 0] = n.x; normals.write[(j + vertex_ofs) * 3 + 1] = n.y; normals.write[(j + vertex_ofs) * 3 + 2] = n.z; uv_indices.write[j + vertex_ofs] = Pair(i, j); } Vector rindices = arrays[Mesh::ARRAY_INDEX]; int ic = rindices.size(); if (ic == 0) { for (int j = 0; j < vc / 3; j++) { if (Face3(r[j * 3 + 0], r[j * 3 + 1], r[j * 3 + 2]).is_degenerate()) { continue; } indices.push_back(vertex_ofs + j * 3 + 0); indices.push_back(vertex_ofs + j * 3 + 1); indices.push_back(vertex_ofs + j * 3 + 2); } } else { const int *ri = rindices.ptr(); for (int j = 0; j < ic / 3; j++) { if (Face3(r[ri[j * 3 + 0]], r[ri[j * 3 + 1]], r[ri[j * 3 + 2]]).is_degenerate()) { continue; } indices.push_back(vertex_ofs + ri[j * 3 + 0]); indices.push_back(vertex_ofs + ri[j * 3 + 1]); indices.push_back(vertex_ofs + ri[j * 3 + 2]); } } lightmap_surfaces.push_back(s); } //unwrap float *gen_uvs; int *gen_vertices; int *gen_indices; int gen_vertex_count; int gen_index_count; int size_x; int size_y; bool ok = array_mesh_lightmap_unwrap_callback(p_texel_size, vertices.ptr(), normals.ptr(), vertices.size() / 3, indices.ptr(), indices.size(), &gen_uvs, &gen_vertices, &gen_vertex_count, &gen_indices, &gen_index_count, &size_x, &size_y, r_cache_data, r_cache_size, r_used_cache); if (!ok) { return ERR_CANT_CREATE; } //remove surfaces clear_surfaces(); //create surfacetools for each surface.. Vector> surfaces_tools; for (int i = 0; i < lightmap_surfaces.size(); i++) { Ref st; st.instance(); st->begin(Mesh::PRIMITIVE_TRIANGLES); st->set_material(lightmap_surfaces[i].material); surfaces_tools.push_back(st); //stay there } print_verbose("Mesh: Gen indices: " + itos(gen_index_count)); //go through all indices for (int i = 0; i < gen_index_count; i += 3) { ERR_FAIL_INDEX_V(gen_vertices[gen_indices[i + 0]], uv_indices.size(), ERR_BUG); ERR_FAIL_INDEX_V(gen_vertices[gen_indices[i + 1]], uv_indices.size(), ERR_BUG); ERR_FAIL_INDEX_V(gen_vertices[gen_indices[i + 2]], uv_indices.size(), ERR_BUG); ERR_FAIL_COND_V(uv_indices[gen_vertices[gen_indices[i + 0]]].first != uv_indices[gen_vertices[gen_indices[i + 1]]].first || uv_indices[gen_vertices[gen_indices[i + 0]]].first != uv_indices[gen_vertices[gen_indices[i + 2]]].first, ERR_BUG); int surface = uv_indices[gen_vertices[gen_indices[i + 0]]].first; for (int j = 0; j < 3; j++) { SurfaceTool::Vertex v = lightmap_surfaces[surface].vertices[uv_indices[gen_vertices[gen_indices[i + j]]].second]; if (lightmap_surfaces[surface].format & ARRAY_FORMAT_COLOR) { surfaces_tools.write[surface]->add_color(v.color); } if (lightmap_surfaces[surface].format & ARRAY_FORMAT_TEX_UV) { surfaces_tools.write[surface]->add_uv(v.uv); } if (lightmap_surfaces[surface].format & ARRAY_FORMAT_NORMAL) { surfaces_tools.write[surface]->add_normal(v.normal); } if (lightmap_surfaces[surface].format & ARRAY_FORMAT_TANGENT) { Plane t; t.normal = v.tangent; t.d = v.binormal.dot(v.normal.cross(v.tangent)) < 0 ? -1 : 1; surfaces_tools.write[surface]->add_tangent(t); } if (lightmap_surfaces[surface].format & ARRAY_FORMAT_BONES) { surfaces_tools.write[surface]->add_bones(v.bones); } if (lightmap_surfaces[surface].format & ARRAY_FORMAT_WEIGHTS) { surfaces_tools.write[surface]->add_weights(v.weights); } Vector2 uv2(gen_uvs[gen_indices[i + j] * 2 + 0], gen_uvs[gen_indices[i + j] * 2 + 1]); surfaces_tools.write[surface]->add_uv2(uv2); surfaces_tools.write[surface]->add_vertex(v.vertex); } } //generate surfaces for (int i = 0; i < surfaces_tools.size(); i++) { surfaces_tools.write[i]->index(); surfaces_tools.write[i]->commit(Ref((ArrayMesh *)this), lightmap_surfaces[i].format); } set_lightmap_size_hint(Size2(size_x, size_y)); if (!r_used_cache) { //free stuff ::free(gen_vertices); ::free(gen_indices); ::free(gen_uvs); } return OK; } void ArrayMesh::_bind_methods() { ClassDB::bind_method(D_METHOD("add_blend_shape", "name"), &ArrayMesh::add_blend_shape); ClassDB::bind_method(D_METHOD("get_blend_shape_count"), &ArrayMesh::get_blend_shape_count); ClassDB::bind_method(D_METHOD("get_blend_shape_name", "index"), &ArrayMesh::get_blend_shape_name); ClassDB::bind_method(D_METHOD("clear_blend_shapes"), &ArrayMesh::clear_blend_shapes); ClassDB::bind_method(D_METHOD("set_blend_shape_mode", "mode"), &ArrayMesh::set_blend_shape_mode); ClassDB::bind_method(D_METHOD("get_blend_shape_mode"), &ArrayMesh::get_blend_shape_mode); ClassDB::bind_method(D_METHOD("add_surface_from_arrays", "primitive", "arrays", "blend_shapes", "lods", "compress_flags"), &ArrayMesh::add_surface_from_arrays, DEFVAL(Array()), DEFVAL(Dictionary()), DEFVAL(ARRAY_COMPRESS_DEFAULT)); ClassDB::bind_method(D_METHOD("clear_surfaces"), &ArrayMesh::clear_surfaces); ClassDB::bind_method(D_METHOD("surface_update_region", "surf_idx", "offset", "data"), &ArrayMesh::surface_update_region); ClassDB::bind_method(D_METHOD("surface_get_array_len", "surf_idx"), &ArrayMesh::surface_get_array_len); ClassDB::bind_method(D_METHOD("surface_get_array_index_len", "surf_idx"), &ArrayMesh::surface_get_array_index_len); ClassDB::bind_method(D_METHOD("surface_get_format", "surf_idx"), &ArrayMesh::surface_get_format); ClassDB::bind_method(D_METHOD("surface_get_primitive_type", "surf_idx"), &ArrayMesh::surface_get_primitive_type); ClassDB::bind_method(D_METHOD("surface_find_by_name", "name"), &ArrayMesh::surface_find_by_name); ClassDB::bind_method(D_METHOD("surface_set_name", "surf_idx", "name"), &ArrayMesh::surface_set_name); ClassDB::bind_method(D_METHOD("surface_get_name", "surf_idx"), &ArrayMesh::surface_get_name); ClassDB::bind_method(D_METHOD("create_trimesh_shape"), &ArrayMesh::create_trimesh_shape); ClassDB::bind_method(D_METHOD("create_convex_shape"), &ArrayMesh::create_convex_shape); ClassDB::bind_method(D_METHOD("create_outline", "margin"), &ArrayMesh::create_outline); ClassDB::bind_method(D_METHOD("regen_normalmaps"), &ArrayMesh::regen_normalmaps); ClassDB::set_method_flags(get_class_static(), _scs_create("regen_normalmaps"), METHOD_FLAGS_DEFAULT | METHOD_FLAG_EDITOR); ClassDB::bind_method(D_METHOD("lightmap_unwrap", "transform", "texel_size"), &ArrayMesh::lightmap_unwrap); ClassDB::set_method_flags(get_class_static(), _scs_create("lightmap_unwrap"), METHOD_FLAGS_DEFAULT | METHOD_FLAG_EDITOR); ClassDB::bind_method(D_METHOD("get_faces"), &ArrayMesh::get_faces); ClassDB::bind_method(D_METHOD("generate_triangle_mesh"), &ArrayMesh::generate_triangle_mesh); ClassDB::bind_method(D_METHOD("set_custom_aabb", "aabb"), &ArrayMesh::set_custom_aabb); ClassDB::bind_method(D_METHOD("get_custom_aabb"), &ArrayMesh::get_custom_aabb); ClassDB::bind_method(D_METHOD("_set_surfaces", "surfaces"), &ArrayMesh::_set_surfaces); ClassDB::bind_method(D_METHOD("_get_surfaces"), &ArrayMesh::_get_surfaces); ADD_PROPERTY(PropertyInfo(Variant::ARRAY, "_surfaces", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR | PROPERTY_USAGE_INTERNAL), "_set_surfaces", "_get_surfaces"); ADD_PROPERTY(PropertyInfo(Variant::INT, "blend_shape_mode", PROPERTY_HINT_ENUM, "Normalized,Relative"), "set_blend_shape_mode", "get_blend_shape_mode"); ADD_PROPERTY(PropertyInfo(Variant::AABB, "custom_aabb", PROPERTY_HINT_NONE, ""), "set_custom_aabb", "get_custom_aabb"); BIND_CONSTANT(NO_INDEX_ARRAY); BIND_CONSTANT(ARRAY_WEIGHTS_SIZE); BIND_ENUM_CONSTANT(ARRAY_VERTEX); BIND_ENUM_CONSTANT(ARRAY_NORMAL); BIND_ENUM_CONSTANT(ARRAY_TANGENT); BIND_ENUM_CONSTANT(ARRAY_COLOR); BIND_ENUM_CONSTANT(ARRAY_TEX_UV); BIND_ENUM_CONSTANT(ARRAY_TEX_UV2); BIND_ENUM_CONSTANT(ARRAY_BONES); BIND_ENUM_CONSTANT(ARRAY_WEIGHTS); BIND_ENUM_CONSTANT(ARRAY_INDEX); BIND_ENUM_CONSTANT(ARRAY_MAX); BIND_ENUM_CONSTANT(ARRAY_FORMAT_VERTEX); BIND_ENUM_CONSTANT(ARRAY_FORMAT_NORMAL); BIND_ENUM_CONSTANT(ARRAY_FORMAT_TANGENT); BIND_ENUM_CONSTANT(ARRAY_FORMAT_COLOR); BIND_ENUM_CONSTANT(ARRAY_FORMAT_TEX_UV); BIND_ENUM_CONSTANT(ARRAY_FORMAT_TEX_UV2); BIND_ENUM_CONSTANT(ARRAY_FORMAT_BONES); BIND_ENUM_CONSTANT(ARRAY_FORMAT_WEIGHTS); BIND_ENUM_CONSTANT(ARRAY_FORMAT_INDEX); } void ArrayMesh::reload_from_file() { RenderingServer::get_singleton()->mesh_clear(mesh); surfaces.clear(); clear_blend_shapes(); clear_cache(); Resource::reload_from_file(); _change_notify(); } ArrayMesh::ArrayMesh() { //mesh is now created on demand //mesh = RenderingServer::get_singleton()->mesh_create(); blend_shape_mode = BLEND_SHAPE_MODE_RELATIVE; } ArrayMesh::~ArrayMesh() { if (mesh.is_valid()) { RenderingServer::get_singleton()->free(mesh); } }