/*************************************************************************/ /* importer_mesh.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "importer_mesh.h" #include "core/math/random_pcg.h" #include "core/math/static_raycaster.h" #include "scene/resources/surface_tool.h" #include void ImporterMesh::Surface::split_normals(const LocalVector &p_indices, const LocalVector &p_normals) { _split_normals(arrays, p_indices, p_normals); for (BlendShape &blend_shape : blend_shape_data) { _split_normals(blend_shape.arrays, p_indices, p_normals); } } void ImporterMesh::Surface::_split_normals(Array &r_arrays, const LocalVector &p_indices, const LocalVector &p_normals) { ERR_FAIL_COND(r_arrays.size() != RS::ARRAY_MAX); const PackedVector3Array &vertices = r_arrays[RS::ARRAY_VERTEX]; int current_vertex_count = vertices.size(); int new_vertex_count = p_indices.size(); int final_vertex_count = current_vertex_count + new_vertex_count; const int *indices_ptr = p_indices.ptr(); for (int i = 0; i < r_arrays.size(); i++) { if (i == RS::ARRAY_INDEX) { continue; } if (r_arrays[i].get_type() == Variant::NIL) { continue; } switch (r_arrays[i].get_type()) { case Variant::PACKED_VECTOR3_ARRAY: { PackedVector3Array data = r_arrays[i]; data.resize(final_vertex_count); Vector3 *data_ptr = data.ptrw(); if (i == RS::ARRAY_NORMAL) { const Vector3 *normals_ptr = p_normals.ptr(); memcpy(&data_ptr[current_vertex_count], normals_ptr, sizeof(Vector3) * new_vertex_count); } else { for (int j = 0; j < new_vertex_count; j++) { data_ptr[current_vertex_count + j] = data_ptr[indices_ptr[j]]; } } r_arrays[i] = data; } break; case Variant::PACKED_VECTOR2_ARRAY: { PackedVector2Array data = r_arrays[i]; data.resize(final_vertex_count); Vector2 *data_ptr = data.ptrw(); for (int j = 0; j < new_vertex_count; j++) { data_ptr[current_vertex_count + j] = data_ptr[indices_ptr[j]]; } r_arrays[i] = data; } break; case Variant::PACKED_FLOAT32_ARRAY: { PackedFloat32Array data = r_arrays[i]; int elements = data.size() / current_vertex_count; data.resize(final_vertex_count * elements); float *data_ptr = data.ptrw(); for (int j = 0; j < new_vertex_count; j++) { memcpy(&data_ptr[(current_vertex_count + j) * elements], &data_ptr[indices_ptr[j] * elements], sizeof(float) * elements); } r_arrays[i] = data; } break; case Variant::PACKED_INT32_ARRAY: { PackedInt32Array data = r_arrays[i]; int elements = data.size() / current_vertex_count; data.resize(final_vertex_count * elements); int32_t *data_ptr = data.ptrw(); for (int j = 0; j < new_vertex_count; j++) { memcpy(&data_ptr[(current_vertex_count + j) * elements], &data_ptr[indices_ptr[j] * elements], sizeof(int32_t) * elements); } r_arrays[i] = data; } break; case Variant::PACKED_BYTE_ARRAY: { PackedByteArray data = r_arrays[i]; int elements = data.size() / current_vertex_count; data.resize(final_vertex_count * elements); uint8_t *data_ptr = data.ptrw(); for (int j = 0; j < new_vertex_count; j++) { memcpy(&data_ptr[(current_vertex_count + j) * elements], &data_ptr[indices_ptr[j] * elements], sizeof(uint8_t) * elements); } r_arrays[i] = data; } break; case Variant::PACKED_COLOR_ARRAY: { PackedColorArray data = r_arrays[i]; data.resize(final_vertex_count); Color *data_ptr = data.ptrw(); for (int j = 0; j < new_vertex_count; j++) { data_ptr[current_vertex_count + j] = data_ptr[indices_ptr[j]]; } r_arrays[i] = data; } break; default: { ERR_FAIL_MSG("Unhandled array type."); } break; } } } void ImporterMesh::add_blend_shape(const String &p_name) { ERR_FAIL_COND(surfaces.size() > 0); blend_shapes.push_back(p_name); } int ImporterMesh::get_blend_shape_count() const { return blend_shapes.size(); } String ImporterMesh::get_blend_shape_name(int p_blend_shape) const { ERR_FAIL_INDEX_V(p_blend_shape, blend_shapes.size(), String()); return blend_shapes[p_blend_shape]; } void ImporterMesh::set_blend_shape_mode(Mesh::BlendShapeMode p_blend_shape_mode) { blend_shape_mode = p_blend_shape_mode; } Mesh::BlendShapeMode ImporterMesh::get_blend_shape_mode() const { return blend_shape_mode; } void ImporterMesh::add_surface(Mesh::PrimitiveType p_primitive, const Array &p_arrays, const Array &p_blend_shapes, const Dictionary &p_lods, const Ref &p_material, const String &p_name, const uint32_t p_flags) { ERR_FAIL_COND(p_blend_shapes.size() != blend_shapes.size()); ERR_FAIL_COND(p_arrays.size() != Mesh::ARRAY_MAX); Surface s; s.primitive = p_primitive; s.arrays = p_arrays; s.name = p_name; s.flags = p_flags; Vector vertex_array = p_arrays[Mesh::ARRAY_VERTEX]; int vertex_count = vertex_array.size(); ERR_FAIL_COND(vertex_count == 0); for (int i = 0; i < blend_shapes.size(); i++) { Array bsdata = p_blend_shapes[i]; ERR_FAIL_COND(bsdata.size() != Mesh::ARRAY_MAX); Vector vertex_data = bsdata[Mesh::ARRAY_VERTEX]; ERR_FAIL_COND(vertex_data.size() != vertex_count); Surface::BlendShape bs; bs.arrays = bsdata; s.blend_shape_data.push_back(bs); } List lods; p_lods.get_key_list(&lods); for (const Variant &E : lods) { ERR_CONTINUE(!E.is_num()); Surface::LOD lod; lod.distance = E; lod.indices = p_lods[E]; ERR_CONTINUE(lod.indices.size() == 0); s.lods.push_back(lod); } s.material = p_material; surfaces.push_back(s); mesh.unref(); } int ImporterMesh::get_surface_count() const { return surfaces.size(); } Mesh::PrimitiveType ImporterMesh::get_surface_primitive_type(int p_surface) { ERR_FAIL_INDEX_V(p_surface, surfaces.size(), Mesh::PRIMITIVE_MAX); return surfaces[p_surface].primitive; } Array ImporterMesh::get_surface_arrays(int p_surface) const { ERR_FAIL_INDEX_V(p_surface, surfaces.size(), Array()); return surfaces[p_surface].arrays; } String ImporterMesh::get_surface_name(int p_surface) const { ERR_FAIL_INDEX_V(p_surface, surfaces.size(), String()); return surfaces[p_surface].name; } void ImporterMesh::set_surface_name(int p_surface, const String &p_name) { ERR_FAIL_INDEX(p_surface, surfaces.size()); surfaces.write[p_surface].name = p_name; mesh.unref(); } Array ImporterMesh::get_surface_blend_shape_arrays(int p_surface, int p_blend_shape) const { ERR_FAIL_INDEX_V(p_surface, surfaces.size(), Array()); ERR_FAIL_INDEX_V(p_blend_shape, surfaces[p_surface].blend_shape_data.size(), Array()); return surfaces[p_surface].blend_shape_data[p_blend_shape].arrays; } int ImporterMesh::get_surface_lod_count(int p_surface) const { ERR_FAIL_INDEX_V(p_surface, surfaces.size(), 0); return surfaces[p_surface].lods.size(); } Vector ImporterMesh::get_surface_lod_indices(int p_surface, int p_lod) const { ERR_FAIL_INDEX_V(p_surface, surfaces.size(), Vector()); ERR_FAIL_INDEX_V(p_lod, surfaces[p_surface].lods.size(), Vector()); return surfaces[p_surface].lods[p_lod].indices; } float ImporterMesh::get_surface_lod_size(int p_surface, int p_lod) const { ERR_FAIL_INDEX_V(p_surface, surfaces.size(), 0); ERR_FAIL_INDEX_V(p_lod, surfaces[p_surface].lods.size(), 0); return surfaces[p_surface].lods[p_lod].distance; } uint32_t ImporterMesh::get_surface_format(int p_surface) const { ERR_FAIL_INDEX_V(p_surface, surfaces.size(), 0); return surfaces[p_surface].flags; } Ref ImporterMesh::get_surface_material(int p_surface) const { ERR_FAIL_INDEX_V(p_surface, surfaces.size(), Ref()); return surfaces[p_surface].material; } void ImporterMesh::set_surface_material(int p_surface, const Ref &p_material) { ERR_FAIL_INDEX(p_surface, surfaces.size()); surfaces.write[p_surface].material = p_material; mesh.unref(); } void ImporterMesh::generate_lods(float p_normal_merge_angle, float p_normal_split_angle) { if (!SurfaceTool::simplify_scale_func) { return; } if (!SurfaceTool::simplify_with_attrib_func) { return; } if (!SurfaceTool::optimize_vertex_cache_func) { return; } for (int i = 0; i < surfaces.size(); i++) { if (surfaces[i].primitive != Mesh::PRIMITIVE_TRIANGLES) { continue; } surfaces.write[i].lods.clear(); Vector vertices = surfaces[i].arrays[RS::ARRAY_VERTEX]; PackedInt32Array indices = surfaces[i].arrays[RS::ARRAY_INDEX]; Vector normals = surfaces[i].arrays[RS::ARRAY_NORMAL]; Vector uvs = surfaces[i].arrays[RS::ARRAY_TEX_UV]; Vector uv2s = surfaces[i].arrays[RS::ARRAY_TEX_UV2]; unsigned int index_count = indices.size(); unsigned int vertex_count = vertices.size(); if (index_count == 0) { continue; //no lods if no indices } const Vector3 *vertices_ptr = vertices.ptr(); const int *indices_ptr = indices.ptr(); if (normals.is_empty()) { normals.resize(index_count); Vector3 *n_ptr = normals.ptrw(); for (unsigned int j = 0; j < index_count; j += 3) { const Vector3 &v0 = vertices_ptr[indices_ptr[j + 0]]; const Vector3 &v1 = vertices_ptr[indices_ptr[j + 1]]; const Vector3 &v2 = vertices_ptr[indices_ptr[j + 2]]; Vector3 n = vec3_cross(v0 - v2, v0 - v1).normalized(); n_ptr[j + 0] = n; n_ptr[j + 1] = n; n_ptr[j + 2] = n; } } float normal_merge_threshold = Math::cos(Math::deg2rad(p_normal_merge_angle)); float normal_pre_split_threshold = Math::cos(Math::deg2rad(MIN(180.0f, p_normal_split_angle * 2.0f))); float normal_split_threshold = Math::cos(Math::deg2rad(p_normal_split_angle)); const Vector3 *normals_ptr = normals.ptr(); Map>> unique_vertices; LocalVector vertex_remap; LocalVector vertex_inverse_remap; LocalVector merged_vertices; LocalVector merged_normals; LocalVector merged_normals_counts; const Vector2 *uvs_ptr = uvs.ptr(); const Vector2 *uv2s_ptr = uv2s.ptr(); for (unsigned int j = 0; j < vertex_count; j++) { const Vector3 &v = vertices_ptr[j]; const Vector3 &n = normals_ptr[j]; Map>>::Element *E = unique_vertices.find(v); if (E) { const LocalVector> &close_verts = E->get(); bool found = false; for (unsigned int k = 0; k < close_verts.size(); k++) { const Pair &idx = close_verts[k]; bool is_uvs_close = (!uvs_ptr || uvs_ptr[j].distance_squared_to(uvs_ptr[idx.second]) < CMP_EPSILON2); bool is_uv2s_close = (!uv2s_ptr || uv2s_ptr[j].distance_squared_to(uv2s_ptr[idx.second]) < CMP_EPSILON2); bool is_normals_close = normals[idx.second].dot(n) > normal_merge_threshold; if (is_uvs_close && is_uv2s_close && is_normals_close) { vertex_remap.push_back(idx.first); merged_normals[idx.first] += normals[idx.second]; merged_normals_counts[idx.first]++; found = true; break; } } if (!found) { int vcount = merged_vertices.size(); unique_vertices[v].push_back(Pair(vcount, j)); vertex_inverse_remap.push_back(j); merged_vertices.push_back(v); vertex_remap.push_back(vcount); merged_normals.push_back(normals_ptr[j]); merged_normals_counts.push_back(1); } } else { int vcount = merged_vertices.size(); unique_vertices[v] = LocalVector>(); unique_vertices[v].push_back(Pair(vcount, j)); vertex_inverse_remap.push_back(j); merged_vertices.push_back(v); vertex_remap.push_back(vcount); merged_normals.push_back(normals_ptr[j]); merged_normals_counts.push_back(1); } } LocalVector merged_indices; merged_indices.resize(index_count); for (unsigned int j = 0; j < index_count; j++) { merged_indices[j] = vertex_remap[indices[j]]; } unsigned int merged_vertex_count = merged_vertices.size(); const Vector3 *merged_vertices_ptr = merged_vertices.ptr(); const int32_t *merged_indices_ptr = merged_indices.ptr(); { const int *counts_ptr = merged_normals_counts.ptr(); Vector3 *merged_normals_ptrw = merged_normals.ptr(); for (unsigned int j = 0; j < merged_vertex_count; j++) { merged_normals_ptrw[j] /= counts_ptr[j]; } } LocalVector normal_weights; normal_weights.resize(merged_vertex_count); for (unsigned int j = 0; j < merged_vertex_count; j++) { normal_weights[j] = 2.0; // Give some weight to normal preservation, may be worth exposing as an import setting } const float max_mesh_error = FLT_MAX; // We don't want to limit by error, just by index target float scale = SurfaceTool::simplify_scale_func((const float *)merged_vertices_ptr, merged_vertex_count, sizeof(Vector3)); float mesh_error = 0.0f; unsigned int index_target = 12; // Start with the smallest target, 4 triangles unsigned int last_index_count = 0; int split_vertex_count = vertex_count; LocalVector split_vertex_normals; LocalVector split_vertex_indices; split_vertex_normals.reserve(index_count / 3); split_vertex_indices.reserve(index_count / 3); RandomPCG pcg; pcg.seed(123456789); // Keep seed constant across imports Ref raycaster = StaticRaycaster::create(); if (raycaster.is_valid()) { raycaster->add_mesh(vertices, indices, 0); raycaster->commit(); } while (index_target < index_count) { PackedInt32Array new_indices; new_indices.resize(index_count); size_t new_index_count = SurfaceTool::simplify_with_attrib_func((unsigned int *)new_indices.ptrw(), (const uint32_t *)merged_indices_ptr, index_count, (const float *)merged_vertices_ptr, merged_vertex_count, sizeof(Vector3), index_target, max_mesh_error, &mesh_error, (float *)merged_normals.ptr(), normal_weights.ptr(), 3); if (new_index_count < last_index_count * 1.5f) { index_target = index_target * 1.5f; continue; } if (new_index_count == 0 || (new_index_count >= (index_count * 0.75f))) { break; } new_indices.resize(new_index_count); LocalVector> vertex_corners; vertex_corners.resize(vertex_count); { int *ptrw = new_indices.ptrw(); for (unsigned int j = 0; j < new_index_count; j++) { const int &remapped = vertex_inverse_remap[ptrw[j]]; vertex_corners[remapped].push_back(j); ptrw[j] = remapped; } } if (raycaster.is_valid()) { float error_factor = 1.0f / (scale * MAX(mesh_error, 0.15)); const float ray_bias = 0.05; float ray_length = ray_bias + mesh_error * scale * 3.0f; Vector rays; LocalVector ray_uvs; int32_t *new_indices_ptr = new_indices.ptrw(); int current_ray_count = 0; for (unsigned int j = 0; j < new_index_count; j += 3) { const Vector3 &v0 = vertices_ptr[new_indices_ptr[j + 0]]; const Vector3 &v1 = vertices_ptr[new_indices_ptr[j + 1]]; const Vector3 &v2 = vertices_ptr[new_indices_ptr[j + 2]]; Vector3 face_normal = vec3_cross(v0 - v2, v0 - v1); float face_area = face_normal.length(); // Actually twice the face area, since it's the same error_factor on all faces, we don't care Vector3 dir = face_normal / face_area; int ray_count = CLAMP(5.0 * face_area * error_factor, 16, 64); rays.resize(current_ray_count + ray_count); StaticRaycaster::Ray *rays_ptr = rays.ptrw(); ray_uvs.resize(current_ray_count + ray_count); Vector2 *ray_uvs_ptr = ray_uvs.ptr(); for (int k = 0; k < ray_count; k++) { float u = pcg.randf(); float v = pcg.randf(); if (u + v >= 1.0f) { u = 1.0f - u; v = 1.0f - v; } u = 0.9f * u + 0.05f / 3.0f; // Give barycentric coordinates some padding, we don't want to sample right on the edge v = 0.9f * v + 0.05f / 3.0f; // v = (v - one_third) * 0.95f + one_third; float w = 1.0f - u - v; Vector3 org = v0 * w + v1 * u + v2 * v; org -= dir * ray_bias; rays_ptr[current_ray_count + k] = StaticRaycaster::Ray(org, dir, 0.0f, ray_length); rays_ptr[current_ray_count + k].id = j / 3; ray_uvs_ptr[current_ray_count + k] = Vector2(u, v); } current_ray_count += ray_count; } raycaster->intersect(rays); LocalVector ray_normals; LocalVector ray_normal_weights; ray_normals.resize(new_index_count); ray_normal_weights.resize(new_index_count); for (unsigned int j = 0; j < new_index_count; j++) { ray_normal_weights[j] = 0.0f; } const StaticRaycaster::Ray *rp = rays.ptr(); for (int j = 0; j < rays.size(); j++) { if (rp[j].geomID != 0) { // Ray missed continue; } if (rp[j].normal.normalized().dot(rp[j].dir) > 0.0f) { // Hit a back face. continue; } const float &u = rp[j].u; const float &v = rp[j].v; const float w = 1.0f - u - v; const unsigned int &hit_tri_id = rp[j].primID; const unsigned int &orig_tri_id = rp[j].id; const Vector3 &n0 = normals_ptr[indices_ptr[hit_tri_id * 3 + 0]]; const Vector3 &n1 = normals_ptr[indices_ptr[hit_tri_id * 3 + 1]]; const Vector3 &n2 = normals_ptr[indices_ptr[hit_tri_id * 3 + 2]]; Vector3 normal = n0 * w + n1 * u + n2 * v; Vector2 orig_uv = ray_uvs[j]; const real_t orig_bary[3] = { 1.0f - orig_uv.x - orig_uv.y, orig_uv.x, orig_uv.y }; for (int k = 0; k < 3; k++) { int idx = orig_tri_id * 3 + k; real_t weight = orig_bary[k]; ray_normals[idx] += normal * weight; ray_normal_weights[idx] += weight; } } for (unsigned int j = 0; j < new_index_count; j++) { if (ray_normal_weights[j] < 1.0f) { // Not enough data, the new normal would be just a bad guess ray_normals[j] = Vector3(); } else { ray_normals[j] /= ray_normal_weights[j]; } } LocalVector> normal_group_indices; LocalVector normal_group_averages; normal_group_indices.reserve(24); normal_group_averages.reserve(24); for (unsigned int j = 0; j < vertex_count; j++) { const LocalVector &corners = vertex_corners[j]; const Vector3 &vertex_normal = normals_ptr[j]; for (unsigned int k = 0; k < corners.size(); k++) { const int &corner_idx = corners[k]; const Vector3 &ray_normal = ray_normals[corner_idx]; if (ray_normal.length_squared() < CMP_EPSILON2) { continue; } bool found = false; for (unsigned int l = 0; l < normal_group_indices.size(); l++) { LocalVector &group_indices = normal_group_indices[l]; Vector3 n = normal_group_averages[l] / group_indices.size(); if (n.dot(ray_normal) > normal_pre_split_threshold) { found = true; group_indices.push_back(corner_idx); normal_group_averages[l] += ray_normal; break; } } if (!found) { LocalVector new_group; new_group.push_back(corner_idx); normal_group_indices.push_back(new_group); normal_group_averages.push_back(ray_normal); } } for (unsigned int k = 0; k < normal_group_indices.size(); k++) { LocalVector &group_indices = normal_group_indices[k]; Vector3 n = normal_group_averages[k] / group_indices.size(); if (vertex_normal.dot(n) < normal_split_threshold) { split_vertex_indices.push_back(j); split_vertex_normals.push_back(n); int new_idx = split_vertex_count++; for (unsigned int l = 0; l < group_indices.size(); l++) { new_indices_ptr[group_indices[l]] = new_idx; } } } normal_group_indices.clear(); normal_group_averages.clear(); } } Surface::LOD lod; lod.distance = MAX(mesh_error * scale, CMP_EPSILON2); lod.indices = new_indices; surfaces.write[i].lods.push_back(lod); index_target = MAX(new_index_count, index_target) * 2; last_index_count = new_index_count; if (mesh_error == 0.0f) { break; } } surfaces.write[i].split_normals(split_vertex_indices, split_vertex_normals); surfaces.write[i].lods.sort_custom(); for (int j = 0; j < surfaces.write[i].lods.size(); j++) { Surface::LOD &lod = surfaces.write[i].lods.write[j]; unsigned int *lod_indices_ptr = (unsigned int *)lod.indices.ptrw(); SurfaceTool::optimize_vertex_cache_func(lod_indices_ptr, lod_indices_ptr, lod.indices.size(), split_vertex_count); } } } bool ImporterMesh::has_mesh() const { return mesh.is_valid(); } Ref ImporterMesh::get_mesh(const Ref &p_base) { ERR_FAIL_COND_V(surfaces.size() == 0, Ref()); if (mesh.is_null()) { if (p_base.is_valid()) { mesh = p_base; } if (mesh.is_null()) { mesh.instantiate(); } mesh->set_name(get_name()); if (has_meta("import_id")) { mesh->set_meta("import_id", get_meta("import_id")); } for (int i = 0; i < blend_shapes.size(); i++) { mesh->add_blend_shape(blend_shapes[i]); } mesh->set_blend_shape_mode(blend_shape_mode); for (int i = 0; i < surfaces.size(); i++) { Array bs_data; if (surfaces[i].blend_shape_data.size()) { for (int j = 0; j < surfaces[i].blend_shape_data.size(); j++) { bs_data.push_back(surfaces[i].blend_shape_data[j].arrays); } } Dictionary lods; if (surfaces[i].lods.size()) { for (int j = 0; j < surfaces[i].lods.size(); j++) { lods[surfaces[i].lods[j].distance] = surfaces[i].lods[j].indices; } } mesh->add_surface_from_arrays(surfaces[i].primitive, surfaces[i].arrays, bs_data, lods, surfaces[i].flags); if (surfaces[i].material.is_valid()) { mesh->surface_set_material(mesh->get_surface_count() - 1, surfaces[i].material); } if (!surfaces[i].name.is_empty()) { mesh->surface_set_name(mesh->get_surface_count() - 1, surfaces[i].name); } } mesh->set_lightmap_size_hint(lightmap_size_hint); if (shadow_mesh.is_valid()) { Ref shadow = shadow_mesh->get_mesh(); mesh->set_shadow_mesh(shadow); } } return mesh; } void ImporterMesh::clear() { surfaces.clear(); blend_shapes.clear(); mesh.unref(); } void ImporterMesh::create_shadow_mesh() { if (shadow_mesh.is_valid()) { shadow_mesh.unref(); } //no shadow mesh for blendshapes if (blend_shapes.size() > 0) { return; } //no shadow mesh for skeletons for (int i = 0; i < surfaces.size(); i++) { if (surfaces[i].arrays[RS::ARRAY_BONES].get_type() != Variant::NIL) { return; } if (surfaces[i].arrays[RS::ARRAY_WEIGHTS].get_type() != Variant::NIL) { return; } } shadow_mesh.instantiate(); for (int i = 0; i < surfaces.size(); i++) { LocalVector vertex_remap; Vector new_vertices; Vector vertices = surfaces[i].arrays[RS::ARRAY_VERTEX]; int vertex_count = vertices.size(); { Map unique_vertices; const Vector3 *vptr = vertices.ptr(); for (int j = 0; j < vertex_count; j++) { const Vector3 &v = vptr[j]; Map::Element *E = unique_vertices.find(v); if (E) { vertex_remap.push_back(E->get()); } else { int vcount = unique_vertices.size(); unique_vertices[v] = vcount; vertex_remap.push_back(vcount); new_vertices.push_back(v); } } } Array new_surface; new_surface.resize(RS::ARRAY_MAX); Dictionary lods; // print_line("original vertex count: " + itos(vertices.size()) + " new vertex count: " + itos(new_vertices.size())); new_surface[RS::ARRAY_VERTEX] = new_vertices; Vector indices = surfaces[i].arrays[RS::ARRAY_INDEX]; if (indices.size()) { int index_count = indices.size(); const int *index_rptr = indices.ptr(); Vector new_indices; new_indices.resize(indices.size()); int *index_wptr = new_indices.ptrw(); for (int j = 0; j < index_count; j++) { int index = index_rptr[j]; ERR_FAIL_INDEX(index, vertex_count); index_wptr[j] = vertex_remap[index]; } new_surface[RS::ARRAY_INDEX] = new_indices; // Make sure the same LODs as the full version are used. // This makes it more coherent between rendered model and its shadows. for (int j = 0; j < surfaces[i].lods.size(); j++) { indices = surfaces[i].lods[j].indices; index_count = indices.size(); index_rptr = indices.ptr(); new_indices.resize(indices.size()); index_wptr = new_indices.ptrw(); for (int k = 0; k < index_count; k++) { int index = index_rptr[k]; ERR_FAIL_INDEX(index, vertex_count); index_wptr[k] = vertex_remap[index]; } lods[surfaces[i].lods[j].distance] = new_indices; } } shadow_mesh->add_surface(surfaces[i].primitive, new_surface, Array(), lods, Ref(), surfaces[i].name, surfaces[i].flags); } } Ref ImporterMesh::get_shadow_mesh() const { return shadow_mesh; } void ImporterMesh::_set_data(const Dictionary &p_data) { clear(); if (p_data.has("blend_shape_names")) { blend_shapes = p_data["blend_shape_names"]; } if (p_data.has("surfaces")) { Array surface_arr = p_data["surfaces"]; for (int i = 0; i < surface_arr.size(); i++) { Dictionary s = surface_arr[i]; ERR_CONTINUE(!s.has("primitive")); ERR_CONTINUE(!s.has("arrays")); Mesh::PrimitiveType prim = Mesh::PrimitiveType(int(s["primitive"])); ERR_CONTINUE(prim >= Mesh::PRIMITIVE_MAX); Array arr = s["arrays"]; Dictionary lods; String name; if (s.has("name")) { name = s["name"]; } if (s.has("lods")) { lods = s["lods"]; } Array b_shapes; if (s.has("b_shapes")) { b_shapes = s["b_shapes"]; } Ref material; if (s.has("material")) { material = s["material"]; } uint32_t flags = 0; if (s.has("flags")) { flags = s["flags"]; } add_surface(prim, arr, b_shapes, lods, material, name, flags); } } } Dictionary ImporterMesh::_get_data() const { Dictionary data; if (blend_shapes.size()) { data["blend_shape_names"] = blend_shapes; } Array surface_arr; for (int i = 0; i < surfaces.size(); i++) { Dictionary d; d["primitive"] = surfaces[i].primitive; d["arrays"] = surfaces[i].arrays; if (surfaces[i].blend_shape_data.size()) { Array bs_data; for (int j = 0; j < surfaces[i].blend_shape_data.size(); j++) { bs_data.push_back(surfaces[i].blend_shape_data[j].arrays); } d["blend_shapes"] = bs_data; } if (surfaces[i].lods.size()) { Dictionary lods; for (int j = 0; j < surfaces[i].lods.size(); j++) { lods[surfaces[i].lods[j].distance] = surfaces[i].lods[j].indices; } d["lods"] = lods; } if (surfaces[i].material.is_valid()) { d["material"] = surfaces[i].material; } if (!surfaces[i].name.is_empty()) { d["name"] = surfaces[i].name; } if (surfaces[i].flags != 0) { d["flags"] = surfaces[i].flags; } surface_arr.push_back(d); } data["surfaces"] = surface_arr; return data; } Vector ImporterMesh::get_faces() const { Vector faces; for (int i = 0; i < surfaces.size(); i++) { if (surfaces[i].primitive == Mesh::PRIMITIVE_TRIANGLES) { Vector vertices = surfaces[i].arrays[Mesh::ARRAY_VERTEX]; Vector indices = surfaces[i].arrays[Mesh::ARRAY_INDEX]; if (indices.size()) { for (int j = 0; j < indices.size(); j += 3) { Face3 f; f.vertex[0] = vertices[indices[j + 0]]; f.vertex[1] = vertices[indices[j + 1]]; f.vertex[2] = vertices[indices[j + 2]]; faces.push_back(f); } } else { for (int j = 0; j < vertices.size(); j += 3) { Face3 f; f.vertex[0] = vertices[j + 0]; f.vertex[1] = vertices[j + 1]; f.vertex[2] = vertices[j + 2]; faces.push_back(f); } } } } return faces; } Vector> ImporterMesh::convex_decompose(const Mesh::ConvexDecompositionSettings &p_settings) const { ERR_FAIL_COND_V(!Mesh::convex_decomposition_function, Vector>()); const Vector faces = get_faces(); int face_count = faces.size(); Vector vertices; uint32_t vertex_count = 0; vertices.resize(face_count * 3); Vector indices; indices.resize(face_count * 3); { Map vertex_map; Vector3 *vertex_w = vertices.ptrw(); uint32_t *index_w = indices.ptrw(); for (int i = 0; i < face_count; i++) { for (int j = 0; j < 3; j++) { const Vector3 &vertex = faces[i].vertex[j]; Map::Element *found_vertex = vertex_map.find(vertex); uint32_t index; if (found_vertex) { index = found_vertex->get(); } else { index = ++vertex_count; vertex_map[vertex] = index; vertex_w[index] = vertex; } index_w[i * 3 + j] = index; } } } vertices.resize(vertex_count); Vector> decomposed = Mesh::convex_decomposition_function((real_t *)vertices.ptr(), vertex_count, indices.ptr(), face_count, p_settings, nullptr); Vector> ret; for (int i = 0; i < decomposed.size(); i++) { Ref shape; shape.instantiate(); shape->set_points(decomposed[i]); ret.push_back(shape); } return ret; } Ref ImporterMesh::create_trimesh_shape() const { Vector faces = get_faces(); if (faces.size() == 0) { return Ref(); } Vector face_points; face_points.resize(faces.size() * 3); for (int i = 0; i < face_points.size(); i += 3) { Face3 f = faces.get(i / 3); face_points.set(i, f.vertex[0]); face_points.set(i + 1, f.vertex[1]); face_points.set(i + 2, f.vertex[2]); } Ref shape = memnew(ConcavePolygonShape3D); shape->set_faces(face_points); return shape; } Ref ImporterMesh::create_navigation_mesh() { Vector faces = get_faces(); if (faces.size() == 0) { return Ref(); } Map unique_vertices; LocalVector face_indices; for (int i = 0; i < faces.size(); i++) { for (int j = 0; j < 3; j++) { Vector3 v = faces[i].vertex[j]; int idx; if (unique_vertices.has(v)) { idx = unique_vertices[v]; } else { idx = unique_vertices.size(); unique_vertices[v] = idx; } face_indices.push_back(idx); } } Vector vertices; vertices.resize(unique_vertices.size()); for (const KeyValue &E : unique_vertices) { vertices.write[E.value] = E.key; } Ref nm; nm.instantiate(); nm->set_vertices(vertices); Vector v3; v3.resize(3); for (uint32_t i = 0; i < face_indices.size(); i += 3) { v3.write[0] = face_indices[i + 0]; v3.write[1] = face_indices[i + 1]; v3.write[2] = face_indices[i + 2]; nm->add_polygon(v3); } return nm; } extern bool (*array_mesh_lightmap_unwrap_callback)(float p_texel_size, const float *p_vertices, const float *p_normals, int p_vertex_count, const int *p_indices, int p_index_count, const uint8_t *p_cache_data, bool *r_use_cache, uint8_t **r_mesh_cache, int *r_mesh_cache_size, float **r_uv, int **r_vertex, int *r_vertex_count, int **r_index, int *r_index_count, int *r_size_hint_x, int *r_size_hint_y); struct EditorSceneFormatImporterMeshLightmapSurface { Ref material; LocalVector vertices; Mesh::PrimitiveType primitive = Mesh::PrimitiveType::PRIMITIVE_MAX; uint32_t format = 0; String name; }; Error ImporterMesh::lightmap_unwrap_cached(const Transform3D &p_base_transform, float p_texel_size, const Vector &p_src_cache, Vector &r_dst_cache) { ERR_FAIL_COND_V(!array_mesh_lightmap_unwrap_callback, ERR_UNCONFIGURED); ERR_FAIL_COND_V_MSG(blend_shapes.size() != 0, ERR_UNAVAILABLE, "Can't unwrap mesh with blend shapes."); LocalVector vertices; LocalVector normals; LocalVector indices; LocalVector uv; LocalVector> uv_indices; Vector lightmap_surfaces; // Keep only the scale Basis basis = p_base_transform.get_basis(); Vector3 scale = Vector3(basis.get_column(0).length(), basis.get_column(1).length(), basis.get_column(2).length()); Transform3D transform; transform.scale(scale); Basis normal_basis = transform.basis.inverse().transposed(); for (int i = 0; i < get_surface_count(); i++) { EditorSceneFormatImporterMeshLightmapSurface s; s.primitive = get_surface_primitive_type(i); ERR_FAIL_COND_V_MSG(s.primitive != Mesh::PRIMITIVE_TRIANGLES, ERR_UNAVAILABLE, "Only triangles are supported for lightmap unwrap."); Array arrays = get_surface_arrays(i); s.material = get_surface_material(i); s.name = get_surface_name(i); SurfaceTool::create_vertex_array_from_triangle_arrays(arrays, s.vertices, &s.format); PackedVector3Array rvertices = arrays[Mesh::ARRAY_VERTEX]; int vc = rvertices.size(); PackedVector3Array rnormals = arrays[Mesh::ARRAY_NORMAL]; int vertex_ofs = vertices.size() / 3; vertices.resize((vertex_ofs + vc) * 3); normals.resize((vertex_ofs + vc) * 3); uv_indices.resize(vertex_ofs + vc); for (int j = 0; j < vc; j++) { Vector3 v = transform.xform(rvertices[j]); Vector3 n = normal_basis.xform(rnormals[j]).normalized(); vertices[(j + vertex_ofs) * 3 + 0] = v.x; vertices[(j + vertex_ofs) * 3 + 1] = v.y; vertices[(j + vertex_ofs) * 3 + 2] = v.z; normals[(j + vertex_ofs) * 3 + 0] = n.x; normals[(j + vertex_ofs) * 3 + 1] = n.y; normals[(j + vertex_ofs) * 3 + 2] = n.z; uv_indices[j + vertex_ofs] = Pair(i, j); } PackedInt32Array rindices = arrays[Mesh::ARRAY_INDEX]; int ic = rindices.size(); float eps = 1.19209290e-7F; // Taken from xatlas.h if (ic == 0) { for (int j = 0; j < vc / 3; j++) { Vector3 p0 = transform.xform(rvertices[j * 3 + 0]); Vector3 p1 = transform.xform(rvertices[j * 3 + 1]); Vector3 p2 = transform.xform(rvertices[j * 3 + 2]); if ((p0 - p1).length_squared() < eps || (p1 - p2).length_squared() < eps || (p2 - p0).length_squared() < eps) { continue; } indices.push_back(vertex_ofs + j * 3 + 0); indices.push_back(vertex_ofs + j * 3 + 1); indices.push_back(vertex_ofs + j * 3 + 2); } } else { for (int j = 0; j < ic / 3; j++) { Vector3 p0 = transform.xform(rvertices[rindices[j * 3 + 0]]); Vector3 p1 = transform.xform(rvertices[rindices[j * 3 + 1]]); Vector3 p2 = transform.xform(rvertices[rindices[j * 3 + 2]]); if ((p0 - p1).length_squared() < eps || (p1 - p2).length_squared() < eps || (p2 - p0).length_squared() < eps) { continue; } indices.push_back(vertex_ofs + rindices[j * 3 + 0]); indices.push_back(vertex_ofs + rindices[j * 3 + 1]); indices.push_back(vertex_ofs + rindices[j * 3 + 2]); } } lightmap_surfaces.push_back(s); } //unwrap bool use_cache = true; // Used to request cache generation and to know if cache was used uint8_t *gen_cache; int gen_cache_size; float *gen_uvs; int *gen_vertices; int *gen_indices; int gen_vertex_count; int gen_index_count; int size_x; int size_y; bool ok = array_mesh_lightmap_unwrap_callback(p_texel_size, vertices.ptr(), normals.ptr(), vertices.size() / 3, indices.ptr(), indices.size(), p_src_cache.ptr(), &use_cache, &gen_cache, &gen_cache_size, &gen_uvs, &gen_vertices, &gen_vertex_count, &gen_indices, &gen_index_count, &size_x, &size_y); if (!ok) { return ERR_CANT_CREATE; } //remove surfaces clear(); //create surfacetools for each surface.. LocalVector> surfaces_tools; for (int i = 0; i < lightmap_surfaces.size(); i++) { Ref st; st.instantiate(); st->begin(Mesh::PRIMITIVE_TRIANGLES); st->set_material(lightmap_surfaces[i].material); st->set_meta("name", lightmap_surfaces[i].name); surfaces_tools.push_back(st); //stay there } print_verbose("Mesh: Gen indices: " + itos(gen_index_count)); //go through all indices for (int i = 0; i < gen_index_count; i += 3) { ERR_FAIL_INDEX_V(gen_vertices[gen_indices[i + 0]], (int)uv_indices.size(), ERR_BUG); ERR_FAIL_INDEX_V(gen_vertices[gen_indices[i + 1]], (int)uv_indices.size(), ERR_BUG); ERR_FAIL_INDEX_V(gen_vertices[gen_indices[i + 2]], (int)uv_indices.size(), ERR_BUG); ERR_FAIL_COND_V(uv_indices[gen_vertices[gen_indices[i + 0]]].first != uv_indices[gen_vertices[gen_indices[i + 1]]].first || uv_indices[gen_vertices[gen_indices[i + 0]]].first != uv_indices[gen_vertices[gen_indices[i + 2]]].first, ERR_BUG); int surface = uv_indices[gen_vertices[gen_indices[i + 0]]].first; for (int j = 0; j < 3; j++) { SurfaceTool::Vertex v = lightmap_surfaces[surface].vertices[uv_indices[gen_vertices[gen_indices[i + j]]].second]; if (lightmap_surfaces[surface].format & Mesh::ARRAY_FORMAT_COLOR) { surfaces_tools[surface]->set_color(v.color); } if (lightmap_surfaces[surface].format & Mesh::ARRAY_FORMAT_TEX_UV) { surfaces_tools[surface]->set_uv(v.uv); } if (lightmap_surfaces[surface].format & Mesh::ARRAY_FORMAT_NORMAL) { surfaces_tools[surface]->set_normal(v.normal); } if (lightmap_surfaces[surface].format & Mesh::ARRAY_FORMAT_TANGENT) { Plane t; t.normal = v.tangent; t.d = v.binormal.dot(v.normal.cross(v.tangent)) < 0 ? -1 : 1; surfaces_tools[surface]->set_tangent(t); } if (lightmap_surfaces[surface].format & Mesh::ARRAY_FORMAT_BONES) { surfaces_tools[surface]->set_bones(v.bones); } if (lightmap_surfaces[surface].format & Mesh::ARRAY_FORMAT_WEIGHTS) { surfaces_tools[surface]->set_weights(v.weights); } Vector2 uv2(gen_uvs[gen_indices[i + j] * 2 + 0], gen_uvs[gen_indices[i + j] * 2 + 1]); surfaces_tools[surface]->set_uv2(uv2); surfaces_tools[surface]->add_vertex(v.vertex); } } //generate surfaces for (unsigned int i = 0; i < surfaces_tools.size(); i++) { surfaces_tools[i]->index(); Array arrays = surfaces_tools[i]->commit_to_arrays(); add_surface(surfaces_tools[i]->get_primitive(), arrays, Array(), Dictionary(), surfaces_tools[i]->get_material(), surfaces_tools[i]->get_meta("name")); } set_lightmap_size_hint(Size2(size_x, size_y)); if (gen_cache_size > 0) { r_dst_cache.resize(gen_cache_size); memcpy(r_dst_cache.ptrw(), gen_cache, gen_cache_size); memfree(gen_cache); } if (!use_cache) { // Cache was not used, free the buffers memfree(gen_vertices); memfree(gen_indices); memfree(gen_uvs); } return OK; } void ImporterMesh::set_lightmap_size_hint(const Size2i &p_size) { lightmap_size_hint = p_size; } Size2i ImporterMesh::get_lightmap_size_hint() const { return lightmap_size_hint; } void ImporterMesh::_bind_methods() { ClassDB::bind_method(D_METHOD("add_blend_shape", "name"), &ImporterMesh::add_blend_shape); ClassDB::bind_method(D_METHOD("get_blend_shape_count"), &ImporterMesh::get_blend_shape_count); ClassDB::bind_method(D_METHOD("get_blend_shape_name", "blend_shape_idx"), &ImporterMesh::get_blend_shape_name); ClassDB::bind_method(D_METHOD("set_blend_shape_mode", "mode"), &ImporterMesh::set_blend_shape_mode); ClassDB::bind_method(D_METHOD("get_blend_shape_mode"), &ImporterMesh::get_blend_shape_mode); ClassDB::bind_method(D_METHOD("add_surface", "primitive", "arrays", "blend_shapes", "lods", "material", "name", "flags"), &ImporterMesh::add_surface, DEFVAL(Array()), DEFVAL(Dictionary()), DEFVAL(Ref()), DEFVAL(String()), DEFVAL(0)); ClassDB::bind_method(D_METHOD("get_surface_count"), &ImporterMesh::get_surface_count); ClassDB::bind_method(D_METHOD("get_surface_primitive_type", "surface_idx"), &ImporterMesh::get_surface_primitive_type); ClassDB::bind_method(D_METHOD("get_surface_name", "surface_idx"), &ImporterMesh::get_surface_name); ClassDB::bind_method(D_METHOD("get_surface_arrays", "surface_idx"), &ImporterMesh::get_surface_arrays); ClassDB::bind_method(D_METHOD("get_surface_blend_shape_arrays", "surface_idx", "blend_shape_idx"), &ImporterMesh::get_surface_blend_shape_arrays); ClassDB::bind_method(D_METHOD("get_surface_lod_count", "surface_idx"), &ImporterMesh::get_surface_lod_count); ClassDB::bind_method(D_METHOD("get_surface_lod_size", "surface_idx", "lod_idx"), &ImporterMesh::get_surface_lod_size); ClassDB::bind_method(D_METHOD("get_surface_lod_indices", "surface_idx", "lod_idx"), &ImporterMesh::get_surface_lod_indices); ClassDB::bind_method(D_METHOD("get_surface_material", "surface_idx"), &ImporterMesh::get_surface_material); ClassDB::bind_method(D_METHOD("get_surface_format", "surface_idx"), &ImporterMesh::get_surface_format); ClassDB::bind_method(D_METHOD("set_surface_name", "surface_idx", "name"), &ImporterMesh::set_surface_name); ClassDB::bind_method(D_METHOD("set_surface_material", "surface_idx", "material"), &ImporterMesh::set_surface_material); ClassDB::bind_method(D_METHOD("get_mesh", "base_mesh"), &ImporterMesh::get_mesh, DEFVAL(Ref())); ClassDB::bind_method(D_METHOD("clear"), &ImporterMesh::clear); ClassDB::bind_method(D_METHOD("_set_data", "data"), &ImporterMesh::_set_data); ClassDB::bind_method(D_METHOD("_get_data"), &ImporterMesh::_get_data); ClassDB::bind_method(D_METHOD("set_lightmap_size_hint", "size"), &ImporterMesh::set_lightmap_size_hint); ClassDB::bind_method(D_METHOD("get_lightmap_size_hint"), &ImporterMesh::get_lightmap_size_hint); ADD_PROPERTY(PropertyInfo(Variant::DICTIONARY, "_data", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NO_EDITOR), "_set_data", "_get_data"); }