/*************************************************************************/ /* curve.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "curve.h" #include "core/core_string_names.h" #include "core/math/math_funcs.h" const char *Curve::SIGNAL_RANGE_CHANGED = "range_changed"; Curve::Curve() { } void Curve::set_point_count(int p_count) { ERR_FAIL_COND(p_count < 0); if (_points.size() >= p_count) { _points.resize(p_count); mark_dirty(); } else { for (int i = p_count - _points.size(); i > 0; i--) { _add_point(Vector2()); } } notify_property_list_changed(); } int Curve::_add_point(Vector2 p_position, real_t p_left_tangent, real_t p_right_tangent, TangentMode p_left_mode, TangentMode p_right_mode) { // Add a point and preserve order // Curve bounds is in 0..1 if (p_position.x > MAX_X) { p_position.x = MAX_X; } else if (p_position.x < MIN_X) { p_position.x = MIN_X; } int ret = -1; if (_points.size() == 0) { _points.push_back(Point(p_position, p_left_tangent, p_right_tangent, p_left_mode, p_right_mode)); ret = 0; } else if (_points.size() == 1) { // TODO Is the `else` able to handle this block already? real_t diff = p_position.x - _points[0].position.x; if (diff > 0) { _points.push_back(Point(p_position, p_left_tangent, p_right_tangent, p_left_mode, p_right_mode)); ret = 1; } else { _points.insert(0, Point(p_position, p_left_tangent, p_right_tangent, p_left_mode, p_right_mode)); ret = 0; } } else { int i = get_index(p_position.x); if (i == 0 && p_position.x < _points[0].position.x) { // Insert before anything else _points.insert(0, Point(p_position, p_left_tangent, p_right_tangent, p_left_mode, p_right_mode)); ret = 0; } else { // Insert between i and i+1 ++i; _points.insert(i, Point(p_position, p_left_tangent, p_right_tangent, p_left_mode, p_right_mode)); ret = i; } } update_auto_tangents(ret); mark_dirty(); return ret; } int Curve::add_point(Vector2 p_position, real_t p_left_tangent, real_t p_right_tangent, TangentMode p_left_mode, TangentMode p_right_mode) { int ret = _add_point(p_position, p_left_tangent, p_right_tangent, p_left_mode, p_right_mode); notify_property_list_changed(); return ret; } int Curve::get_index(real_t p_offset) const { // Lower-bound float binary search int imin = 0; int imax = _points.size() - 1; while (imax - imin > 1) { int m = (imin + imax) / 2; real_t a = _points[m].position.x; real_t b = _points[m + 1].position.x; if (a < p_offset && b < p_offset) { imin = m; } else if (a > p_offset) { imax = m; } else { return m; } } // Will happen if the offset is out of bounds if (p_offset > _points[imax].position.x) { return imax; } return imin; } void Curve::clean_dupes() { bool dirty = false; for (int i = 1; i < _points.size(); ++i) { real_t diff = _points[i - 1].position.x - _points[i].position.x; if (diff <= CMP_EPSILON) { _points.remove_at(i); --i; dirty = true; } } if (dirty) { mark_dirty(); } } void Curve::set_point_left_tangent(int p_index, real_t p_tangent) { ERR_FAIL_INDEX(p_index, _points.size()); _points.write[p_index].left_tangent = p_tangent; _points.write[p_index].left_mode = TANGENT_FREE; mark_dirty(); } void Curve::set_point_right_tangent(int p_index, real_t p_tangent) { ERR_FAIL_INDEX(p_index, _points.size()); _points.write[p_index].right_tangent = p_tangent; _points.write[p_index].right_mode = TANGENT_FREE; mark_dirty(); } void Curve::set_point_left_mode(int p_index, TangentMode p_mode) { ERR_FAIL_INDEX(p_index, _points.size()); _points.write[p_index].left_mode = p_mode; if (p_index > 0) { if (p_mode == TANGENT_LINEAR) { Vector2 v = (_points[p_index - 1].position - _points[p_index].position).normalized(); _points.write[p_index].left_tangent = v.y / v.x; } } mark_dirty(); } void Curve::set_point_right_mode(int p_index, TangentMode p_mode) { ERR_FAIL_INDEX(p_index, _points.size()); _points.write[p_index].right_mode = p_mode; if (p_index + 1 < _points.size()) { if (p_mode == TANGENT_LINEAR) { Vector2 v = (_points[p_index + 1].position - _points[p_index].position).normalized(); _points.write[p_index].right_tangent = v.y / v.x; } } mark_dirty(); } real_t Curve::get_point_left_tangent(int p_index) const { ERR_FAIL_INDEX_V(p_index, _points.size(), 0); return _points[p_index].left_tangent; } real_t Curve::get_point_right_tangent(int p_index) const { ERR_FAIL_INDEX_V(p_index, _points.size(), 0); return _points[p_index].right_tangent; } Curve::TangentMode Curve::get_point_left_mode(int p_index) const { ERR_FAIL_INDEX_V(p_index, _points.size(), TANGENT_FREE); return _points[p_index].left_mode; } Curve::TangentMode Curve::get_point_right_mode(int p_index) const { ERR_FAIL_INDEX_V(p_index, _points.size(), TANGENT_FREE); return _points[p_index].right_mode; } void Curve::_remove_point(int p_index) { ERR_FAIL_INDEX(p_index, _points.size()); _points.remove_at(p_index); mark_dirty(); } void Curve::remove_point(int p_index) { _remove_point(p_index); notify_property_list_changed(); } void Curve::clear_points() { _points.clear(); mark_dirty(); notify_property_list_changed(); } void Curve::set_point_value(int p_index, real_t p_position) { ERR_FAIL_INDEX(p_index, _points.size()); _points.write[p_index].position.y = p_position; update_auto_tangents(p_index); mark_dirty(); } int Curve::set_point_offset(int p_index, real_t p_offset) { ERR_FAIL_INDEX_V(p_index, _points.size(), -1); Point p = _points[p_index]; _remove_point(p_index); int i = _add_point(Vector2(p_offset, p.position.y)); _points.write[i].left_tangent = p.left_tangent; _points.write[i].right_tangent = p.right_tangent; _points.write[i].left_mode = p.left_mode; _points.write[i].right_mode = p.right_mode; if (p_index != i) { update_auto_tangents(p_index); } update_auto_tangents(i); return i; } Vector2 Curve::get_point_position(int p_index) const { ERR_FAIL_INDEX_V(p_index, _points.size(), Vector2(0, 0)); return _points[p_index].position; } Curve::Point Curve::get_point(int p_index) const { ERR_FAIL_INDEX_V(p_index, _points.size(), Point()); return _points[p_index]; } void Curve::update_auto_tangents(int p_index) { Point &p = _points.write[p_index]; if (p_index > 0) { if (p.left_mode == TANGENT_LINEAR) { Vector2 v = (_points[p_index - 1].position - p.position).normalized(); p.left_tangent = v.y / v.x; } if (_points[p_index - 1].right_mode == TANGENT_LINEAR) { Vector2 v = (_points[p_index - 1].position - p.position).normalized(); _points.write[p_index - 1].right_tangent = v.y / v.x; } } if (p_index + 1 < _points.size()) { if (p.right_mode == TANGENT_LINEAR) { Vector2 v = (_points[p_index + 1].position - p.position).normalized(); p.right_tangent = v.y / v.x; } if (_points[p_index + 1].left_mode == TANGENT_LINEAR) { Vector2 v = (_points[p_index + 1].position - p.position).normalized(); _points.write[p_index + 1].left_tangent = v.y / v.x; } } } #define MIN_Y_RANGE 0.01 void Curve::set_min_value(real_t p_min) { if (_minmax_set_once & 0b11 && p_min > _max_value - MIN_Y_RANGE) { _min_value = _max_value - MIN_Y_RANGE; } else { _minmax_set_once |= 0b10; // first bit is "min set" _min_value = p_min; } // Note: min and max are indicative values, // it's still possible that existing points are out of range at this point. emit_signal(SNAME(SIGNAL_RANGE_CHANGED)); } void Curve::set_max_value(real_t p_max) { if (_minmax_set_once & 0b11 && p_max < _min_value + MIN_Y_RANGE) { _max_value = _min_value + MIN_Y_RANGE; } else { _minmax_set_once |= 0b01; // second bit is "max set" _max_value = p_max; } emit_signal(SNAME(SIGNAL_RANGE_CHANGED)); } real_t Curve::sample(real_t p_offset) const { if (_points.size() == 0) { return 0; } if (_points.size() == 1) { return _points[0].position.y; } int i = get_index(p_offset); if (i == _points.size() - 1) { return _points[i].position.y; } real_t local = p_offset - _points[i].position.x; if (i == 0 && local <= 0) { return _points[0].position.y; } return sample_local_nocheck(i, local); } real_t Curve::sample_local_nocheck(int p_index, real_t p_local_offset) const { const Point a = _points[p_index]; const Point b = _points[p_index + 1]; /* Cubic bezier * * ac-----bc * / \ * / \ Here with a.right_tangent > 0 * / \ and b.left_tangent < 0 * / \ * a b * * |-d1--|-d2--|-d3--| * * d1 == d2 == d3 == d / 3 */ // Control points are chosen at equal distances real_t d = b.position.x - a.position.x; if (Math::is_zero_approx(d)) { return b.position.y; } p_local_offset /= d; d /= 3.0; real_t yac = a.position.y + d * a.right_tangent; real_t ybc = b.position.y - d * b.left_tangent; real_t y = Math::bezier_interpolate(a.position.y, yac, ybc, b.position.y, p_local_offset); return y; } void Curve::mark_dirty() { _baked_cache_dirty = true; emit_signal(CoreStringNames::get_singleton()->changed); } Array Curve::get_data() const { Array output; const unsigned int ELEMS = 5; output.resize(_points.size() * ELEMS); for (int j = 0; j < _points.size(); ++j) { const Point p = _points[j]; int i = j * ELEMS; output[i] = p.position; output[i + 1] = p.left_tangent; output[i + 2] = p.right_tangent; output[i + 3] = p.left_mode; output[i + 4] = p.right_mode; } return output; } void Curve::set_data(const Array p_input) { const unsigned int ELEMS = 5; ERR_FAIL_COND(p_input.size() % ELEMS != 0); _points.clear(); // Validate input for (int i = 0; i < p_input.size(); i += ELEMS) { ERR_FAIL_COND(p_input[i].get_type() != Variant::VECTOR2); ERR_FAIL_COND(!p_input[i + 1].is_num()); ERR_FAIL_COND(p_input[i + 2].get_type() != Variant::FLOAT); ERR_FAIL_COND(p_input[i + 3].get_type() != Variant::INT); int left_mode = p_input[i + 3]; ERR_FAIL_COND(left_mode < 0 || left_mode >= TANGENT_MODE_COUNT); ERR_FAIL_COND(p_input[i + 4].get_type() != Variant::INT); int right_mode = p_input[i + 4]; ERR_FAIL_COND(right_mode < 0 || right_mode >= TANGENT_MODE_COUNT); } _points.resize(p_input.size() / ELEMS); for (int j = 0; j < _points.size(); ++j) { Point &p = _points.write[j]; int i = j * ELEMS; p.position = p_input[i]; p.left_tangent = p_input[i + 1]; p.right_tangent = p_input[i + 2]; int left_mode = p_input[i + 3]; int right_mode = p_input[i + 4]; p.left_mode = (TangentMode)left_mode; p.right_mode = (TangentMode)right_mode; } mark_dirty(); notify_property_list_changed(); } void Curve::bake() { _baked_cache.clear(); _baked_cache.resize(_bake_resolution); for (int i = 1; i < _bake_resolution - 1; ++i) { real_t x = i / static_cast(_bake_resolution); real_t y = sample(x); _baked_cache.write[i] = y; } if (_points.size() != 0) { _baked_cache.write[0] = _points[0].position.y; _baked_cache.write[_baked_cache.size() - 1] = _points[_points.size() - 1].position.y; } _baked_cache_dirty = false; } void Curve::set_bake_resolution(int p_resolution) { ERR_FAIL_COND(p_resolution < 1); ERR_FAIL_COND(p_resolution > 1000); _bake_resolution = p_resolution; _baked_cache_dirty = true; } real_t Curve::sample_baked(real_t p_offset) const { if (_baked_cache_dirty) { // Last-second bake if not done already const_cast(this)->bake(); } // Special cases if the cache is too small if (_baked_cache.size() == 0) { if (_points.size() == 0) { return 0; } return _points[0].position.y; } else if (_baked_cache.size() == 1) { return _baked_cache[0]; } // Get interpolation index real_t fi = p_offset * _baked_cache.size(); int i = Math::floor(fi); if (i < 0) { i = 0; fi = 0; } else if (i >= _baked_cache.size()) { i = _baked_cache.size() - 1; fi = 0; } // Sample if (i + 1 < _baked_cache.size()) { real_t t = fi - i; return Math::lerp(_baked_cache[i], _baked_cache[i + 1], t); } else { return _baked_cache[_baked_cache.size() - 1]; } } void Curve::ensure_default_setup(real_t p_min, real_t p_max) { if (_points.size() == 0 && _min_value == 0 && _max_value == 1) { add_point(Vector2(0, 1)); add_point(Vector2(1, 1)); set_min_value(p_min); set_max_value(p_max); } } bool Curve::_set(const StringName &p_name, const Variant &p_value) { Vector components = String(p_name).split("/", true, 2); if (components.size() >= 2 && components[0].begins_with("point_") && components[0].trim_prefix("point_").is_valid_int()) { int point_index = components[0].trim_prefix("point_").to_int(); String property = components[1]; if (property == "position") { Vector2 position = p_value.operator Vector2(); set_point_offset(point_index, position.x); set_point_value(point_index, position.y); return true; } else if (property == "left_tangent") { set_point_left_tangent(point_index, p_value); return true; } else if (property == "left_mode") { int mode = p_value; set_point_left_mode(point_index, (TangentMode)mode); return true; } else if (property == "right_tangent") { set_point_right_tangent(point_index, p_value); return true; } else if (property == "right_mode") { int mode = p_value; set_point_right_mode(point_index, (TangentMode)mode); return true; } } return false; } bool Curve::_get(const StringName &p_name, Variant &r_ret) const { Vector components = String(p_name).split("/", true, 2); if (components.size() >= 2 && components[0].begins_with("point_") && components[0].trim_prefix("point_").is_valid_int()) { int point_index = components[0].trim_prefix("point_").to_int(); String property = components[1]; if (property == "position") { r_ret = get_point_position(point_index); return true; } else if (property == "left_tangent") { r_ret = get_point_left_tangent(point_index); return true; } else if (property == "left_mode") { r_ret = get_point_left_mode(point_index); return true; } else if (property == "right_tangent") { r_ret = get_point_right_tangent(point_index); return true; } else if (property == "right_mode") { r_ret = get_point_right_mode(point_index); return true; } } return false; } void Curve::_get_property_list(List *p_list) const { for (int i = 0; i < _points.size(); i++) { PropertyInfo pi = PropertyInfo(Variant::VECTOR2, vformat("point_%d/position", i)); pi.usage &= ~PROPERTY_USAGE_STORAGE; p_list->push_back(pi); if (i != 0) { pi = PropertyInfo(Variant::FLOAT, vformat("point_%d/left_tangent", i)); pi.usage &= ~PROPERTY_USAGE_STORAGE; p_list->push_back(pi); pi = PropertyInfo(Variant::INT, vformat("point_%d/left_mode", i), PROPERTY_HINT_ENUM, "Free,Linear"); pi.usage &= ~PROPERTY_USAGE_STORAGE; p_list->push_back(pi); } if (i != _points.size() - 1) { pi = PropertyInfo(Variant::FLOAT, vformat("point_%d/right_tangent", i)); pi.usage &= ~PROPERTY_USAGE_STORAGE; p_list->push_back(pi); pi = PropertyInfo(Variant::INT, vformat("point_%d/right_mode", i), PROPERTY_HINT_ENUM, "Free,Linear"); pi.usage &= ~PROPERTY_USAGE_STORAGE; p_list->push_back(pi); } } } void Curve::_bind_methods() { ClassDB::bind_method(D_METHOD("get_point_count"), &Curve::get_point_count); ClassDB::bind_method(D_METHOD("set_point_count", "count"), &Curve::set_point_count); ClassDB::bind_method(D_METHOD("add_point", "position", "left_tangent", "right_tangent", "left_mode", "right_mode"), &Curve::add_point, DEFVAL(0), DEFVAL(0), DEFVAL(TANGENT_FREE), DEFVAL(TANGENT_FREE)); ClassDB::bind_method(D_METHOD("remove_point", "index"), &Curve::remove_point); ClassDB::bind_method(D_METHOD("clear_points"), &Curve::clear_points); ClassDB::bind_method(D_METHOD("get_point_position", "index"), &Curve::get_point_position); ClassDB::bind_method(D_METHOD("set_point_value", "index", "y"), &Curve::set_point_value); ClassDB::bind_method(D_METHOD("set_point_offset", "index", "offset"), &Curve::set_point_offset); ClassDB::bind_method(D_METHOD("sample", "offset"), &Curve::sample); ClassDB::bind_method(D_METHOD("sample_baked", "offset"), &Curve::sample_baked); ClassDB::bind_method(D_METHOD("get_point_left_tangent", "index"), &Curve::get_point_left_tangent); ClassDB::bind_method(D_METHOD("get_point_right_tangent", "index"), &Curve::get_point_right_tangent); ClassDB::bind_method(D_METHOD("get_point_left_mode", "index"), &Curve::get_point_left_mode); ClassDB::bind_method(D_METHOD("get_point_right_mode", "index"), &Curve::get_point_right_mode); ClassDB::bind_method(D_METHOD("set_point_left_tangent", "index", "tangent"), &Curve::set_point_left_tangent); ClassDB::bind_method(D_METHOD("set_point_right_tangent", "index", "tangent"), &Curve::set_point_right_tangent); ClassDB::bind_method(D_METHOD("set_point_left_mode", "index", "mode"), &Curve::set_point_left_mode); ClassDB::bind_method(D_METHOD("set_point_right_mode", "index", "mode"), &Curve::set_point_right_mode); ClassDB::bind_method(D_METHOD("get_min_value"), &Curve::get_min_value); ClassDB::bind_method(D_METHOD("set_min_value", "min"), &Curve::set_min_value); ClassDB::bind_method(D_METHOD("get_max_value"), &Curve::get_max_value); ClassDB::bind_method(D_METHOD("set_max_value", "max"), &Curve::set_max_value); ClassDB::bind_method(D_METHOD("clean_dupes"), &Curve::clean_dupes); ClassDB::bind_method(D_METHOD("bake"), &Curve::bake); ClassDB::bind_method(D_METHOD("get_bake_resolution"), &Curve::get_bake_resolution); ClassDB::bind_method(D_METHOD("set_bake_resolution", "resolution"), &Curve::set_bake_resolution); ClassDB::bind_method(D_METHOD("_get_data"), &Curve::get_data); ClassDB::bind_method(D_METHOD("_set_data", "data"), &Curve::set_data); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "min_value", PROPERTY_HINT_RANGE, "-1024,1024,0.01"), "set_min_value", "get_min_value"); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "max_value", PROPERTY_HINT_RANGE, "-1024,1024,0.01"), "set_max_value", "get_max_value"); ADD_PROPERTY(PropertyInfo(Variant::INT, "bake_resolution", PROPERTY_HINT_RANGE, "1,1000,1"), "set_bake_resolution", "get_bake_resolution"); ADD_PROPERTY(PropertyInfo(Variant::INT, "_data", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NO_EDITOR | PROPERTY_USAGE_INTERNAL), "_set_data", "_get_data"); ADD_ARRAY_COUNT("Points", "point_count", "set_point_count", "get_point_count", "point_"); ADD_SIGNAL(MethodInfo(SIGNAL_RANGE_CHANGED)); BIND_ENUM_CONSTANT(TANGENT_FREE); BIND_ENUM_CONSTANT(TANGENT_LINEAR); BIND_ENUM_CONSTANT(TANGENT_MODE_COUNT); } int Curve2D::get_point_count() const { return points.size(); } void Curve2D::set_point_count(int p_count) { ERR_FAIL_COND(p_count < 0); if (points.size() >= p_count) { points.resize(p_count); mark_dirty(); } else { for (int i = p_count - points.size(); i > 0; i--) { _add_point(Vector2()); } } notify_property_list_changed(); } void Curve2D::_add_point(const Vector2 &p_position, const Vector2 &p_in, const Vector2 &p_out, int p_atpos) { Point n; n.position = p_position; n.in = p_in; n.out = p_out; if (p_atpos >= 0 && p_atpos < points.size()) { points.insert(p_atpos, n); } else { points.push_back(n); } mark_dirty(); } void Curve2D::add_point(const Vector2 &p_position, const Vector2 &p_in, const Vector2 &p_out, int p_atpos) { _add_point(p_position, p_in, p_out, p_atpos); notify_property_list_changed(); } void Curve2D::set_point_position(int p_index, const Vector2 &p_position) { ERR_FAIL_INDEX(p_index, points.size()); points.write[p_index].position = p_position; mark_dirty(); } Vector2 Curve2D::get_point_position(int p_index) const { ERR_FAIL_INDEX_V(p_index, points.size(), Vector2()); return points[p_index].position; } void Curve2D::set_point_in(int p_index, const Vector2 &p_in) { ERR_FAIL_INDEX(p_index, points.size()); points.write[p_index].in = p_in; mark_dirty(); } Vector2 Curve2D::get_point_in(int p_index) const { ERR_FAIL_INDEX_V(p_index, points.size(), Vector2()); return points[p_index].in; } void Curve2D::set_point_out(int p_index, const Vector2 &p_out) { ERR_FAIL_INDEX(p_index, points.size()); points.write[p_index].out = p_out; mark_dirty(); } Vector2 Curve2D::get_point_out(int p_index) const { ERR_FAIL_INDEX_V(p_index, points.size(), Vector2()); return points[p_index].out; } void Curve2D::_remove_point(int p_index) { ERR_FAIL_INDEX(p_index, points.size()); points.remove_at(p_index); mark_dirty(); } void Curve2D::remove_point(int p_index) { _remove_point(p_index); notify_property_list_changed(); } void Curve2D::clear_points() { if (!points.is_empty()) { points.clear(); mark_dirty(); notify_property_list_changed(); } } Vector2 Curve2D::sample(int p_index, const real_t p_offset) const { int pc = points.size(); ERR_FAIL_COND_V(pc == 0, Vector2()); if (p_index >= pc - 1) { return points[pc - 1].position; } else if (p_index < 0) { return points[0].position; } Vector2 p0 = points[p_index].position; Vector2 p1 = p0 + points[p_index].out; Vector2 p3 = points[p_index + 1].position; Vector2 p2 = p3 + points[p_index + 1].in; return p0.bezier_interpolate(p1, p2, p3, p_offset); } Vector2 Curve2D::samplef(real_t p_findex) const { if (p_findex < 0) { p_findex = 0; } else if (p_findex >= points.size()) { p_findex = points.size(); } return sample((int)p_findex, Math::fmod(p_findex, (real_t)1.0)); } void Curve2D::mark_dirty() { baked_cache_dirty = true; emit_signal(CoreStringNames::get_singleton()->changed); } void Curve2D::_bake_segment2d(RBMap &r_bake, real_t p_begin, real_t p_end, const Vector2 &p_a, const Vector2 &p_out, const Vector2 &p_b, const Vector2 &p_in, int p_depth, int p_max_depth, real_t p_tol) const { real_t mp = p_begin + (p_end - p_begin) * 0.5; Vector2 beg = p_a.bezier_interpolate(p_a + p_out, p_b + p_in, p_b, p_begin); Vector2 mid = p_a.bezier_interpolate(p_a + p_out, p_b + p_in, p_b, mp); Vector2 end = p_a.bezier_interpolate(p_a + p_out, p_b + p_in, p_b, p_end); Vector2 na = (mid - beg).normalized(); Vector2 nb = (end - mid).normalized(); real_t dp = na.dot(nb); if (dp < Math::cos(Math::deg_to_rad(p_tol))) { r_bake[mp] = mid; } if (p_depth < p_max_depth) { _bake_segment2d(r_bake, p_begin, mp, p_a, p_out, p_b, p_in, p_depth + 1, p_max_depth, p_tol); _bake_segment2d(r_bake, mp, p_end, p_a, p_out, p_b, p_in, p_depth + 1, p_max_depth, p_tol); } } void Curve2D::_bake() const { if (!baked_cache_dirty) { return; } baked_max_ofs = 0; baked_cache_dirty = false; if (points.size() == 0) { baked_point_cache.clear(); baked_dist_cache.clear(); return; } if (points.size() == 1) { baked_point_cache.resize(1); baked_point_cache.set(0, points[0].position); baked_dist_cache.resize(1); baked_dist_cache.set(0, 0.0); return; } Vector2 position = points[0].position; real_t dist = 0.0; List pointlist; List distlist; // Start always from origin. pointlist.push_back(position); distlist.push_back(0.0); for (int i = 0; i < points.size() - 1; i++) { real_t step = 0.1; // at least 10 substeps ought to be enough? real_t p = 0.0; while (p < 1.0) { real_t np = p + step; if (np > 1.0) { np = 1.0; } Vector2 npp = points[i].position.bezier_interpolate(points[i].position + points[i].out, points[i + 1].position + points[i + 1].in, points[i + 1].position, np); real_t d = position.distance_to(npp); if (d > bake_interval) { // OK! between P and NP there _has_ to be Something, let's go searching! int iterations = 10; //lots of detail! real_t low = p; real_t hi = np; real_t mid = low + (hi - low) * 0.5; for (int j = 0; j < iterations; j++) { npp = points[i].position.bezier_interpolate(points[i].position + points[i].out, points[i + 1].position + points[i + 1].in, points[i + 1].position, mid); d = position.distance_to(npp); if (bake_interval < d) { hi = mid; } else { low = mid; } mid = low + (hi - low) * 0.5; } position = npp; p = mid; dist += d; pointlist.push_back(position); distlist.push_back(dist); } else { p = np; } } Vector2 npp = points[i + 1].position; real_t d = position.distance_to(npp); position = npp; dist += d; pointlist.push_back(position); distlist.push_back(dist); } baked_max_ofs = dist; baked_point_cache.resize(pointlist.size()); baked_dist_cache.resize(distlist.size()); Vector2 *w = baked_point_cache.ptrw(); real_t *wd = baked_dist_cache.ptrw(); for (int i = 0; i < pointlist.size(); i++) { w[i] = pointlist[i]; wd[i] = distlist[i]; } } real_t Curve2D::get_baked_length() const { if (baked_cache_dirty) { _bake(); } return baked_max_ofs; } Vector2 Curve2D::sample_baked(real_t p_offset, bool p_cubic) const { if (baked_cache_dirty) { _bake(); } // Validate: Curve may not have baked points. int pc = baked_point_cache.size(); ERR_FAIL_COND_V_MSG(pc == 0, Vector2(), "No points in Curve2D."); if (pc == 1) { return baked_point_cache.get(0); } const Vector2 *r = baked_point_cache.ptr(); if (p_offset < 0) { return r[0]; } if (p_offset >= baked_max_ofs) { return r[pc - 1]; } int start = 0; int end = pc; int idx = (end + start) / 2; // Binary search to find baked points. while (start < idx) { real_t offset = baked_dist_cache[idx]; if (p_offset <= offset) { end = idx; } else { start = idx; } idx = (end + start) / 2; } real_t offset_begin = baked_dist_cache[idx]; real_t offset_end = baked_dist_cache[idx + 1]; real_t idx_interval = offset_end - offset_begin; ERR_FAIL_COND_V_MSG(p_offset < offset_begin || p_offset > offset_end, Vector2(), "Couldn't find baked segment."); real_t frac = (p_offset - offset_begin) / idx_interval; if (p_cubic) { Vector2 pre = idx > 0 ? r[idx - 1] : r[idx]; Vector2 post = (idx < (pc - 2)) ? r[idx + 2] : r[idx + 1]; return r[idx].cubic_interpolate(r[idx + 1], pre, post, frac); } else { return r[idx].lerp(r[idx + 1], frac); } } Transform2D Curve2D::sample_baked_with_rotation(real_t p_offset, bool p_cubic, bool p_loop, real_t p_lookahead) const { real_t path_length = get_baked_length(); // Ensure baked. ERR_FAIL_COND_V_MSG(path_length == 0, Transform2D(), "Length of Curve2D is 0."); Vector2 pos = sample_baked(p_offset, p_cubic); real_t ahead = p_offset + p_lookahead; if (p_loop && ahead >= path_length) { // If our lookahead will loop, we need to check if the path is closed. int point_count = get_point_count(); if (point_count > 0) { Vector2 start_point = get_point_position(0); Vector2 end_point = get_point_position(point_count - 1); if (start_point == end_point) { // Since the path is closed we want to 'smooth off' // the corner at the start/end. // So we wrap the lookahead back round. ahead = Math::fmod(ahead, path_length); } } } Vector2 ahead_pos = sample_baked(ahead, p_cubic); Vector2 tangent_to_curve; if (ahead_pos == pos) { // This will happen at the end of non-looping or non-closed paths. // We'll try a look behind instead, in order to get a meaningful angle. tangent_to_curve = (pos - sample_baked(p_offset - p_lookahead, p_cubic)).normalized(); } else { tangent_to_curve = (ahead_pos - pos).normalized(); } Vector2 normal_of_curve = -tangent_to_curve.orthogonal(); return Transform2D(normal_of_curve, tangent_to_curve, pos); } PackedVector2Array Curve2D::get_baked_points() const { if (baked_cache_dirty) { _bake(); } return baked_point_cache; } void Curve2D::set_bake_interval(real_t p_tolerance) { bake_interval = p_tolerance; mark_dirty(); } real_t Curve2D::get_bake_interval() const { return bake_interval; } Vector2 Curve2D::get_closest_point(const Vector2 &p_to_point) const { // Brute force method. if (baked_cache_dirty) { _bake(); } // Validate: Curve may not have baked points. int pc = baked_point_cache.size(); ERR_FAIL_COND_V_MSG(pc == 0, Vector2(), "No points in Curve2D."); if (pc == 1) { return baked_point_cache.get(0); } const Vector2 *r = baked_point_cache.ptr(); Vector2 nearest; real_t nearest_dist = -1.0f; for (int i = 0; i < pc - 1; i++) { Vector2 origin = r[i]; Vector2 direction = (r[i + 1] - origin) / bake_interval; real_t d = CLAMP((p_to_point - origin).dot(direction), 0.0f, bake_interval); Vector2 proj = origin + direction * d; real_t dist = proj.distance_squared_to(p_to_point); if (nearest_dist < 0.0f || dist < nearest_dist) { nearest = proj; nearest_dist = dist; } } return nearest; } real_t Curve2D::get_closest_offset(const Vector2 &p_to_point) const { // Brute force method. if (baked_cache_dirty) { _bake(); } // Validate: Curve may not have baked points. int pc = baked_point_cache.size(); ERR_FAIL_COND_V_MSG(pc == 0, 0.0f, "No points in Curve2D."); if (pc == 1) { return 0.0f; } const Vector2 *r = baked_point_cache.ptr(); real_t nearest = 0.0f; real_t nearest_dist = -1.0f; real_t offset = 0.0f; for (int i = 0; i < pc - 1; i++) { Vector2 origin = r[i]; Vector2 direction = (r[i + 1] - origin) / bake_interval; real_t d = CLAMP((p_to_point - origin).dot(direction), 0.0f, bake_interval); Vector2 proj = origin + direction * d; real_t dist = proj.distance_squared_to(p_to_point); if (nearest_dist < 0.0f || dist < nearest_dist) { nearest = offset + d; nearest_dist = dist; } offset += bake_interval; } return nearest; } Dictionary Curve2D::_get_data() const { Dictionary dc; PackedVector2Array d; d.resize(points.size() * 3); Vector2 *w = d.ptrw(); for (int i = 0; i < points.size(); i++) { w[i * 3 + 0] = points[i].in; w[i * 3 + 1] = points[i].out; w[i * 3 + 2] = points[i].position; } dc["points"] = d; return dc; } void Curve2D::_set_data(const Dictionary &p_data) { ERR_FAIL_COND(!p_data.has("points")); PackedVector2Array rp = p_data["points"]; int pc = rp.size(); ERR_FAIL_COND(pc % 3 != 0); points.resize(pc / 3); const Vector2 *r = rp.ptr(); for (int i = 0; i < points.size(); i++) { points.write[i].in = r[i * 3 + 0]; points.write[i].out = r[i * 3 + 1]; points.write[i].position = r[i * 3 + 2]; } mark_dirty(); notify_property_list_changed(); } PackedVector2Array Curve2D::tessellate(int p_max_stages, real_t p_tolerance) const { PackedVector2Array tess; if (points.size() == 0) { return tess; } // The current implementation requires a sorted map. Vector> midpoints; midpoints.resize(points.size() - 1); int pc = 1; for (int i = 0; i < points.size() - 1; i++) { _bake_segment2d(midpoints.write[i], 0, 1, points[i].position, points[i].out, points[i + 1].position, points[i + 1].in, 0, p_max_stages, p_tolerance); pc++; pc += midpoints[i].size(); } tess.resize(pc); Vector2 *bpw = tess.ptrw(); bpw[0] = points[0].position; int pidx = 0; for (int i = 0; i < points.size() - 1; i++) { for (const KeyValue &E : midpoints[i]) { pidx++; bpw[pidx] = E.value; } pidx++; bpw[pidx] = points[i + 1].position; } return tess; } bool Curve2D::_set(const StringName &p_name, const Variant &p_value) { Vector components = String(p_name).split("/", true, 2); if (components.size() >= 2 && components[0].begins_with("point_") && components[0].trim_prefix("point_").is_valid_int()) { int point_index = components[0].trim_prefix("point_").to_int(); String property = components[1]; if (property == "position") { set_point_position(point_index, p_value); return true; } else if (property == "in") { set_point_in(point_index, p_value); return true; } else if (property == "out") { set_point_out(point_index, p_value); return true; } } return false; } bool Curve2D::_get(const StringName &p_name, Variant &r_ret) const { Vector components = String(p_name).split("/", true, 2); if (components.size() >= 2 && components[0].begins_with("point_") && components[0].trim_prefix("point_").is_valid_int()) { int point_index = components[0].trim_prefix("point_").to_int(); String property = components[1]; if (property == "position") { r_ret = get_point_position(point_index); return true; } else if (property == "in") { r_ret = get_point_in(point_index); return true; } else if (property == "out") { r_ret = get_point_out(point_index); return true; } } return false; } void Curve2D::_get_property_list(List *p_list) const { for (int i = 0; i < points.size(); i++) { PropertyInfo pi = PropertyInfo(Variant::VECTOR2, vformat("point_%d/position", i)); pi.usage &= ~PROPERTY_USAGE_STORAGE; p_list->push_back(pi); if (i != 0) { pi = PropertyInfo(Variant::VECTOR2, vformat("point_%d/in", i)); pi.usage &= ~PROPERTY_USAGE_STORAGE; p_list->push_back(pi); } if (i != points.size() - 1) { pi = PropertyInfo(Variant::VECTOR2, vformat("point_%d/out", i)); pi.usage &= ~PROPERTY_USAGE_STORAGE; p_list->push_back(pi); } } } void Curve2D::_bind_methods() { ClassDB::bind_method(D_METHOD("get_point_count"), &Curve2D::get_point_count); ClassDB::bind_method(D_METHOD("set_point_count", "count"), &Curve2D::set_point_count); ClassDB::bind_method(D_METHOD("add_point", "position", "in", "out", "index"), &Curve2D::add_point, DEFVAL(Vector2()), DEFVAL(Vector2()), DEFVAL(-1)); ClassDB::bind_method(D_METHOD("set_point_position", "idx", "position"), &Curve2D::set_point_position); ClassDB::bind_method(D_METHOD("get_point_position", "idx"), &Curve2D::get_point_position); ClassDB::bind_method(D_METHOD("set_point_in", "idx", "position"), &Curve2D::set_point_in); ClassDB::bind_method(D_METHOD("get_point_in", "idx"), &Curve2D::get_point_in); ClassDB::bind_method(D_METHOD("set_point_out", "idx", "position"), &Curve2D::set_point_out); ClassDB::bind_method(D_METHOD("get_point_out", "idx"), &Curve2D::get_point_out); ClassDB::bind_method(D_METHOD("remove_point", "idx"), &Curve2D::remove_point); ClassDB::bind_method(D_METHOD("clear_points"), &Curve2D::clear_points); ClassDB::bind_method(D_METHOD("sample", "idx", "t"), &Curve2D::sample); ClassDB::bind_method(D_METHOD("samplef", "fofs"), &Curve2D::samplef); //ClassDB::bind_method(D_METHOD("bake","subdivs"),&Curve2D::bake,DEFVAL(10)); ClassDB::bind_method(D_METHOD("set_bake_interval", "distance"), &Curve2D::set_bake_interval); ClassDB::bind_method(D_METHOD("get_bake_interval"), &Curve2D::get_bake_interval); ClassDB::bind_method(D_METHOD("get_baked_length"), &Curve2D::get_baked_length); ClassDB::bind_method(D_METHOD("sample_baked", "offset", "cubic"), &Curve2D::sample_baked, DEFVAL(false)); ClassDB::bind_method(D_METHOD("sample_baked_with_rotation", "offset", "cubic", "loop", "lookahead"), &Curve2D::sample_baked_with_rotation, DEFVAL(false), DEFVAL(true), DEFVAL(4.0)); ClassDB::bind_method(D_METHOD("get_baked_points"), &Curve2D::get_baked_points); ClassDB::bind_method(D_METHOD("get_closest_point", "to_point"), &Curve2D::get_closest_point); ClassDB::bind_method(D_METHOD("get_closest_offset", "to_point"), &Curve2D::get_closest_offset); ClassDB::bind_method(D_METHOD("tessellate", "max_stages", "tolerance_degrees"), &Curve2D::tessellate, DEFVAL(5), DEFVAL(4)); ClassDB::bind_method(D_METHOD("_get_data"), &Curve2D::_get_data); ClassDB::bind_method(D_METHOD("_set_data", "data"), &Curve2D::_set_data); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "bake_interval", PROPERTY_HINT_RANGE, "0.01,512,0.01"), "set_bake_interval", "get_bake_interval"); ADD_PROPERTY(PropertyInfo(Variant::INT, "_data", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NO_EDITOR | PROPERTY_USAGE_INTERNAL), "_set_data", "_get_data"); ADD_ARRAY_COUNT("Points", "point_count", "set_point_count", "get_point_count", "point_"); } Curve2D::Curve2D() {} /***********************************************************************************/ /***********************************************************************************/ /***********************************************************************************/ /***********************************************************************************/ /***********************************************************************************/ /***********************************************************************************/ int Curve3D::get_point_count() const { return points.size(); } void Curve3D::set_point_count(int p_count) { ERR_FAIL_COND(p_count < 0); if (points.size() >= p_count) { points.resize(p_count); mark_dirty(); } else { for (int i = p_count - points.size(); i > 0; i--) { _add_point(Vector3()); } } notify_property_list_changed(); } void Curve3D::_add_point(const Vector3 &p_position, const Vector3 &p_in, const Vector3 &p_out, int p_atpos) { Point n; n.position = p_position; n.in = p_in; n.out = p_out; if (p_atpos >= 0 && p_atpos < points.size()) { points.insert(p_atpos, n); } else { points.push_back(n); } mark_dirty(); } void Curve3D::add_point(const Vector3 &p_position, const Vector3 &p_in, const Vector3 &p_out, int p_atpos) { _add_point(p_position, p_in, p_out, p_atpos); notify_property_list_changed(); } void Curve3D::set_point_position(int p_index, const Vector3 &p_position) { ERR_FAIL_INDEX(p_index, points.size()); points.write[p_index].position = p_position; mark_dirty(); } Vector3 Curve3D::get_point_position(int p_index) const { ERR_FAIL_INDEX_V(p_index, points.size(), Vector3()); return points[p_index].position; } void Curve3D::set_point_tilt(int p_index, real_t p_tilt) { ERR_FAIL_INDEX(p_index, points.size()); points.write[p_index].tilt = p_tilt; mark_dirty(); } real_t Curve3D::get_point_tilt(int p_index) const { ERR_FAIL_INDEX_V(p_index, points.size(), 0); return points[p_index].tilt; } void Curve3D::set_point_in(int p_index, const Vector3 &p_in) { ERR_FAIL_INDEX(p_index, points.size()); points.write[p_index].in = p_in; mark_dirty(); } Vector3 Curve3D::get_point_in(int p_index) const { ERR_FAIL_INDEX_V(p_index, points.size(), Vector3()); return points[p_index].in; } void Curve3D::set_point_out(int p_index, const Vector3 &p_out) { ERR_FAIL_INDEX(p_index, points.size()); points.write[p_index].out = p_out; mark_dirty(); } Vector3 Curve3D::get_point_out(int p_index) const { ERR_FAIL_INDEX_V(p_index, points.size(), Vector3()); return points[p_index].out; } void Curve3D::_remove_point(int p_index) { ERR_FAIL_INDEX(p_index, points.size()); points.remove_at(p_index); mark_dirty(); } void Curve3D::remove_point(int p_index) { _remove_point(p_index); notify_property_list_changed(); } void Curve3D::clear_points() { if (!points.is_empty()) { points.clear(); mark_dirty(); notify_property_list_changed(); } } Vector3 Curve3D::sample(int p_index, real_t p_offset) const { int pc = points.size(); ERR_FAIL_COND_V(pc == 0, Vector3()); if (p_index >= pc - 1) { return points[pc - 1].position; } else if (p_index < 0) { return points[0].position; } Vector3 p0 = points[p_index].position; Vector3 p1 = p0 + points[p_index].out; Vector3 p3 = points[p_index + 1].position; Vector3 p2 = p3 + points[p_index + 1].in; return p0.bezier_interpolate(p1, p2, p3, p_offset); } Vector3 Curve3D::samplef(real_t p_findex) const { if (p_findex < 0) { p_findex = 0; } else if (p_findex >= points.size()) { p_findex = points.size(); } return sample((int)p_findex, Math::fmod(p_findex, (real_t)1.0)); } void Curve3D::mark_dirty() { baked_cache_dirty = true; emit_signal(CoreStringNames::get_singleton()->changed); } void Curve3D::_bake_segment3d(RBMap &r_bake, real_t p_begin, real_t p_end, const Vector3 &p_a, const Vector3 &p_out, const Vector3 &p_b, const Vector3 &p_in, int p_depth, int p_max_depth, real_t p_tol) const { real_t mp = p_begin + (p_end - p_begin) * 0.5; Vector3 beg = p_a.bezier_interpolate(p_a + p_out, p_b + p_in, p_b, p_begin); Vector3 mid = p_a.bezier_interpolate(p_a + p_out, p_b + p_in, p_b, mp); Vector3 end = p_a.bezier_interpolate(p_a + p_out, p_b + p_in, p_b, p_end); Vector3 na = (mid - beg).normalized(); Vector3 nb = (end - mid).normalized(); real_t dp = na.dot(nb); if (dp < Math::cos(Math::deg_to_rad(p_tol))) { r_bake[mp] = mid; } if (p_depth < p_max_depth) { _bake_segment3d(r_bake, p_begin, mp, p_a, p_out, p_b, p_in, p_depth + 1, p_max_depth, p_tol); _bake_segment3d(r_bake, mp, p_end, p_a, p_out, p_b, p_in, p_depth + 1, p_max_depth, p_tol); } } void Curve3D::_bake() const { if (!baked_cache_dirty) { return; } baked_max_ofs = 0; baked_cache_dirty = false; if (points.size() == 0) { baked_point_cache.clear(); baked_tilt_cache.clear(); baked_dist_cache.clear(); baked_up_vector_cache.clear(); return; } if (points.size() == 1) { baked_point_cache.resize(1); baked_point_cache.set(0, points[0].position); baked_tilt_cache.resize(1); baked_tilt_cache.set(0, points[0].tilt); baked_dist_cache.resize(1); baked_dist_cache.set(0, 0.0); if (up_vector_enabled) { baked_up_vector_cache.resize(1); baked_up_vector_cache.set(0, Vector3(0, 1, 0)); } else { baked_up_vector_cache.clear(); } return; } Vector3 position = points[0].position; real_t dist = 0.0; List pointlist; // Abuse Plane for (position, dist) List distlist; // Start always from origin. pointlist.push_back(Plane(position, points[0].tilt)); distlist.push_back(0.0); // Step 1: Sample points const real_t step = 0.1; // At least 10 substeps ought to be enough? for (int i = 0; i < points.size() - 1; i++) { real_t p = 0.0; while (p < 1.0) { real_t np = p + step; if (np > 1.0) { np = 1.0; } Vector3 npp = points[i].position.bezier_interpolate(points[i].position + points[i].out, points[i + 1].position + points[i + 1].in, points[i + 1].position, np); real_t d = position.distance_to(npp); if (d > bake_interval) { // OK! between P and NP there _has_ to be Something, let's go searching! const int iterations = 10; // Lots of detail! real_t low = p; real_t hi = np; real_t mid = low + (hi - low) * 0.5; for (int j = 0; j < iterations; j++) { npp = points[i].position.bezier_interpolate(points[i].position + points[i].out, points[i + 1].position + points[i + 1].in, points[i + 1].position, mid); d = position.distance_to(npp); if (bake_interval < d) { hi = mid; } else { low = mid; } mid = low + (hi - low) * 0.5; } position = npp; p = mid; Plane post; post.normal = position; post.d = Math::lerp(points[i].tilt, points[i + 1].tilt, mid); dist += d; pointlist.push_back(post); distlist.push_back(dist); } else { p = np; } } Vector3 npp = points[i + 1].position; real_t d = position.distance_to(npp); if (d > CMP_EPSILON) { // Avoid the degenerate case of two very close points. position = npp; Plane post; post.normal = position; post.d = points[i + 1].tilt; dist += d; pointlist.push_back(post); distlist.push_back(dist); } } baked_max_ofs = dist; const int point_count = pointlist.size(); { baked_point_cache.resize(point_count); Vector3 *w = baked_point_cache.ptrw(); baked_tilt_cache.resize(point_count); real_t *wt = baked_tilt_cache.ptrw(); baked_dist_cache.resize(point_count); real_t *wd = baked_dist_cache.ptrw(); int idx = 0; for (const Plane &E : pointlist) { w[idx] = E.normal; wt[idx] = E.d; wd[idx] = distlist[idx]; idx++; } } if (!up_vector_enabled) { baked_up_vector_cache.resize(0); return; } // Step 2: Calculate the up vectors and the whole local reference frame // // See Dougan, Carl. "The parallel transport frame." Game Programming Gems 2 (2001): 215-219. // for an example discussing about why not the Frenet frame. { PackedVector3Array forward_vectors; baked_up_vector_cache.resize(point_count); forward_vectors.resize(point_count); Vector3 *up_write = baked_up_vector_cache.ptrw(); Vector3 *forward_write = forward_vectors.ptrw(); const Vector3 *points_ptr = baked_point_cache.ptr(); Basis frame; // X-right, Y-up, Z-forward. Basis frame_prev; // Set the initial frame based on Y-up rule. { Vector3 up(0, 1, 0); Vector3 forward = (points_ptr[1] - points_ptr[0]).normalized(); if (forward.is_equal_approx(Vector3())) { forward = Vector3(1, 0, 0); } if (abs(forward.dot(up)) > 1.0 - UNIT_EPSILON) { frame_prev = Basis::looking_at(-forward, up); } else { frame_prev = Basis::looking_at(-forward, Vector3(1, 0, 0)); } up_write[0] = frame_prev.get_column(1); forward_write[0] = frame_prev.get_column(2); } // Calculate the Parallel Transport Frame. for (int idx = 1; idx < point_count; idx++) { Vector3 forward = (points_ptr[idx] - points_ptr[idx - 1]).normalized(); if (forward.is_equal_approx(Vector3())) { forward = frame_prev.get_column(2); } Basis rotate; rotate.rotate_to_align(frame_prev.get_column(2), forward); frame = rotate * frame_prev; frame.orthonormalize(); // guard against float error accumulation up_write[idx] = frame.get_column(1); forward_write[idx] = frame.get_column(2); frame_prev = frame; } bool is_loop = true; // Loop smoothing only applies when the curve is a loop, which means two ends meet, and share forward directions. { if (!points_ptr[0].is_equal_approx(points_ptr[point_count - 1])) { is_loop = false; } real_t dot = forward_write[0].dot(forward_write[point_count - 1]); if (dot < 1.0 - 0.01) { // Alignment should not be too tight, or it dosen't work for coarse bake interval is_loop = false; } } // Twist up vectors, so that they align at two ends of the curve. if (is_loop) { const Vector3 up_start = up_write[0]; const Vector3 up_end = up_write[point_count - 1]; real_t sign = SIGN(up_end.cross(up_start).dot(forward_write[0])); real_t full_angle = Quaternion(up_end, up_start).get_angle(); if (abs(full_angle) < UNIT_EPSILON) { return; } else { const real_t *dists = baked_dist_cache.ptr(); for (int idx = 1; idx < point_count; idx++) { const real_t frac = dists[idx] / baked_max_ofs; const real_t angle = Math::lerp((real_t)0.0, full_angle, frac); Basis twist(forward_write[idx] * sign, angle); up_write[idx] = twist.xform(up_write[idx]); } } } } } real_t Curve3D::get_baked_length() const { if (baked_cache_dirty) { _bake(); } return baked_max_ofs; } Curve3D::Interval Curve3D::_find_interval(real_t p_offset) const { Interval interval = { -1, 0.0 }; ERR_FAIL_COND_V_MSG(baked_cache_dirty, interval, "Backed cache is dirty"); int pc = baked_point_cache.size(); ERR_FAIL_COND_V_MSG(pc < 2, interval, "Less than two points in cache"); int start = 0; int end = pc; int idx = (end + start) / 2; // Binary search to find baked points. while (start < idx) { real_t offset = baked_dist_cache[idx]; if (p_offset <= offset) { end = idx; } else { start = idx; } idx = (end + start) / 2; } real_t offset_begin = baked_dist_cache[idx]; real_t offset_end = baked_dist_cache[idx + 1]; real_t idx_interval = offset_end - offset_begin; ERR_FAIL_COND_V_MSG(p_offset < offset_begin || p_offset > offset_end, interval, "Offset out of range."); interval.idx = idx; if (idx_interval < FLT_EPSILON) { interval.frac = 0.5; // For a very short interval, 0.5 is a reasonable choice. ERR_FAIL_V_MSG(interval, "Zero length interval."); } interval.frac = (p_offset - offset_begin) / idx_interval; return interval; } Vector3 Curve3D::_sample_baked(Interval p_interval, bool p_cubic) const { // Assuming p_interval is valid. ERR_FAIL_INDEX_V_MSG(p_interval.idx, baked_point_cache.size(), Vector3(), "Invalid interval"); int idx = p_interval.idx; real_t frac = p_interval.frac; const Vector3 *r = baked_point_cache.ptr(); int pc = baked_point_cache.size(); if (p_cubic) { Vector3 pre = idx > 0 ? r[idx - 1] : r[idx]; Vector3 post = (idx < (pc - 2)) ? r[idx + 2] : r[idx + 1]; return r[idx].cubic_interpolate(r[idx + 1], pre, post, frac); } else { return r[idx].lerp(r[idx + 1], frac); } } real_t Curve3D::_sample_baked_tilt(Interval p_interval) const { // Assuming that p_interval is valid. ERR_FAIL_INDEX_V_MSG(p_interval.idx, baked_tilt_cache.size(), 0.0, "Invalid interval"); int idx = p_interval.idx; real_t frac = p_interval.frac; const real_t *r = baked_tilt_cache.ptr(); return Math::lerp(r[idx], r[idx + 1], frac); } Basis Curve3D::_sample_posture(Interval p_interval, bool p_apply_tilt) const { // Assuming that p_interval is valid. ERR_FAIL_INDEX_V_MSG(p_interval.idx, baked_point_cache.size(), Basis(), "Invalid interval"); if (up_vector_enabled) { ERR_FAIL_INDEX_V_MSG(p_interval.idx, baked_up_vector_cache.size(), Basis(), "Invalid interval"); } int idx = p_interval.idx; real_t frac = p_interval.frac; Vector3 forward_begin; Vector3 forward_end; if (idx == 0) { forward_begin = (baked_point_cache[1] - baked_point_cache[0]).normalized(); forward_end = (baked_point_cache[1] - baked_point_cache[0]).normalized(); } else { forward_begin = (baked_point_cache[idx] - baked_point_cache[idx - 1]).normalized(); forward_end = (baked_point_cache[idx + 1] - baked_point_cache[idx]).normalized(); } Vector3 up_begin; Vector3 up_end; if (up_vector_enabled) { const Vector3 *up_ptr = baked_up_vector_cache.ptr(); up_begin = up_ptr[idx]; up_end = up_ptr[idx + 1]; } else { up_begin = Vector3(0.0, 1.0, 0.0); up_end = Vector3(0.0, 1.0, 0.0); } // Build frames at both ends of the interval, then interpolate. const Basis frame_begin = Basis::looking_at(-forward_begin, up_begin); const Basis frame_end = Basis::looking_at(-forward_end, up_end); const Basis frame = frame_begin.slerp(frame_end, frac).orthonormalized(); if (!p_apply_tilt) { return frame; } // Applying tilt. const real_t tilt = _sample_baked_tilt(p_interval); Vector3 forward = frame.get_column(2); const Basis twist(forward, tilt); return twist * frame; } Vector3 Curve3D::sample_baked(real_t p_offset, bool p_cubic) const { if (baked_cache_dirty) { _bake(); } // Validate: Curve may not have baked points. int pc = baked_point_cache.size(); ERR_FAIL_COND_V_MSG(pc == 0, Vector3(), "No points in Curve3D."); if (pc == 1) { return baked_point_cache[0]; } p_offset = CLAMP(p_offset, 0.0, get_baked_length()); // PathFollower implement wrapping logic. Curve3D::Interval interval = _find_interval(p_offset); return _sample_baked(interval, p_cubic); } Transform3D Curve3D::sample_baked_with_rotation(real_t p_offset, bool p_cubic, bool p_apply_tilt) const { if (baked_cache_dirty) { _bake(); } // Validate: Curve may not have baked points. const int point_count = baked_point_cache.size(); ERR_FAIL_COND_V_MSG(point_count == 0, Transform3D(), "No points in Curve3D."); if (point_count == 1) { Transform3D t; t.origin = baked_point_cache.get(0); ERR_FAIL_V_MSG(t, "Only 1 point in Curve3D."); } p_offset = CLAMP(p_offset, 0.0, get_baked_length()); // PathFollower implement wrapping logic. // 0. Find interval for all sampling steps. Curve3D::Interval interval = _find_interval(p_offset); // 1. Sample position. Vector3 pos = _sample_baked(interval, p_cubic); // 2. Sample rotation frame. Basis frame = _sample_posture(interval, p_apply_tilt); return Transform3D(frame, pos); } real_t Curve3D::sample_baked_tilt(real_t p_offset) const { if (baked_cache_dirty) { _bake(); } // Validate: Curve may not have baked tilts. int pc = baked_tilt_cache.size(); ERR_FAIL_COND_V_MSG(pc == 0, 0, "No tilts in Curve3D."); if (pc == 1) { return baked_tilt_cache.get(0); } p_offset = CLAMP(p_offset, 0.0, get_baked_length()); // PathFollower implement wrapping logic Curve3D::Interval interval = _find_interval(p_offset); return _sample_baked_tilt(interval); } Vector3 Curve3D::sample_baked_up_vector(real_t p_offset, bool p_apply_tilt) const { if (baked_cache_dirty) { _bake(); } // Validate: Curve may not have baked up vectors. ERR_FAIL_COND_V_MSG(!up_vector_enabled, Vector3(0, 1, 0), "No up vectors in Curve3D."); int count = baked_up_vector_cache.size(); if (count == 1) { return baked_up_vector_cache.get(0); } p_offset = CLAMP(p_offset, 0.0, get_baked_length()); // PathFollower implement wrapping logic. Curve3D::Interval interval = _find_interval(p_offset); return _sample_posture(interval, p_apply_tilt).get_column(1); } PackedVector3Array Curve3D::get_baked_points() const { if (baked_cache_dirty) { _bake(); } return baked_point_cache; } Vector Curve3D::get_baked_tilts() const { if (baked_cache_dirty) { _bake(); } return baked_tilt_cache; } PackedVector3Array Curve3D::get_baked_up_vectors() const { if (baked_cache_dirty) { _bake(); } return baked_up_vector_cache; } Vector3 Curve3D::get_closest_point(const Vector3 &p_to_point) const { // Brute force method. if (baked_cache_dirty) { _bake(); } // Validate: Curve may not have baked points. int pc = baked_point_cache.size(); ERR_FAIL_COND_V_MSG(pc == 0, Vector3(), "No points in Curve3D."); if (pc == 1) { return baked_point_cache.get(0); } const Vector3 *r = baked_point_cache.ptr(); Vector3 nearest; real_t nearest_dist = -1.0f; for (int i = 0; i < pc - 1; i++) { Vector3 origin = r[i]; Vector3 direction = (r[i + 1] - origin) / bake_interval; real_t d = CLAMP((p_to_point - origin).dot(direction), 0.0f, bake_interval); Vector3 proj = origin + direction * d; real_t dist = proj.distance_squared_to(p_to_point); if (nearest_dist < 0.0f || dist < nearest_dist) { nearest = proj; nearest_dist = dist; } } return nearest; } real_t Curve3D::get_closest_offset(const Vector3 &p_to_point) const { // Brute force method. if (baked_cache_dirty) { _bake(); } // Validate: Curve may not have baked points. int pc = baked_point_cache.size(); ERR_FAIL_COND_V_MSG(pc == 0, 0.0f, "No points in Curve3D."); if (pc == 1) { return 0.0f; } const Vector3 *r = baked_point_cache.ptr(); real_t nearest = 0.0f; real_t nearest_dist = -1.0f; real_t offset = 0.0f; for (int i = 0; i < pc - 1; i++) { Vector3 origin = r[i]; Vector3 direction = (r[i + 1] - origin) / bake_interval; real_t d = CLAMP((p_to_point - origin).dot(direction), 0.0f, bake_interval); Vector3 proj = origin + direction * d; real_t dist = proj.distance_squared_to(p_to_point); if (nearest_dist < 0.0f || dist < nearest_dist) { nearest = offset + d; nearest_dist = dist; } offset += bake_interval; } return nearest; } void Curve3D::set_bake_interval(real_t p_tolerance) { bake_interval = p_tolerance; mark_dirty(); } real_t Curve3D::get_bake_interval() const { return bake_interval; } void Curve3D::set_up_vector_enabled(bool p_enable) { up_vector_enabled = p_enable; mark_dirty(); } bool Curve3D::is_up_vector_enabled() const { return up_vector_enabled; } Dictionary Curve3D::_get_data() const { Dictionary dc; PackedVector3Array d; d.resize(points.size() * 3); Vector3 *w = d.ptrw(); Vector t; t.resize(points.size()); real_t *wt = t.ptrw(); for (int i = 0; i < points.size(); i++) { w[i * 3 + 0] = points[i].in; w[i * 3 + 1] = points[i].out; w[i * 3 + 2] = points[i].position; wt[i] = points[i].tilt; } dc["points"] = d; dc["tilts"] = t; return dc; } void Curve3D::_set_data(const Dictionary &p_data) { ERR_FAIL_COND(!p_data.has("points")); ERR_FAIL_COND(!p_data.has("tilts")); PackedVector3Array rp = p_data["points"]; int pc = rp.size(); ERR_FAIL_COND(pc % 3 != 0); points.resize(pc / 3); const Vector3 *r = rp.ptr(); Vector rtl = p_data["tilts"]; const real_t *rt = rtl.ptr(); for (int i = 0; i < points.size(); i++) { points.write[i].in = r[i * 3 + 0]; points.write[i].out = r[i * 3 + 1]; points.write[i].position = r[i * 3 + 2]; points.write[i].tilt = rt[i]; } mark_dirty(); notify_property_list_changed(); } PackedVector3Array Curve3D::tessellate(int p_max_stages, real_t p_tolerance) const { PackedVector3Array tess; if (points.size() == 0) { return tess; } Vector> midpoints; midpoints.resize(points.size() - 1); int pc = 1; for (int i = 0; i < points.size() - 1; i++) { _bake_segment3d(midpoints.write[i], 0, 1, points[i].position, points[i].out, points[i + 1].position, points[i + 1].in, 0, p_max_stages, p_tolerance); pc++; pc += midpoints[i].size(); } tess.resize(pc); Vector3 *bpw = tess.ptrw(); bpw[0] = points[0].position; int pidx = 0; for (int i = 0; i < points.size() - 1; i++) { for (const KeyValue &E : midpoints[i]) { pidx++; bpw[pidx] = E.value; } pidx++; bpw[pidx] = points[i + 1].position; } return tess; } bool Curve3D::_set(const StringName &p_name, const Variant &p_value) { Vector components = String(p_name).split("/", true, 2); if (components.size() >= 2 && components[0].begins_with("point_") && components[0].trim_prefix("point_").is_valid_int()) { int point_index = components[0].trim_prefix("point_").to_int(); String property = components[1]; if (property == "position") { set_point_position(point_index, p_value); return true; } else if (property == "in") { set_point_in(point_index, p_value); return true; } else if (property == "out") { set_point_out(point_index, p_value); return true; } else if (property == "tilt") { set_point_tilt(point_index, p_value); return true; } } return false; } bool Curve3D::_get(const StringName &p_name, Variant &r_ret) const { Vector components = String(p_name).split("/", true, 2); if (components.size() >= 2 && components[0].begins_with("point_") && components[0].trim_prefix("point_").is_valid_int()) { int point_index = components[0].trim_prefix("point_").to_int(); String property = components[1]; if (property == "position") { r_ret = get_point_position(point_index); return true; } else if (property == "in") { r_ret = get_point_in(point_index); return true; } else if (property == "out") { r_ret = get_point_out(point_index); return true; } else if (property == "tilt") { r_ret = get_point_tilt(point_index); return true; } } return false; } void Curve3D::_get_property_list(List *p_list) const { for (int i = 0; i < points.size(); i++) { PropertyInfo pi = PropertyInfo(Variant::VECTOR3, vformat("point_%d/position", i)); pi.usage &= ~PROPERTY_USAGE_STORAGE; p_list->push_back(pi); if (i != 0) { pi = PropertyInfo(Variant::VECTOR3, vformat("point_%d/in", i)); pi.usage &= ~PROPERTY_USAGE_STORAGE; p_list->push_back(pi); } if (i != points.size() - 1) { pi = PropertyInfo(Variant::VECTOR3, vformat("point_%d/out", i)); pi.usage &= ~PROPERTY_USAGE_STORAGE; p_list->push_back(pi); } pi = PropertyInfo(Variant::FLOAT, vformat("point_%d/tilt", i)); pi.usage &= ~PROPERTY_USAGE_STORAGE; p_list->push_back(pi); } } void Curve3D::_bind_methods() { ClassDB::bind_method(D_METHOD("get_point_count"), &Curve3D::get_point_count); ClassDB::bind_method(D_METHOD("set_point_count", "count"), &Curve3D::set_point_count); ClassDB::bind_method(D_METHOD("add_point", "position", "in", "out", "index"), &Curve3D::add_point, DEFVAL(Vector3()), DEFVAL(Vector3()), DEFVAL(-1)); ClassDB::bind_method(D_METHOD("set_point_position", "idx", "position"), &Curve3D::set_point_position); ClassDB::bind_method(D_METHOD("get_point_position", "idx"), &Curve3D::get_point_position); ClassDB::bind_method(D_METHOD("set_point_tilt", "idx", "tilt"), &Curve3D::set_point_tilt); ClassDB::bind_method(D_METHOD("get_point_tilt", "idx"), &Curve3D::get_point_tilt); ClassDB::bind_method(D_METHOD("set_point_in", "idx", "position"), &Curve3D::set_point_in); ClassDB::bind_method(D_METHOD("get_point_in", "idx"), &Curve3D::get_point_in); ClassDB::bind_method(D_METHOD("set_point_out", "idx", "position"), &Curve3D::set_point_out); ClassDB::bind_method(D_METHOD("get_point_out", "idx"), &Curve3D::get_point_out); ClassDB::bind_method(D_METHOD("remove_point", "idx"), &Curve3D::remove_point); ClassDB::bind_method(D_METHOD("clear_points"), &Curve3D::clear_points); ClassDB::bind_method(D_METHOD("sample", "idx", "t"), &Curve3D::sample); ClassDB::bind_method(D_METHOD("samplef", "fofs"), &Curve3D::samplef); //ClassDB::bind_method(D_METHOD("bake","subdivs"),&Curve3D::bake,DEFVAL(10)); ClassDB::bind_method(D_METHOD("set_bake_interval", "distance"), &Curve3D::set_bake_interval); ClassDB::bind_method(D_METHOD("get_bake_interval"), &Curve3D::get_bake_interval); ClassDB::bind_method(D_METHOD("set_up_vector_enabled", "enable"), &Curve3D::set_up_vector_enabled); ClassDB::bind_method(D_METHOD("is_up_vector_enabled"), &Curve3D::is_up_vector_enabled); ClassDB::bind_method(D_METHOD("get_baked_length"), &Curve3D::get_baked_length); ClassDB::bind_method(D_METHOD("sample_baked", "offset", "cubic"), &Curve3D::sample_baked, DEFVAL(false)); ClassDB::bind_method(D_METHOD("sample_baked_with_rotation", "offset", "cubic", "apply_tilt"), &Curve3D::sample_baked_with_rotation, DEFVAL(false), DEFVAL(false)); ClassDB::bind_method(D_METHOD("sample_baked_up_vector", "offset", "apply_tilt"), &Curve3D::sample_baked_up_vector, DEFVAL(false)); ClassDB::bind_method(D_METHOD("get_baked_points"), &Curve3D::get_baked_points); ClassDB::bind_method(D_METHOD("get_baked_tilts"), &Curve3D::get_baked_tilts); ClassDB::bind_method(D_METHOD("get_baked_up_vectors"), &Curve3D::get_baked_up_vectors); ClassDB::bind_method(D_METHOD("get_closest_point", "to_point"), &Curve3D::get_closest_point); ClassDB::bind_method(D_METHOD("get_closest_offset", "to_point"), &Curve3D::get_closest_offset); ClassDB::bind_method(D_METHOD("tessellate", "max_stages", "tolerance_degrees"), &Curve3D::tessellate, DEFVAL(5), DEFVAL(4)); ClassDB::bind_method(D_METHOD("_get_data"), &Curve3D::_get_data); ClassDB::bind_method(D_METHOD("_set_data", "data"), &Curve3D::_set_data); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "bake_interval", PROPERTY_HINT_RANGE, "0.01,512,0.01"), "set_bake_interval", "get_bake_interval"); ADD_PROPERTY(PropertyInfo(Variant::INT, "_data", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NO_EDITOR | PROPERTY_USAGE_INTERNAL), "_set_data", "_get_data"); ADD_ARRAY_COUNT("Points", "point_count", "set_point_count", "get_point_count", "point_"); ADD_GROUP("Up Vector", "up_vector_"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "up_vector_enabled"), "set_up_vector_enabled", "is_up_vector_enabled"); } Curve3D::Curve3D() {}