/*************************************************************************/ /* animation.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* http://www.godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2016 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "animation.h" #include "geometry.h" bool Animation::_set(const StringName& p_name, const Variant& p_value) { String name=p_name; if (name=="length") set_length(p_value); else if (name=="loop") set_loop(p_value); else if (name=="step") set_step(p_value); else if (name.begins_with("tracks/")) { int track=name.get_slicec('/',1).to_int(); String what=name.get_slicec('/',2); if (tracks.size()==track && what=="type") { String type=p_value; if (type=="transform") { add_track(TYPE_TRANSFORM); } else if (type=="value") { add_track(TYPE_VALUE); } else if (type=="method") { add_track(TYPE_METHOD); } else { return false; } return true; } ERR_FAIL_INDEX_V( track, tracks.size(),false ); if (what=="path") track_set_path(track,p_value); else if (what=="interp") track_set_interpolation_type(track,InterpolationType(p_value.operator int())); else if (what == "keys" || what=="key_values") { if (track_get_type(track)==TYPE_TRANSFORM) { TransformTrack *tt = static_cast<TransformTrack*>(tracks[track]); DVector<float> values=p_value; int vcount=values.size(); #if 0 // old compatibility hack if ((vcount%11) == 0) { DVector<float>::Read r = values.read(); tt->transforms.resize(vcount/11); for(int i=0;i<(vcount/11);i++) { TKey<TransformKey> &tk=tt->transforms[i]; const float *ofs=&r[i*11]; tk.time=ofs[0]; tk.value.loc.x=ofs[1]; tk.value.loc.y=ofs[2]; tk.value.loc.z=ofs[3]; tk.value.rot.x=ofs[4]; tk.value.rot.y=ofs[5]; tk.value.rot.z=ofs[6]; tk.value.rot.w=ofs[7]; tk.value.scale.x=ofs[8]; tk.value.scale.y=ofs[9]; tk.value.scale.z=ofs[10]; } return true; } #endif ERR_FAIL_COND_V(vcount%12,false); // shuld be multiple of 11 DVector<float>::Read r = values.read(); tt->transforms.resize(vcount/12); for(int i=0;i<(vcount/12);i++) { TKey<TransformKey> &tk=tt->transforms[i]; const float *ofs=&r[i*12]; tk.time=ofs[0]; tk.transition=ofs[1]; tk.value.loc.x=ofs[2]; tk.value.loc.y=ofs[3]; tk.value.loc.z=ofs[4]; tk.value.rot.x=ofs[5]; tk.value.rot.y=ofs[6]; tk.value.rot.z=ofs[7]; tk.value.rot.w=ofs[8]; tk.value.scale.x=ofs[9]; tk.value.scale.y=ofs[10]; tk.value.scale.z=ofs[11]; } } else if (track_get_type(track)==TYPE_VALUE) { ValueTrack *vt = static_cast<ValueTrack*>(tracks[track]); Dictionary d = p_value; ERR_FAIL_COND_V(!d.has("times"),false); ERR_FAIL_COND_V(!d.has("values"),false); if (d.has("cont")) vt->continuous=d["cont"]; DVector<float> times=d["times"]; Array values=d["values"]; ERR_FAIL_COND_V(times.size()!=values.size(),false); if (times.size()) { int valcount=times.size(); DVector<float>::Read rt = times.read(); vt->values.resize(valcount); for(int i=0;i<valcount;i++) { vt->values[i].time=rt[i]; vt->values[i].value=values[i]; } if (d.has("transitions")) { DVector<float> transitions = d["transitions"]; ERR_FAIL_COND_V(transitions.size()!=valcount,false); DVector<float>::Read rtr = transitions.read(); for(int i=0;i<valcount;i++) { vt->values[i].transition=rtr[i]; } } } return true; } else { while(track_get_key_count(track)) track_remove_key(track,0); //well shouldn't be set anyway Dictionary d = p_value; ERR_FAIL_COND_V(!d.has("times"),false); ERR_FAIL_COND_V(!d.has("values"),false); DVector<float> times=d["times"]; Array values=d["values"]; ERR_FAIL_COND_V(times.size()!=values.size(),false); if (times.size()) { int valcount=times.size(); DVector<float>::Read rt = times.read(); for(int i=0;i<valcount;i++) { track_insert_key(track,rt[i],values[i]); } if (d.has("transitions")) { DVector<float> transitions = d["transitions"]; ERR_FAIL_COND_V(transitions.size()!=valcount,false); DVector<float>::Read rtr = transitions.read(); for(int i=0;i<valcount;i++) { track_set_key_transition(track,i,rtr[i]); } } } } } else return false; } else return false; return true; } bool Animation::_get(const StringName& p_name,Variant &r_ret) const { String name=p_name; if (name=="length") r_ret= length; else if (name=="loop") r_ret= loop; else if (name=="step") r_ret= step; else if (name.begins_with("tracks/")) { int track=name.get_slicec('/',1).to_int(); String what=name.get_slicec('/',2); ERR_FAIL_INDEX_V( track, tracks.size(), false ); if (what=="type") { switch (track_get_type(track)) { case TYPE_TRANSFORM: r_ret= "transform"; break; case TYPE_VALUE: r_ret= "value";break; case TYPE_METHOD: r_ret= "method";break; } return true; } else if (what=="path") r_ret=track_get_path(track); else if (what=="interp") r_ret = track_get_interpolation_type(track); else if (what=="keys") { if (track_get_type(track)==TYPE_TRANSFORM) { DVector<real_t> keys; int kk=track_get_key_count(track); keys.resize(kk*12); DVector<real_t>::Write w = keys.write(); int idx=0; for(int i=0;i<track_get_key_count(track);i++) { Vector3 loc; Quat rot; Vector3 scale; transform_track_get_key(track,i,&loc,&rot,&scale); w[idx++]=track_get_key_time(track,i); w[idx++]=track_get_key_transition(track,i); w[idx++]=loc.x; w[idx++]=loc.y; w[idx++]=loc.z; w[idx++]=rot.x; w[idx++]=rot.y; w[idx++]=rot.z; w[idx++]=rot.w; w[idx++]=scale.x; w[idx++]=scale.y; w[idx++]=scale.z; } w = DVector<real_t>::Write(); r_ret=keys; return true; } else if (track_get_type(track)==TYPE_VALUE) { const ValueTrack *vt = static_cast<const ValueTrack*>(tracks[track]); Dictionary d; DVector<float> key_times; DVector<float> key_transitions; Array key_values; int kk=vt->values.size(); key_times.resize(kk); key_transitions.resize(kk); key_values.resize(kk); DVector<float>::Write wti=key_times.write(); DVector<float>::Write wtr=key_transitions.write(); int idx=0; const TKey<Variant> *vls = vt->values.ptr(); for(int i=0;i<kk;i++) { wti[idx]=vls[i].time; wtr[idx]=vls[i].transition; key_values[idx]=vls[i].value; idx++; } wti=DVector<float>::Write(); wtr=DVector<float>::Write(); d["times"]=key_times; d["transitions"]=key_transitions; d["values"]=key_values; if (track_get_type(track)==TYPE_VALUE) { d["cont"]=value_track_is_continuous(track); } r_ret=d; return true; } else { Dictionary d; DVector<float> key_times; DVector<float> key_transitions; Array key_values; int kk=track_get_key_count(track); key_times.resize(kk); key_transitions.resize(kk); key_values.resize(kk); DVector<float>::Write wti=key_times.write(); DVector<float>::Write wtr=key_transitions.write(); int idx=0; for(int i=0;i<track_get_key_count(track);i++) { wti[idx]=track_get_key_time(track,i); wtr[idx]=track_get_key_transition(track,i); key_values[idx]=track_get_key_value(track,i); idx++; } wti=DVector<float>::Write(); wtr=DVector<float>::Write(); d["times"]=key_times; d["transitions"]=key_transitions; d["values"]=key_values; if (track_get_type(track)==TYPE_VALUE) { d["cont"]=value_track_is_continuous(track); } r_ret=d; return true; } } else return false; } else return false; return true; } void Animation::_get_property_list( List<PropertyInfo> *p_list) const { p_list->push_back( PropertyInfo( Variant::REAL, "length", PROPERTY_HINT_RANGE, "0.001,99999,0.001")); p_list->push_back( PropertyInfo( Variant::BOOL, "loop" )); p_list->push_back( PropertyInfo( Variant::REAL, "step", PROPERTY_HINT_RANGE, "0,4096,0.001" )); for (int i=0;i<tracks.size();i++) { p_list->push_back( PropertyInfo( Variant::STRING, "tracks/"+itos(i)+"/type", PROPERTY_HINT_NONE,"",PROPERTY_USAGE_NOEDITOR) ); p_list->push_back( PropertyInfo( Variant::NODE_PATH, "tracks/"+itos(i)+"/path", PROPERTY_HINT_NONE,"",PROPERTY_USAGE_NOEDITOR) ); p_list->push_back( PropertyInfo( Variant::INT, "tracks/"+itos(i)+"/interp", PROPERTY_HINT_NONE,"",PROPERTY_USAGE_NOEDITOR) ); p_list->push_back( PropertyInfo( Variant::ARRAY, "tracks/"+itos(i)+"/keys", PROPERTY_HINT_NONE,"",PROPERTY_USAGE_NOEDITOR) ); } } int Animation::add_track(TrackType p_type,int p_at_pos) { if (p_at_pos<0 || p_at_pos>=tracks.size()) p_at_pos=tracks.size(); switch( p_type ) { case TYPE_TRANSFORM: { TransformTrack *tt = memnew( TransformTrack ); tracks.insert( p_at_pos,tt ); } break; case TYPE_VALUE: { tracks.insert( p_at_pos,memnew( ValueTrack ) ); } break; case TYPE_METHOD: { tracks.insert( p_at_pos,memnew( MethodTrack ) ); } break; default: { ERR_PRINT("Unknown track type"); } } emit_changed(); return p_at_pos; } void Animation::remove_track(int p_track) { ERR_FAIL_INDEX(p_track, tracks.size()); Track *t=tracks[p_track]; switch(t->type) { case TYPE_TRANSFORM: { TransformTrack * tt = static_cast<TransformTrack*>(t); _clear(tt->transforms); } break; case TYPE_VALUE: { ValueTrack * vt = static_cast<ValueTrack*>(t); _clear(vt->values); } break; case TYPE_METHOD: { MethodTrack * mt = static_cast<MethodTrack*>(t); _clear(mt->methods); } break; } memdelete( t ); tracks.remove(p_track); emit_changed(); } int Animation::get_track_count() const { return tracks.size(); } Animation::TrackType Animation::track_get_type(int p_track) const { ERR_FAIL_INDEX_V(p_track, tracks.size(), TYPE_TRANSFORM ); return tracks[p_track]->type; } void Animation::track_set_path(int p_track,const NodePath& p_path) { ERR_FAIL_INDEX(p_track, tracks.size()); tracks[p_track]->path=p_path; emit_changed(); } NodePath Animation::track_get_path(int p_track) const { ERR_FAIL_INDEX_V(p_track, tracks.size(),NodePath()); return tracks[p_track]->path; } int Animation::find_track(const NodePath& p_path) const { for (int i=0; i<tracks.size(); i++) { if (tracks[i]->path == p_path) return i; }; return -1; }; void Animation::track_set_interpolation_type(int p_track,InterpolationType p_interp) { ERR_FAIL_INDEX(p_track, tracks.size()); ERR_FAIL_INDEX(p_interp,3); tracks[p_track]->interpolation=p_interp; emit_changed(); } Animation::InterpolationType Animation::track_get_interpolation_type(int p_track) const { ERR_FAIL_INDEX_V(p_track, tracks.size(),INTERPOLATION_NEAREST); return tracks[p_track]->interpolation; } // transform /* template<class T> int Animation::_insert_pos(float p_time, T& p_keys) { // simple, linear time inset that should be fast enough in reality. int idx=p_keys.size(); while(true) { if (idx==0 || p_keys[idx-1].time < p_time) { //condition for insertion. p_keys.insert(idx,T()); return idx; } else if (p_keys[idx-1].time == p_time) { // condition for replacing. return idx-1; } idx--; } } */ template<class T, class V> int Animation::_insert(float p_time, T& p_keys, const V& p_value) { int idx=p_keys.size(); while(true) { if (idx==0 || p_keys[idx-1].time < p_time) { //condition for insertion. p_keys.insert(idx,p_value); return idx; } else if (p_keys[idx-1].time == p_time) { // condition for replacing. p_keys[idx-1]=p_value; return idx-1; } idx--; } return -1; } template<class T> void Animation::_clear(T& p_keys) { p_keys.clear(); } Error Animation::transform_track_get_key(int p_track, int p_key, Vector3* r_loc, Quat* r_rot, Vector3* r_scale) const { ERR_FAIL_INDEX_V(p_track, tracks.size(),ERR_INVALID_PARAMETER); Track *t=tracks[p_track]; TransformTrack * tt = static_cast<TransformTrack*>(t); ERR_FAIL_COND_V(t->type!=TYPE_TRANSFORM,ERR_INVALID_PARAMETER); ERR_FAIL_INDEX_V(p_key,tt->transforms.size(),ERR_INVALID_PARAMETER); if (r_loc) *r_loc=tt->transforms[p_key].value.loc; if (r_rot) *r_rot=tt->transforms[p_key].value.rot; if (r_scale) *r_scale=tt->transforms[p_key].value.scale; return OK; } int Animation::transform_track_insert_key(int p_track, float p_time, const Vector3 p_loc, const Quat& p_rot, const Vector3& p_scale) { ERR_FAIL_INDEX_V(p_track, tracks.size(),-1); Track *t=tracks[p_track]; ERR_FAIL_COND_V(t->type!=TYPE_TRANSFORM,-1); TransformTrack * tt = static_cast<TransformTrack*>(t); TKey<TransformKey> tkey; tkey.time=p_time; tkey.value.loc=p_loc; tkey.value.rot=p_rot; tkey.value.scale=p_scale; int ret = _insert( p_time, tt->transforms, tkey ); emit_changed(); return ret; } void Animation::track_remove_key_at_pos(int p_track, float p_pos) { int idx = track_find_key(p_track,p_pos,true); ERR_FAIL_COND(idx < 0); track_remove_key(p_track,idx); } void Animation::track_remove_key(int p_track, int p_idx) { ERR_FAIL_INDEX(p_track,tracks.size()); Track *t=tracks[p_track]; switch(t->type) { case TYPE_TRANSFORM: { TransformTrack * tt = static_cast<TransformTrack*>(t); ERR_FAIL_INDEX(p_idx,tt->transforms.size()); tt->transforms.remove(p_idx); } break; case TYPE_VALUE: { ValueTrack * vt = static_cast<ValueTrack*>(t); ERR_FAIL_INDEX(p_idx,vt->values.size()); vt->values.remove(p_idx); } break; case TYPE_METHOD: { MethodTrack * mt = static_cast<MethodTrack*>(t); ERR_FAIL_INDEX(p_idx,mt->methods.size()); mt->methods.remove(p_idx); } break; } emit_changed(); } int Animation::track_find_key(int p_track, float p_time, bool p_exact) const { ERR_FAIL_INDEX_V(p_track,tracks.size(),-1); Track *t=tracks[p_track]; switch(t->type) { case TYPE_TRANSFORM: { TransformTrack * tt = static_cast<TransformTrack*>(t); int k = _find(tt->transforms,p_time); if (k<0 || k>=tt->transforms.size()) return -1; if (tt->transforms[k].time!=p_time && p_exact) return -1; return k; } break; case TYPE_VALUE: { ValueTrack * vt = static_cast<ValueTrack*>(t); int k = _find(vt->values,p_time); if (k<0 || k>=vt->values.size()) return -1; if (vt->values[k].time!=p_time && p_exact) return -1; return k; } break; case TYPE_METHOD: { MethodTrack * mt = static_cast<MethodTrack*>(t); int k = _find(mt->methods,p_time); if (k<0 || k>=mt->methods.size()) return -1; if (mt->methods[k].time!=p_time && p_exact) return -1; return k; } break; } return -1; } void Animation::track_insert_key(int p_track, float p_time, const Variant& p_value,float p_transition) { ERR_FAIL_INDEX(p_track, tracks.size()); Track *t=tracks[p_track]; switch(t->type) { case TYPE_TRANSFORM: { Dictionary d = p_value; Vector3 loc; if (d.has("loc")) loc=d["loc"]; Quat rot; if (d.has("rot")) rot=d["rot"]; Vector3 scale; if (d.has("scale")) scale=d["scale"]; int idx = transform_track_insert_key(p_track,p_time,loc,rot,scale); track_set_key_transition(p_track,idx,p_transition); } break; case TYPE_VALUE: { ValueTrack * vt = static_cast<ValueTrack*>(t); TKey<Variant> k; k.time=p_time; k.transition=p_transition; k.value=p_value; _insert( p_time, vt->values, k ); } break; case TYPE_METHOD: { MethodTrack * mt = static_cast<MethodTrack*>(t); ERR_FAIL_COND( p_value.get_type() != Variant::DICTIONARY ); Dictionary d=p_value; ERR_FAIL_COND(!d.has("method") || d["method"].get_type()!=Variant::STRING); ERR_FAIL_COND(!d.has("args") || !d["args"].is_array()); MethodKey k; k.time=p_time; k.transition=p_transition; k.method=d["method"]; k.params=d["args"]; _insert( p_time, mt->methods, k ); } break; } emit_changed(); } int Animation::track_get_key_count(int p_track) const { ERR_FAIL_INDEX_V(p_track, tracks.size(),-1); Track *t=tracks[p_track]; switch(t->type) { case TYPE_TRANSFORM: { TransformTrack * tt = static_cast<TransformTrack*>(t); return tt->transforms.size(); } break; case TYPE_VALUE: { ValueTrack * vt = static_cast<ValueTrack*>(t); return vt->values.size(); } break; case TYPE_METHOD: { MethodTrack * mt = static_cast<MethodTrack*>(t); return mt->methods.size(); } break; } ERR_FAIL_V(-1); } Variant Animation::track_get_key_value(int p_track, int p_key_idx) const { ERR_FAIL_INDEX_V(p_track, tracks.size(), Variant()); Track *t=tracks[p_track]; switch(t->type) { case TYPE_TRANSFORM: { TransformTrack * tt = static_cast<TransformTrack*>(t); ERR_FAIL_INDEX_V( p_key_idx, tt->transforms.size(), Variant() ); Dictionary d; d["loc"]=tt->transforms[p_key_idx].value.loc; d["rot"]=tt->transforms[p_key_idx].value.rot; d["scale"]=tt->transforms[p_key_idx].value.scale; return d; } break; case TYPE_VALUE: { ValueTrack * vt = static_cast<ValueTrack*>(t); ERR_FAIL_INDEX_V( p_key_idx, vt->values.size(), Variant() ); return vt->values[p_key_idx].value; } break; case TYPE_METHOD: { MethodTrack * mt = static_cast<MethodTrack*>(t); ERR_FAIL_INDEX_V( p_key_idx, mt->methods.size(), Variant() ); Dictionary d; d["method"]=mt->methods[p_key_idx].method; d["args"]=mt->methods[p_key_idx].params; return d; } break; } ERR_FAIL_V(Variant()); } float Animation::track_get_key_time(int p_track, int p_key_idx) const { ERR_FAIL_INDEX_V(p_track, tracks.size(), -1); Track *t=tracks[p_track]; switch(t->type) { case TYPE_TRANSFORM: { TransformTrack * tt = static_cast<TransformTrack*>(t); ERR_FAIL_INDEX_V( p_key_idx, tt->transforms.size(), -1 ); return tt->transforms[p_key_idx].time; } break; case TYPE_VALUE: { ValueTrack * vt = static_cast<ValueTrack*>(t); ERR_FAIL_INDEX_V( p_key_idx, vt->values.size(), -1 ); return vt->values[p_key_idx].time; } break; case TYPE_METHOD: { MethodTrack * mt = static_cast<MethodTrack*>(t); ERR_FAIL_INDEX_V( p_key_idx, mt->methods.size(), -1 ); return mt->methods[p_key_idx].time; } break; } ERR_FAIL_V(-1); } float Animation::track_get_key_transition(int p_track, int p_key_idx) const { ERR_FAIL_INDEX_V(p_track, tracks.size(), -1); Track *t=tracks[p_track]; switch(t->type) { case TYPE_TRANSFORM: { TransformTrack * tt = static_cast<TransformTrack*>(t); ERR_FAIL_INDEX_V( p_key_idx, tt->transforms.size(), -1 ); return tt->transforms[p_key_idx].transition; } break; case TYPE_VALUE: { ValueTrack * vt = static_cast<ValueTrack*>(t); ERR_FAIL_INDEX_V( p_key_idx, vt->values.size(), -1 ); return vt->values[p_key_idx].transition; } break; case TYPE_METHOD: { MethodTrack * mt = static_cast<MethodTrack*>(t); ERR_FAIL_INDEX_V( p_key_idx, mt->methods.size(), -1 ); return mt->methods[p_key_idx].transition; } break; } ERR_FAIL_V(0); } void Animation::track_set_key_value(int p_track, int p_key_idx,const Variant& p_value) { ERR_FAIL_INDEX(p_track, tracks.size()); Track *t=tracks[p_track]; switch(t->type) { case TYPE_TRANSFORM: { TransformTrack * tt = static_cast<TransformTrack*>(t); ERR_FAIL_INDEX( p_key_idx, tt->transforms.size()); Dictionary d = p_value; if (d.has("loc")) tt->transforms[p_key_idx].value.loc=d["loc"]; if (d.has("rot")) tt->transforms[p_key_idx].value.rot=d["rot"]; if (d.has("scale")) tt->transforms[p_key_idx].value.scale=d["scale"]; } break; case TYPE_VALUE: { ValueTrack * vt = static_cast<ValueTrack*>(t); ERR_FAIL_INDEX( p_key_idx, vt->values.size()); vt->values[p_key_idx].value=p_value; } break; case TYPE_METHOD: { MethodTrack * mt = static_cast<MethodTrack*>(t); ERR_FAIL_INDEX( p_key_idx, mt->methods.size()); Dictionary d = p_value; if (d.has("method")) mt->methods[p_key_idx].method=d["method"]; if (d.has("args")) mt->methods[p_key_idx].params=d["args"]; } break; } } void Animation::track_set_key_transition(int p_track, int p_key_idx,float p_transition) { ERR_FAIL_INDEX(p_track, tracks.size()); Track *t=tracks[p_track]; switch(t->type) { case TYPE_TRANSFORM: { TransformTrack * tt = static_cast<TransformTrack*>(t); ERR_FAIL_INDEX( p_key_idx, tt->transforms.size()); tt->transforms[p_key_idx].transition=p_transition; } break; case TYPE_VALUE: { ValueTrack * vt = static_cast<ValueTrack*>(t); ERR_FAIL_INDEX( p_key_idx, vt->values.size()); vt->values[p_key_idx].transition=p_transition; } break; case TYPE_METHOD: { MethodTrack * mt = static_cast<MethodTrack*>(t); ERR_FAIL_INDEX( p_key_idx, mt->methods.size()); mt->methods[p_key_idx].transition=p_transition; } break; } } template<class K> int Animation::_find( const Vector<K>& p_keys, float p_time) const { int len=p_keys.size(); if (len==0) return -2; int low = 0; int high = len -1; int middle; const K* keys =&p_keys[0]; while( low <= high ) { middle = ( low + high ) / 2; if( p_time == keys[ middle ].time ) { //match return middle; } else if( p_time < keys[middle].time ) high = middle - 1; //search low end of array else low = middle + 1; //search high end of array } if (keys[middle].time>p_time) middle--; return middle; } Animation::TransformKey Animation::_interpolate( const Animation::TransformKey& p_a, const Animation::TransformKey& p_b, float p_c) const { TransformKey ret; ret.loc=_interpolate(p_a.loc,p_b.loc,p_c); ret.rot=_interpolate(p_a.rot,p_b.rot,p_c); ret.scale=_interpolate(p_a.scale,p_b.scale,p_c); return ret; } Vector3 Animation::_interpolate( const Vector3& p_a, const Vector3& p_b, float p_c) const { return p_a.linear_interpolate(p_b,p_c); } Quat Animation::_interpolate( const Quat& p_a, const Quat& p_b, float p_c) const { return p_a.slerp(p_b,p_c); } Variant Animation::_interpolate( const Variant& p_a, const Variant& p_b, float p_c) const { Variant dst; Variant::interpolate(p_a,p_b,p_c,dst); return dst; } float Animation::_interpolate( const float& p_a, const float& p_b, float p_c) const { return p_a*(1.0-p_c) + p_b*p_c; } Animation::TransformKey Animation::_cubic_interpolate( const Animation::TransformKey& p_pre_a, const Animation::TransformKey& p_a, const Animation::TransformKey& p_b, const Animation::TransformKey& p_post_b,float p_c) const { Animation::TransformKey tk; tk.loc = p_a.loc.cubic_interpolate(p_b.loc,p_pre_a.loc,p_post_b.loc,p_c); tk.scale = p_a.scale.cubic_interpolate(p_b.scale,p_pre_a.scale,p_post_b.scale,p_c); tk.rot = p_a.rot.cubic_slerp(p_b.rot,p_pre_a.rot,p_post_b.rot,p_c); return tk; } Vector3 Animation::_cubic_interpolate( const Vector3& p_pre_a,const Vector3& p_a, const Vector3& p_b,const Vector3& p_post_b, float p_c) const { return p_a.cubic_interpolate(p_b,p_pre_a,p_post_b,p_c); } Quat Animation::_cubic_interpolate( const Quat& p_pre_a,const Quat& p_a, const Quat& p_b,const Quat& p_post_b, float p_c) const { return p_a.cubic_slerp(p_b,p_pre_a,p_post_b,p_c); } Variant Animation::_cubic_interpolate( const Variant& p_pre_a,const Variant& p_a, const Variant& p_b, const Variant& p_post_b,float p_c) const { Variant::Type type_a=p_a.get_type(); Variant::Type type_b=p_b.get_type(); Variant::Type type_pa=p_pre_a.get_type(); Variant::Type type_pb=p_post_b.get_type(); //make int and real play along uint32_t vformat=1<<type_a; vformat|=1<<type_b; vformat|=1<<type_pa; vformat|=1<<type_pb; if (vformat==((1<<Variant::INT)|(1<<Variant::REAL)) || vformat==(1<<Variant::REAL)) { //mix of real and int real_t p0=p_pre_a; real_t p1=p_a; real_t p2=p_b; real_t p3=p_post_b; float t = p_c; float t2 = t * t; float t3 = t2 * t; return 0.5f * ( ( p1 * 2.0f) + ( -p0 + p2 ) * t + ( 2.0f * p0 - 5.0f * p1 + 4 * p2 - p3 ) * t2 + ( -p0 + 3.0f * p1 - 3.0f * p2 + p3 ) * t3 ); } else if ((vformat & (vformat - 1))) { return p_a; //can't interpolate, mix of types } switch(type_a) { case Variant::VECTOR2: { Vector2 a=p_a; Vector2 b=p_b; Vector2 pa=p_pre_a; Vector2 pb=p_post_b; return a.cubic_interpolate(b,pa,pb,p_c); } break; case Variant::RECT2: { Rect2 a=p_a; Rect2 b=p_b; Rect2 pa=p_pre_a; Rect2 pb=p_post_b; return Rect2( a.pos.cubic_interpolate(b.pos,pa.pos,pb.pos,p_c), a.size.cubic_interpolate(b.size,pa.size,pb.size,p_c) ); } break; case Variant::VECTOR3: { Vector3 a=p_a; Vector3 b=p_b; Vector3 pa=p_pre_a; Vector3 pb=p_post_b; return a.cubic_interpolate(b,pa,pb,p_c); } break; case Variant::QUAT: { Quat a=p_a; Quat b=p_b; Quat pa=p_pre_a; Quat pb=p_post_b; return a.cubic_slerp(b,pa,pb,p_c); } break; case Variant::_AABB: { AABB a=p_a; AABB b=p_b; AABB pa=p_pre_a; AABB pb=p_post_b; return AABB( a.pos.cubic_interpolate(b.pos,pa.pos,pb.pos,p_c), a.size.cubic_interpolate(b.size,pa.size,pb.size,p_c) ); } break; default: { return _interpolate(p_a,p_b,p_c); } } return Variant(); } float Animation::_cubic_interpolate( const float& p_pre_a,const float& p_a, const float& p_b, const float& p_post_b, float p_c) const { return _interpolate(p_a,p_b,p_c); } template<class T> T Animation::_interpolate( const Vector< TKey<T> >& p_keys, float p_time, InterpolationType p_interp, bool *p_ok) const { int len=_find( p_keys, length )+1; // try to find last key (there may be more past the end) if (len<=0) { // (-1 or -2 returned originally) (plus one above) // meaning no keys, or only key time is larger than length if (p_ok) *p_ok=false; return T(); } else if (len==1) { // one key found (0+1), return it if (p_ok) *p_ok=true; return p_keys[0].value; } int idx=_find(p_keys, p_time); ERR_FAIL_COND_V( idx==-2, T()); if (p_ok) *p_ok=true; int next=0; float c=0; // prepare for all cases of interpolation if (loop) { // loop if (idx>=0) { if ((idx+1) < len) { next=idx+1; float delta=p_keys[next].time - p_keys[idx].time; float from=p_time-p_keys[idx].time; if (Math::absf(delta)>CMP_EPSILON) c=from/delta; else c=0; } else { next=0; float delta=(length - p_keys[idx].time) + p_keys[next].time; float from=p_time-p_keys[idx].time; if (Math::absf(delta)>CMP_EPSILON) c=from/delta; else c=0; } } else { // on loop, behind first key idx=len-1; next=0; float endtime=(length - p_keys[idx].time); if (endtime<0) // may be keys past the end endtime=0; float delta=endtime + p_keys[next].time; float from=endtime+p_time; if (Math::absf(delta)>CMP_EPSILON) c=from/delta; else c=0; } } else { // no loop if (idx>=0) { if ((idx+1) < len) { next=idx+1; float delta=p_keys[next].time - p_keys[idx].time; float from=p_time - p_keys[idx].time; if (Math::absf(delta)>CMP_EPSILON) c=from/delta; else c=0; } else { next=idx; } } else if (idx<0) { idx=next=0; } } float tr = p_keys[idx].transition; if (tr==0 || idx==next) { // don't interpolate if not needed return p_keys[idx].value; } if (tr!=1.0) { c = Math::ease(c,tr); } switch(p_interp) { case INTERPOLATION_NEAREST: { return p_keys[idx].value; } break; case INTERPOLATION_LINEAR: { return _interpolate(p_keys[idx].value, p_keys[next].value, c); } break; case INTERPOLATION_CUBIC: { int pre = idx-1; if (pre<0) pre=0; int post = next+1; if (post>=len) post=next; return _cubic_interpolate(p_keys[pre].value,p_keys[idx].value, p_keys[next].value,p_keys[post].value, c); } break; default: return p_keys[idx].value; } // do a barrel roll } Error Animation::transform_track_interpolate(int p_track, float p_time, Vector3 * r_loc, Quat *r_rot, Vector3 *r_scale) const { ERR_FAIL_INDEX_V(p_track, tracks.size(),ERR_INVALID_PARAMETER); Track *t=tracks[p_track]; ERR_FAIL_COND_V(t->type!=TYPE_TRANSFORM,ERR_INVALID_PARAMETER); TransformTrack * tt = static_cast<TransformTrack*>(t); bool ok; TransformKey tk = _interpolate( tt->transforms, p_time, tt->interpolation, &ok ); if (!ok) // ?? return ERR_UNAVAILABLE; if (r_loc) *r_loc=tk.loc; if (r_rot) *r_rot=tk.rot; if (r_scale) *r_scale=tk.scale; return OK; } Variant Animation::value_track_interpolate(int p_track, float p_time) const { ERR_FAIL_INDEX_V(p_track, tracks.size(),0); Track *t=tracks[p_track]; ERR_FAIL_COND_V(t->type!=TYPE_VALUE, Variant()); ValueTrack * vt = static_cast<ValueTrack*>(t); bool ok; Variant res = _interpolate( vt->values, p_time, vt->interpolation, &ok ); if (ok) { return res; } return Variant(); } void Animation::_value_track_get_key_indices_in_range(const ValueTrack * vt, float from_time, float to_time,List<int> *p_indices) const { if (from_time!=length && to_time==length) to_time=length*1.01; //include a little more if at the end int to=_find( vt->values, to_time); // can't really send the events == time, will be sent in the next frame. // if event>=len then it will probably never be requested by the anim player. if (to>=0 && vt->values[to].time>=to_time) to--; if (to<0) return; // not bother int from=_find( vt->values, from_time); // position in the right first event.+ if (from<0 || vt->values[from].time<from_time) from++; int max=vt->values.size(); for (int i=from;i<=to;i++) { ERR_CONTINUE( i<0 || i>=max); // shouldn't happen p_indices->push_back(i); } } void Animation::value_track_get_key_indices(int p_track, float p_time, float p_delta,List<int> *p_indices) const { ERR_FAIL_INDEX(p_track, tracks.size()); Track *t=tracks[p_track]; ERR_FAIL_COND( t->type != TYPE_VALUE ); ValueTrack * vt = static_cast<ValueTrack*>(t); float from_time=p_time-p_delta; float to_time=p_time; if (from_time>to_time) SWAP(from_time,to_time); if (loop) { from_time=Math::fposmod(from_time,length); to_time=Math::fposmod(to_time,length); if (from_time>to_time) { // handle loop by splitting _value_track_get_key_indices_in_range(vt,length-from_time,length,p_indices); _value_track_get_key_indices_in_range(vt,0,to_time,p_indices); return; } } else { if (from_time<0) from_time=0; if (from_time>length) from_time=length; if (to_time<0) to_time=0; if (to_time>length) to_time=length; } _value_track_get_key_indices_in_range(vt,from_time,to_time,p_indices); } void Animation::value_track_set_continuous(int p_track, bool p_continuous) { ERR_FAIL_INDEX(p_track, tracks.size()); Track *t=tracks[p_track]; ERR_FAIL_COND( t->type != TYPE_VALUE ); ValueTrack * vt = static_cast<ValueTrack*>(t); vt->continuous=p_continuous; } bool Animation::value_track_is_continuous(int p_track) const{ ERR_FAIL_INDEX_V(p_track, tracks.size(), false); Track *t=tracks[p_track]; ERR_FAIL_COND_V( t->type != TYPE_VALUE, false ); ValueTrack * vt = static_cast<ValueTrack*>(t); return vt->continuous; } void Animation::_method_track_get_key_indices_in_range(const MethodTrack * mt, float from_time, float to_time,List<int> *p_indices) const { if (from_time!=length && to_time==length) to_time=length*1.01; //include a little more if at the end int to=_find( mt->methods, to_time); // can't really send the events == time, will be sent in the next frame. // if event>=len then it will probably never be requested by the anim player. if (to>=0 && mt->methods[to].time>=to_time) to--; if (to<0) return; // not bother int from=_find( mt->methods, from_time); // position in the right first event.+ if (from<0 || mt->methods[from].time<from_time) from++; int max=mt->methods.size(); for (int i=from;i<=to;i++) { ERR_CONTINUE( i<0 || i>=max); // shouldn't happen p_indices->push_back(i); } } void Animation::method_track_get_key_indices(int p_track, float p_time, float p_delta,List<int> *p_indices) const { ERR_FAIL_INDEX(p_track, tracks.size()); Track *t=tracks[p_track]; ERR_FAIL_COND( t->type != TYPE_METHOD ); MethodTrack * mt = static_cast<MethodTrack*>(t); float from_time=p_time-p_delta; float to_time=p_time; if (from_time>to_time) SWAP(from_time,to_time); if (loop) { if (from_time > length || from_time < 0) from_time=Math::fposmod(from_time,length); if (to_time > length || to_time < 0) to_time=Math::fposmod(to_time,length); if (from_time>to_time) { // handle loop by splitting _method_track_get_key_indices_in_range(mt,from_time,length,p_indices); _method_track_get_key_indices_in_range(mt,0,to_time,p_indices); return; } } else { if (from_time<0) from_time=0; if (from_time>length) from_time=length; if (to_time<0) to_time=0; if (to_time>length) to_time=length; } _method_track_get_key_indices_in_range(mt,from_time,to_time,p_indices); } Vector<Variant> Animation::method_track_get_params(int p_track,int p_key_idx) const { ERR_FAIL_INDEX_V(p_track, tracks.size(),Vector<Variant>()); Track *t=tracks[p_track]; ERR_FAIL_COND_V( t->type != TYPE_METHOD, Vector<Variant>() ); MethodTrack * pm = static_cast<MethodTrack*>(t); ERR_FAIL_INDEX_V( p_key_idx, pm->methods.size(), Vector<Variant>() ); const MethodKey& mk=pm->methods[p_key_idx]; return mk.params; } StringName Animation::method_track_get_name(int p_track,int p_key_idx) const { ERR_FAIL_INDEX_V(p_track, tracks.size(),StringName()); Track *t=tracks[p_track]; ERR_FAIL_COND_V( t->type != TYPE_METHOD, StringName() ); MethodTrack * pm = static_cast<MethodTrack*>(t); ERR_FAIL_INDEX_V( p_key_idx, pm->methods.size(), StringName() ); return pm->methods[ p_key_idx ].method; } void Animation::set_length(float p_length) { ERR_FAIL_COND( length<0 ); length=p_length; emit_changed(); } float Animation::get_length() const { return length; } void Animation::set_loop(bool p_enabled) { loop=p_enabled; emit_changed(); } bool Animation::has_loop() const { return loop; } void Animation::track_move_up(int p_track) { if (p_track>=0 && p_track<(tracks.size()-1)) { SWAP( tracks[p_track], tracks[p_track+1] ); } emit_changed(); } void Animation::track_move_down(int p_track) { if (p_track>0 && p_track<tracks.size()) { SWAP( tracks[p_track], tracks[p_track-1] ); } emit_changed(); } void Animation::set_step(float p_step) { step=p_step; emit_changed(); } float Animation::get_step() const{ return step; } void Animation::_bind_methods() { ObjectTypeDB::bind_method(_MD("add_track","type","at_pos"),&Animation::add_track,DEFVAL(-1)); ObjectTypeDB::bind_method(_MD("remove_track","idx"),&Animation::remove_track); ObjectTypeDB::bind_method(_MD("get_track_count"),&Animation::get_track_count); ObjectTypeDB::bind_method(_MD("track_get_type","idx"),&Animation::track_get_type); ObjectTypeDB::bind_method(_MD("track_get_path","idx"),&Animation::track_get_path); ObjectTypeDB::bind_method(_MD("track_set_path","idx","path"),&Animation::track_set_path); ObjectTypeDB::bind_method(_MD("find_track","path"),&Animation::find_track); ObjectTypeDB::bind_method(_MD("track_move_up","idx"),&Animation::track_move_up); ObjectTypeDB::bind_method(_MD("track_move_down","idx"),&Animation::track_move_down); ObjectTypeDB::bind_method(_MD("transform_track_insert_key","idx","time","loc","rot","scale"),&Animation::transform_track_insert_key); ObjectTypeDB::bind_method(_MD("track_insert_key","idx","time","key","transition"),&Animation::track_insert_key,DEFVAL(1)); ObjectTypeDB::bind_method(_MD("track_remove_key","idx","key_idx"),&Animation::track_remove_key); ObjectTypeDB::bind_method(_MD("track_remove_key_at_pos","idx","pos"),&Animation::track_remove_key_at_pos); ObjectTypeDB::bind_method(_MD("track_set_key_value","idx","key","value"),&Animation::track_set_key_value); ObjectTypeDB::bind_method(_MD("track_set_key_transition","idx","key_idx","transition"),&Animation::track_set_key_transition); ObjectTypeDB::bind_method(_MD("track_get_key_transition","idx","key_idx"),&Animation::track_get_key_transition); ObjectTypeDB::bind_method(_MD("track_get_key_count","idx"),&Animation::track_get_key_count); ObjectTypeDB::bind_method(_MD("track_get_key_value","idx","key_idx"),&Animation::track_get_key_value); ObjectTypeDB::bind_method(_MD("track_get_key_time","idx","key_idx"),&Animation::track_get_key_time); ObjectTypeDB::bind_method(_MD("track_find_key","idx","time","exact"),&Animation::track_find_key,DEFVAL(false)); ObjectTypeDB::bind_method(_MD("track_set_interpolation_type","idx","interpolation"),&Animation::track_set_interpolation_type); ObjectTypeDB::bind_method(_MD("track_get_interpolation_type","idx"),&Animation::track_get_interpolation_type); ObjectTypeDB::bind_method(_MD("transform_track_interpolate","idx","time_sec"),&Animation::_transform_track_interpolate); ObjectTypeDB::bind_method(_MD("value_track_set_continuous","idx","continuous"),&Animation::value_track_set_continuous); ObjectTypeDB::bind_method(_MD("value_track_is_continuous","idx"),&Animation::value_track_is_continuous); ObjectTypeDB::bind_method(_MD("value_track_get_key_indices","idx","time_sec","delta"),&Animation::_value_track_get_key_indices); ObjectTypeDB::bind_method(_MD("method_track_get_key_indices","idx","time_sec","delta"),&Animation::_method_track_get_key_indices); ObjectTypeDB::bind_method(_MD("method_track_get_name","idx","key_idx"),&Animation::method_track_get_name); ObjectTypeDB::bind_method(_MD("method_track_get_params","idx","key_idx"),&Animation::method_track_get_params); ObjectTypeDB::bind_method(_MD("set_length","time_sec"),&Animation::set_length); ObjectTypeDB::bind_method(_MD("get_length"),&Animation::get_length); ObjectTypeDB::bind_method(_MD("set_loop","enabled"),&Animation::set_loop); ObjectTypeDB::bind_method(_MD("has_loop"),&Animation::has_loop); ObjectTypeDB::bind_method(_MD("set_step","size_sec"),&Animation::set_step); ObjectTypeDB::bind_method(_MD("get_step"),&Animation::get_step); ObjectTypeDB::bind_method(_MD("clear"),&Animation::clear); BIND_CONSTANT( TYPE_VALUE ); BIND_CONSTANT( TYPE_TRANSFORM ); BIND_CONSTANT( TYPE_METHOD ); BIND_CONSTANT( INTERPOLATION_NEAREST ); BIND_CONSTANT( INTERPOLATION_LINEAR ); BIND_CONSTANT( INTERPOLATION_CUBIC ); } void Animation::clear() { for(int i=0;i<tracks.size();i++) memdelete( tracks[i] ); tracks.clear(); loop=false; length=1; } bool Animation::_transform_track_optimize_key(const TKey<TransformKey> &t0,const TKey<TransformKey> &t1, const TKey<TransformKey> &t2, float p_alowed_linear_err,float p_alowed_angular_err,float p_max_optimizable_angle,const Vector3& p_norm) { real_t c = (t1.time-t0.time)/(t2.time-t0.time); real_t t[3]={-1,-1,-1}; { //translation const Vector3 &v0=t0.value.loc; const Vector3 &v1=t1.value.loc; const Vector3 &v2=t2.value.loc; if (v0.distance_to(v2)<CMP_EPSILON) { //0 and 2 are close, let's see if 1 is close if (v0.distance_to(v1)>CMP_EPSILON) { //not close, not optimizable return false; } } else { Vector3 pd = (v2-v0); float d0 = pd.dot(v0); float d1 = pd.dot(v1); float d2 = pd.dot(v2); if (d1<d0 || d1>d2) { return false; } Vector3 s[2]={ v0, v2 }; real_t d =Geometry::get_closest_point_to_segment(v1,s).distance_to(v1); if (d>pd.length()*p_alowed_linear_err) { return false; //beyond allowed error for colinearity } if (p_norm!=Vector3() && Math::acos(pd.normalized().dot(p_norm))>p_alowed_angular_err) return false; t[0] = (d1-d0)/(d2-d0); } } { //rotation const Quat &q0=t0.value.rot; const Quat &q1=t1.value.rot; const Quat &q2=t2.value.rot; //localize both to rotation from q0 if ((q0-q2).length() < CMP_EPSILON) { if ((q0-q1).length() > CMP_EPSILON) return false; } else { Quat r02 = (q0.inverse() * q2).normalized(); Quat r01 = (q0.inverse() * q1).normalized(); Vector3 v02,v01; real_t a02,a01; r02.get_axis_and_angle(v02,a02); r01.get_axis_and_angle(v01,a01); if (Math::abs(a02)>p_max_optimizable_angle) return false; if (v01.dot(v02)<0) { //make sure both rotations go the same way to compare v02=-v02; a02=-a02; } real_t err_01 = Math::acos(v01.normalized().dot(v02.normalized()))/Math_PI; if (err_01>p_alowed_angular_err) { //not rotating in the same axis return false; } if (a01*a02 < 0 ) { //not rotating in the same direction return false; } real_t tr = a01/a02; if (tr<0 || tr>1) return false; //rotating too much or too less t[1]=tr; } } { //scale const Vector3 &v0=t0.value.scale; const Vector3 &v1=t1.value.scale; const Vector3 &v2=t2.value.scale; if (v0.distance_to(v2)<CMP_EPSILON) { //0 and 2 are close, let's see if 1 is close if (v0.distance_to(v1)>CMP_EPSILON) { //not close, not optimizable return false; } } else { Vector3 pd = (v2-v0); float d0 = pd.dot(v0); float d1 = pd.dot(v1); float d2 = pd.dot(v2); if (d1<d0 || d1>d2) { return false; //beyond segment range } Vector3 s[2]={ v0, v2 }; real_t d =Geometry::get_closest_point_to_segment(v1,s).distance_to(v1); if (d>pd.length()*p_alowed_linear_err) { return false; //beyond allowed error for colinearity } t[2] = (d1-d0)/(d2-d0); } } bool erase=false; if (t[0]==-1 && t[1]==-1 && t[2]==-1) { erase=true; } else { erase=true; real_t lt=-1; for(int j=0;j<3;j++) { //search for t on first, one must be it if (t[j]!=-1) { lt=t[j]; //official t //validate rest for(int k=j+1;k<3;k++) { if (t[k]==-1) continue; if (Math::abs(lt-t[k])>p_alowed_linear_err) { erase=false; break; } } break; } } ERR_FAIL_COND_V( lt==-1,false ); if (erase) { if (Math::abs(lt-c)>p_alowed_linear_err) { //todo, evaluate changing the transition if this fails? //this could be done as a second pass and would be //able to optimize more erase=false; } else { //print_line(itos(i)+"because of interp"); } } } return erase; } void Animation::_transform_track_optimize(int p_idx,float p_alowed_linear_err,float p_alowed_angular_err,float p_max_optimizable_angle) { ERR_FAIL_INDEX(p_idx,tracks.size()); ERR_FAIL_COND(tracks[p_idx]->type!=TYPE_TRANSFORM); TransformTrack *tt= static_cast<TransformTrack*>(tracks[p_idx]); bool prev_erased=false; TKey<TransformKey> first_erased; Vector3 norm; for(int i=1;i<tt->transforms.size()-1;i++) { TKey<TransformKey> &t0 = tt->transforms[i-1]; TKey<TransformKey> &t1 = tt->transforms[i]; TKey<TransformKey> &t2 = tt->transforms[i+1]; bool erase = _transform_track_optimize_key(t0,t1,t2,p_alowed_linear_err,p_alowed_angular_err,p_max_optimizable_angle,norm); if (erase && !prev_erased) { norm=(t2.value.loc-t1.value.loc).normalized(); } if (prev_erased && !_transform_track_optimize_key(t0,first_erased,t2,p_alowed_linear_err,p_alowed_angular_err,p_max_optimizable_angle,norm)) { //avoid error to go beyond first erased key erase=false; } if (erase) { if (!prev_erased) { first_erased=t1; prev_erased=true; } tt->transforms.remove(i); i--; } else { prev_erased=false; norm=Vector3(); } // print_line(itos(i)+" could be eliminated: "+rtos(tr)); //} } } void Animation::optimize(float p_allowed_linear_err,float p_allowed_angular_err,float p_angle_max) { int total_tt=0; for(int i=0;i<tracks.size();i++) { if (tracks[i]->type==TYPE_TRANSFORM) _transform_track_optimize(i,p_allowed_linear_err,p_allowed_angular_err,p_angle_max); } } Animation::Animation() { step=0.1; loop=false; length=1; } Animation::~Animation() { for(int i=0;i<tracks.size();i++) memdelete( tracks[i] ); }