/*************************************************************************/ /* animation.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* http://www.godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "animation.h" #include "geometry.h" bool Animation::_set(const StringName &p_name, const Variant &p_value) { String name = p_name; if (name == "length") set_length(p_value); else if (name == "loop") set_loop(p_value); else if (name == "step") set_step(p_value); else if (name.begins_with("tracks/")) { int track = name.get_slicec('/', 1).to_int(); String what = name.get_slicec('/', 2); if (tracks.size() == track && what == "type") { String type = p_value; if (type == "transform") { add_track(TYPE_TRANSFORM); } else if (type == "value") { add_track(TYPE_VALUE); } else if (type == "method") { add_track(TYPE_METHOD); } else { return false; } return true; } ERR_FAIL_INDEX_V(track, tracks.size(), false); if (what == "path") track_set_path(track, p_value); else if (what == "interp") track_set_interpolation_type(track, InterpolationType(p_value.operator int())); else if (what == "loop_wrap") track_set_interpolation_loop_wrap(track, p_value); else if (what == "imported") track_set_imported(track, p_value); else if (what == "keys" || what == "key_values") { if (track_get_type(track) == TYPE_TRANSFORM) { TransformTrack *tt = static_cast(tracks[track]); PoolVector values = p_value; int vcount = values.size(); #if 0 // old compatibility hack if ((vcount%11) == 0) { PoolVector::Read r = values.read(); tt->transforms.resize(vcount/11); for(int i=0;i<(vcount/11);i++) { TKey &tk=tt->transforms[i]; const float *ofs=&r[i*11]; tk.time=ofs[0]; tk.value.loc.x=ofs[1]; tk.value.loc.y=ofs[2]; tk.value.loc.z=ofs[3]; tk.value.rot.x=ofs[4]; tk.value.rot.y=ofs[5]; tk.value.rot.z=ofs[6]; tk.value.rot.w=ofs[7]; tk.value.scale.x=ofs[8]; tk.value.scale.y=ofs[9]; tk.value.scale.z=ofs[10]; } return true; } #endif ERR_FAIL_COND_V(vcount % 12, false); // shuld be multiple of 11 PoolVector::Read r = values.read(); tt->transforms.resize(vcount / 12); for (int i = 0; i < (vcount / 12); i++) { TKey &tk = tt->transforms[i]; const float *ofs = &r[i * 12]; tk.time = ofs[0]; tk.transition = ofs[1]; tk.value.loc.x = ofs[2]; tk.value.loc.y = ofs[3]; tk.value.loc.z = ofs[4]; tk.value.rot.x = ofs[5]; tk.value.rot.y = ofs[6]; tk.value.rot.z = ofs[7]; tk.value.rot.w = ofs[8]; tk.value.scale.x = ofs[9]; tk.value.scale.y = ofs[10]; tk.value.scale.z = ofs[11]; } } else if (track_get_type(track) == TYPE_VALUE) { ValueTrack *vt = static_cast(tracks[track]); Dictionary d = p_value; ERR_FAIL_COND_V(!d.has("times"), false); ERR_FAIL_COND_V(!d.has("values"), false); if (d.has("cont")) { bool v = d["cont"]; vt->update_mode = v ? UPDATE_CONTINUOUS : UPDATE_DISCRETE; } if (d.has("update")) { int um = d["update"]; if (um < 0) um = 0; else if (um > 2) um = 2; vt->update_mode = UpdateMode(um); } PoolVector times = d["times"]; Array values = d["values"]; ERR_FAIL_COND_V(times.size() != values.size(), false); if (times.size()) { int valcount = times.size(); PoolVector::Read rt = times.read(); vt->values.resize(valcount); for (int i = 0; i < valcount; i++) { vt->values[i].time = rt[i]; vt->values[i].value = values[i]; } if (d.has("transitions")) { PoolVector transitions = d["transitions"]; ERR_FAIL_COND_V(transitions.size() != valcount, false); PoolVector::Read rtr = transitions.read(); for (int i = 0; i < valcount; i++) { vt->values[i].transition = rtr[i]; } } } return true; } else { while (track_get_key_count(track)) track_remove_key(track, 0); //well shouldn't be set anyway Dictionary d = p_value; ERR_FAIL_COND_V(!d.has("times"), false); ERR_FAIL_COND_V(!d.has("values"), false); PoolVector times = d["times"]; Array values = d["values"]; ERR_FAIL_COND_V(times.size() != values.size(), false); if (times.size()) { int valcount = times.size(); PoolVector::Read rt = times.read(); for (int i = 0; i < valcount; i++) { track_insert_key(track, rt[i], values[i]); } if (d.has("transitions")) { PoolVector transitions = d["transitions"]; ERR_FAIL_COND_V(transitions.size() != valcount, false); PoolVector::Read rtr = transitions.read(); for (int i = 0; i < valcount; i++) { track_set_key_transition(track, i, rtr[i]); } } } } } else return false; } else return false; return true; } bool Animation::_get(const StringName &p_name, Variant &r_ret) const { String name = p_name; if (name == "length") r_ret = length; else if (name == "loop") r_ret = loop; else if (name == "step") r_ret = step; else if (name.begins_with("tracks/")) { int track = name.get_slicec('/', 1).to_int(); String what = name.get_slicec('/', 2); ERR_FAIL_INDEX_V(track, tracks.size(), false); if (what == "type") { switch (track_get_type(track)) { case TYPE_TRANSFORM: r_ret = "transform"; break; case TYPE_VALUE: r_ret = "value"; break; case TYPE_METHOD: r_ret = "method"; break; } return true; } else if (what == "path") r_ret = track_get_path(track); else if (what == "interp") r_ret = track_get_interpolation_type(track); else if (what == "loop_wrap") r_ret = track_get_interpolation_loop_wrap(track); else if (what == "imported") r_ret = track_is_imported(track); else if (what == "keys") { if (track_get_type(track) == TYPE_TRANSFORM) { PoolVector keys; int kk = track_get_key_count(track); keys.resize(kk * 12); PoolVector::Write w = keys.write(); int idx = 0; for (int i = 0; i < track_get_key_count(track); i++) { Vector3 loc; Quat rot; Vector3 scale; transform_track_get_key(track, i, &loc, &rot, &scale); w[idx++] = track_get_key_time(track, i); w[idx++] = track_get_key_transition(track, i); w[idx++] = loc.x; w[idx++] = loc.y; w[idx++] = loc.z; w[idx++] = rot.x; w[idx++] = rot.y; w[idx++] = rot.z; w[idx++] = rot.w; w[idx++] = scale.x; w[idx++] = scale.y; w[idx++] = scale.z; } w = PoolVector::Write(); r_ret = keys; return true; } else if (track_get_type(track) == TYPE_VALUE) { const ValueTrack *vt = static_cast(tracks[track]); Dictionary d; PoolVector key_times; PoolVector key_transitions; Array key_values; int kk = vt->values.size(); key_times.resize(kk); key_transitions.resize(kk); key_values.resize(kk); PoolVector::Write wti = key_times.write(); PoolVector::Write wtr = key_transitions.write(); int idx = 0; const TKey *vls = vt->values.ptr(); for (int i = 0; i < kk; i++) { wti[idx] = vls[i].time; wtr[idx] = vls[i].transition; key_values[idx] = vls[i].value; idx++; } wti = PoolVector::Write(); wtr = PoolVector::Write(); d["times"] = key_times; d["transitions"] = key_transitions; d["values"] = key_values; if (track_get_type(track) == TYPE_VALUE) { d["update"] = value_track_get_update_mode(track); } r_ret = d; return true; } else { Dictionary d; PoolVector key_times; PoolVector key_transitions; Array key_values; int kk = track_get_key_count(track); key_times.resize(kk); key_transitions.resize(kk); key_values.resize(kk); PoolVector::Write wti = key_times.write(); PoolVector::Write wtr = key_transitions.write(); int idx = 0; for (int i = 0; i < track_get_key_count(track); i++) { wti[idx] = track_get_key_time(track, i); wtr[idx] = track_get_key_transition(track, i); key_values[idx] = track_get_key_value(track, i); idx++; } wti = PoolVector::Write(); wtr = PoolVector::Write(); d["times"] = key_times; d["transitions"] = key_transitions; d["values"] = key_values; if (track_get_type(track) == TYPE_VALUE) { d["update"] = value_track_get_update_mode(track); } r_ret = d; return true; } } else return false; } else return false; return true; } void Animation::_get_property_list(List *p_list) const { p_list->push_back(PropertyInfo(Variant::REAL, "length", PROPERTY_HINT_RANGE, "0.001,99999,0.001")); p_list->push_back(PropertyInfo(Variant::BOOL, "loop")); p_list->push_back(PropertyInfo(Variant::REAL, "step", PROPERTY_HINT_RANGE, "0,4096,0.001")); for (int i = 0; i < tracks.size(); i++) { p_list->push_back(PropertyInfo(Variant::STRING, "tracks/" + itos(i) + "/type", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR)); p_list->push_back(PropertyInfo(Variant::NODE_PATH, "tracks/" + itos(i) + "/path", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR)); p_list->push_back(PropertyInfo(Variant::INT, "tracks/" + itos(i) + "/interp", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR)); p_list->push_back(PropertyInfo(Variant::BOOL, "tracks/" + itos(i) + "/loop_wrap", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR)); p_list->push_back(PropertyInfo(Variant::BOOL, "tracks/" + itos(i) + "/imported", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR)); p_list->push_back(PropertyInfo(Variant::ARRAY, "tracks/" + itos(i) + "/keys", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR)); } } int Animation::add_track(TrackType p_type, int p_at_pos) { if (p_at_pos < 0 || p_at_pos >= tracks.size()) p_at_pos = tracks.size(); switch (p_type) { case TYPE_TRANSFORM: { TransformTrack *tt = memnew(TransformTrack); tracks.insert(p_at_pos, tt); } break; case TYPE_VALUE: { tracks.insert(p_at_pos, memnew(ValueTrack)); } break; case TYPE_METHOD: { tracks.insert(p_at_pos, memnew(MethodTrack)); } break; default: { ERR_PRINT("Unknown track type"); } } emit_changed(); return p_at_pos; } void Animation::remove_track(int p_track) { ERR_FAIL_INDEX(p_track, tracks.size()); Track *t = tracks[p_track]; switch (t->type) { case TYPE_TRANSFORM: { TransformTrack *tt = static_cast(t); _clear(tt->transforms); } break; case TYPE_VALUE: { ValueTrack *vt = static_cast(t); _clear(vt->values); } break; case TYPE_METHOD: { MethodTrack *mt = static_cast(t); _clear(mt->methods); } break; } memdelete(t); tracks.remove(p_track); emit_changed(); } int Animation::get_track_count() const { return tracks.size(); } Animation::TrackType Animation::track_get_type(int p_track) const { ERR_FAIL_INDEX_V(p_track, tracks.size(), TYPE_TRANSFORM); return tracks[p_track]->type; } void Animation::track_set_path(int p_track, const NodePath &p_path) { ERR_FAIL_INDEX(p_track, tracks.size()); tracks[p_track]->path = p_path; emit_changed(); } NodePath Animation::track_get_path(int p_track) const { ERR_FAIL_INDEX_V(p_track, tracks.size(), NodePath()); return tracks[p_track]->path; } int Animation::find_track(const NodePath &p_path) const { for (int i = 0; i < tracks.size(); i++) { if (tracks[i]->path == p_path) return i; }; return -1; }; void Animation::track_set_interpolation_type(int p_track, InterpolationType p_interp) { ERR_FAIL_INDEX(p_track, tracks.size()); ERR_FAIL_INDEX(p_interp, 3); tracks[p_track]->interpolation = p_interp; emit_changed(); } Animation::InterpolationType Animation::track_get_interpolation_type(int p_track) const { ERR_FAIL_INDEX_V(p_track, tracks.size(), INTERPOLATION_NEAREST); return tracks[p_track]->interpolation; } void Animation::track_set_interpolation_loop_wrap(int p_track, bool p_enable) { ERR_FAIL_INDEX(p_track, tracks.size()); tracks[p_track]->loop_wrap = p_enable; emit_changed(); } bool Animation::track_get_interpolation_loop_wrap(int p_track) const { ERR_FAIL_INDEX_V(p_track, tracks.size(), INTERPOLATION_NEAREST); return tracks[p_track]->loop_wrap; } // transform /* template int Animation::_insert_pos(float p_time, T& p_keys) { // simple, linear time inset that should be fast enough in reality. int idx=p_keys.size(); while(true) { if (idx==0 || p_keys[idx-1].time < p_time) { //condition for insertion. p_keys.insert(idx,T()); return idx; } else if (p_keys[idx-1].time == p_time) { // condition for replacing. return idx-1; } idx--; } } */ template int Animation::_insert(float p_time, T &p_keys, const V &p_value) { int idx = p_keys.size(); while (true) { if (idx == 0 || p_keys[idx - 1].time < p_time) { //condition for insertion. p_keys.insert(idx, p_value); return idx; } else if (p_keys[idx - 1].time == p_time) { // condition for replacing. p_keys[idx - 1] = p_value; return idx - 1; } idx--; } return -1; } template void Animation::_clear(T &p_keys) { p_keys.clear(); } Error Animation::transform_track_get_key(int p_track, int p_key, Vector3 *r_loc, Quat *r_rot, Vector3 *r_scale) const { ERR_FAIL_INDEX_V(p_track, tracks.size(), ERR_INVALID_PARAMETER); Track *t = tracks[p_track]; TransformTrack *tt = static_cast(t); ERR_FAIL_COND_V(t->type != TYPE_TRANSFORM, ERR_INVALID_PARAMETER); ERR_FAIL_INDEX_V(p_key, tt->transforms.size(), ERR_INVALID_PARAMETER); if (r_loc) *r_loc = tt->transforms[p_key].value.loc; if (r_rot) *r_rot = tt->transforms[p_key].value.rot; if (r_scale) *r_scale = tt->transforms[p_key].value.scale; return OK; } int Animation::transform_track_insert_key(int p_track, float p_time, const Vector3 p_loc, const Quat &p_rot, const Vector3 &p_scale) { ERR_FAIL_INDEX_V(p_track, tracks.size(), -1); Track *t = tracks[p_track]; ERR_FAIL_COND_V(t->type != TYPE_TRANSFORM, -1); TransformTrack *tt = static_cast(t); TKey tkey; tkey.time = p_time; tkey.value.loc = p_loc; tkey.value.rot = p_rot; tkey.value.scale = p_scale; int ret = _insert(p_time, tt->transforms, tkey); emit_changed(); return ret; } void Animation::track_remove_key_at_pos(int p_track, float p_pos) { int idx = track_find_key(p_track, p_pos, true); ERR_FAIL_COND(idx < 0); track_remove_key(p_track, idx); } void Animation::track_remove_key(int p_track, int p_idx) { ERR_FAIL_INDEX(p_track, tracks.size()); Track *t = tracks[p_track]; switch (t->type) { case TYPE_TRANSFORM: { TransformTrack *tt = static_cast(t); ERR_FAIL_INDEX(p_idx, tt->transforms.size()); tt->transforms.remove(p_idx); } break; case TYPE_VALUE: { ValueTrack *vt = static_cast(t); ERR_FAIL_INDEX(p_idx, vt->values.size()); vt->values.remove(p_idx); } break; case TYPE_METHOD: { MethodTrack *mt = static_cast(t); ERR_FAIL_INDEX(p_idx, mt->methods.size()); mt->methods.remove(p_idx); } break; } emit_changed(); } int Animation::track_find_key(int p_track, float p_time, bool p_exact) const { ERR_FAIL_INDEX_V(p_track, tracks.size(), -1); Track *t = tracks[p_track]; switch (t->type) { case TYPE_TRANSFORM: { TransformTrack *tt = static_cast(t); int k = _find(tt->transforms, p_time); if (k < 0 || k >= tt->transforms.size()) return -1; if (tt->transforms[k].time != p_time && p_exact) return -1; return k; } break; case TYPE_VALUE: { ValueTrack *vt = static_cast(t); int k = _find(vt->values, p_time); if (k < 0 || k >= vt->values.size()) return -1; if (vt->values[k].time != p_time && p_exact) return -1; return k; } break; case TYPE_METHOD: { MethodTrack *mt = static_cast(t); int k = _find(mt->methods, p_time); if (k < 0 || k >= mt->methods.size()) return -1; if (mt->methods[k].time != p_time && p_exact) return -1; return k; } break; } return -1; } void Animation::track_insert_key(int p_track, float p_time, const Variant &p_value, float p_transition) { ERR_FAIL_INDEX(p_track, tracks.size()); Track *t = tracks[p_track]; switch (t->type) { case TYPE_TRANSFORM: { Dictionary d = p_value; Vector3 loc; if (d.has("loc")) loc = d["loc"]; Quat rot; if (d.has("rot")) rot = d["rot"]; Vector3 scale; if (d.has("scale")) scale = d["scale"]; int idx = transform_track_insert_key(p_track, p_time, loc, rot, scale); track_set_key_transition(p_track, idx, p_transition); } break; case TYPE_VALUE: { ValueTrack *vt = static_cast(t); TKey k; k.time = p_time; k.transition = p_transition; k.value = p_value; _insert(p_time, vt->values, k); } break; case TYPE_METHOD: { MethodTrack *mt = static_cast(t); ERR_FAIL_COND(p_value.get_type() != Variant::DICTIONARY); Dictionary d = p_value; ERR_FAIL_COND(!d.has("method") || d["method"].get_type() != Variant::STRING); ERR_FAIL_COND(!d.has("args") || !d["args"].is_array()); MethodKey k; k.time = p_time; k.transition = p_transition; k.method = d["method"]; k.params = d["args"]; _insert(p_time, mt->methods, k); } break; } emit_changed(); } int Animation::track_get_key_count(int p_track) const { ERR_FAIL_INDEX_V(p_track, tracks.size(), -1); Track *t = tracks[p_track]; switch (t->type) { case TYPE_TRANSFORM: { TransformTrack *tt = static_cast(t); return tt->transforms.size(); } break; case TYPE_VALUE: { ValueTrack *vt = static_cast(t); return vt->values.size(); } break; case TYPE_METHOD: { MethodTrack *mt = static_cast(t); return mt->methods.size(); } break; } ERR_FAIL_V(-1); } Variant Animation::track_get_key_value(int p_track, int p_key_idx) const { ERR_FAIL_INDEX_V(p_track, tracks.size(), Variant()); Track *t = tracks[p_track]; switch (t->type) { case TYPE_TRANSFORM: { TransformTrack *tt = static_cast(t); ERR_FAIL_INDEX_V(p_key_idx, tt->transforms.size(), Variant()); Dictionary d; d["loc"] = tt->transforms[p_key_idx].value.loc; d["rot"] = tt->transforms[p_key_idx].value.rot; d["scale"] = tt->transforms[p_key_idx].value.scale; return d; } break; case TYPE_VALUE: { ValueTrack *vt = static_cast(t); ERR_FAIL_INDEX_V(p_key_idx, vt->values.size(), Variant()); return vt->values[p_key_idx].value; } break; case TYPE_METHOD: { MethodTrack *mt = static_cast(t); ERR_FAIL_INDEX_V(p_key_idx, mt->methods.size(), Variant()); Dictionary d; d["method"] = mt->methods[p_key_idx].method; d["args"] = mt->methods[p_key_idx].params; return d; } break; } ERR_FAIL_V(Variant()); } float Animation::track_get_key_time(int p_track, int p_key_idx) const { ERR_FAIL_INDEX_V(p_track, tracks.size(), -1); Track *t = tracks[p_track]; switch (t->type) { case TYPE_TRANSFORM: { TransformTrack *tt = static_cast(t); ERR_FAIL_INDEX_V(p_key_idx, tt->transforms.size(), -1); return tt->transforms[p_key_idx].time; } break; case TYPE_VALUE: { ValueTrack *vt = static_cast(t); ERR_FAIL_INDEX_V(p_key_idx, vt->values.size(), -1); return vt->values[p_key_idx].time; } break; case TYPE_METHOD: { MethodTrack *mt = static_cast(t); ERR_FAIL_INDEX_V(p_key_idx, mt->methods.size(), -1); return mt->methods[p_key_idx].time; } break; } ERR_FAIL_V(-1); } float Animation::track_get_key_transition(int p_track, int p_key_idx) const { ERR_FAIL_INDEX_V(p_track, tracks.size(), -1); Track *t = tracks[p_track]; switch (t->type) { case TYPE_TRANSFORM: { TransformTrack *tt = static_cast(t); ERR_FAIL_INDEX_V(p_key_idx, tt->transforms.size(), -1); return tt->transforms[p_key_idx].transition; } break; case TYPE_VALUE: { ValueTrack *vt = static_cast(t); ERR_FAIL_INDEX_V(p_key_idx, vt->values.size(), -1); return vt->values[p_key_idx].transition; } break; case TYPE_METHOD: { MethodTrack *mt = static_cast(t); ERR_FAIL_INDEX_V(p_key_idx, mt->methods.size(), -1); return mt->methods[p_key_idx].transition; } break; } ERR_FAIL_V(0); } void Animation::track_set_key_value(int p_track, int p_key_idx, const Variant &p_value) { ERR_FAIL_INDEX(p_track, tracks.size()); Track *t = tracks[p_track]; switch (t->type) { case TYPE_TRANSFORM: { TransformTrack *tt = static_cast(t); ERR_FAIL_INDEX(p_key_idx, tt->transforms.size()); Dictionary d = p_value; if (d.has("loc")) tt->transforms[p_key_idx].value.loc = d["loc"]; if (d.has("rot")) tt->transforms[p_key_idx].value.rot = d["rot"]; if (d.has("scale")) tt->transforms[p_key_idx].value.scale = d["scale"]; } break; case TYPE_VALUE: { ValueTrack *vt = static_cast(t); ERR_FAIL_INDEX(p_key_idx, vt->values.size()); vt->values[p_key_idx].value = p_value; } break; case TYPE_METHOD: { MethodTrack *mt = static_cast(t); ERR_FAIL_INDEX(p_key_idx, mt->methods.size()); Dictionary d = p_value; if (d.has("method")) mt->methods[p_key_idx].method = d["method"]; if (d.has("args")) mt->methods[p_key_idx].params = d["args"]; } break; } } void Animation::track_set_key_transition(int p_track, int p_key_idx, float p_transition) { ERR_FAIL_INDEX(p_track, tracks.size()); Track *t = tracks[p_track]; switch (t->type) { case TYPE_TRANSFORM: { TransformTrack *tt = static_cast(t); ERR_FAIL_INDEX(p_key_idx, tt->transforms.size()); tt->transforms[p_key_idx].transition = p_transition; } break; case TYPE_VALUE: { ValueTrack *vt = static_cast(t); ERR_FAIL_INDEX(p_key_idx, vt->values.size()); vt->values[p_key_idx].transition = p_transition; } break; case TYPE_METHOD: { MethodTrack *mt = static_cast(t); ERR_FAIL_INDEX(p_key_idx, mt->methods.size()); mt->methods[p_key_idx].transition = p_transition; } break; } } template int Animation::_find(const Vector &p_keys, float p_time) const { int len = p_keys.size(); if (len == 0) return -2; int low = 0; int high = len - 1; int middle; const K *keys = &p_keys[0]; while (low <= high) { middle = (low + high) / 2; if (p_time == keys[middle].time) { //match return middle; } else if (p_time < keys[middle].time) high = middle - 1; //search low end of array else low = middle + 1; //search high end of array } if (keys[middle].time > p_time) middle--; return middle; } Animation::TransformKey Animation::_interpolate(const Animation::TransformKey &p_a, const Animation::TransformKey &p_b, float p_c) const { TransformKey ret; ret.loc = _interpolate(p_a.loc, p_b.loc, p_c); ret.rot = _interpolate(p_a.rot, p_b.rot, p_c); ret.scale = _interpolate(p_a.scale, p_b.scale, p_c); return ret; } Vector3 Animation::_interpolate(const Vector3 &p_a, const Vector3 &p_b, float p_c) const { return p_a.linear_interpolate(p_b, p_c); } Quat Animation::_interpolate(const Quat &p_a, const Quat &p_b, float p_c) const { return p_a.slerp(p_b, p_c); } Variant Animation::_interpolate(const Variant &p_a, const Variant &p_b, float p_c) const { Variant dst; Variant::interpolate(p_a, p_b, p_c, dst); return dst; } float Animation::_interpolate(const float &p_a, const float &p_b, float p_c) const { return p_a * (1.0 - p_c) + p_b * p_c; } Animation::TransformKey Animation::_cubic_interpolate(const Animation::TransformKey &p_pre_a, const Animation::TransformKey &p_a, const Animation::TransformKey &p_b, const Animation::TransformKey &p_post_b, float p_c) const { Animation::TransformKey tk; tk.loc = p_a.loc.cubic_interpolate(p_b.loc, p_pre_a.loc, p_post_b.loc, p_c); tk.scale = p_a.scale.cubic_interpolate(p_b.scale, p_pre_a.scale, p_post_b.scale, p_c); tk.rot = p_a.rot.cubic_slerp(p_b.rot, p_pre_a.rot, p_post_b.rot, p_c); return tk; } Vector3 Animation::_cubic_interpolate(const Vector3 &p_pre_a, const Vector3 &p_a, const Vector3 &p_b, const Vector3 &p_post_b, float p_c) const { return p_a.cubic_interpolate(p_b, p_pre_a, p_post_b, p_c); } Quat Animation::_cubic_interpolate(const Quat &p_pre_a, const Quat &p_a, const Quat &p_b, const Quat &p_post_b, float p_c) const { return p_a.cubic_slerp(p_b, p_pre_a, p_post_b, p_c); } Variant Animation::_cubic_interpolate(const Variant &p_pre_a, const Variant &p_a, const Variant &p_b, const Variant &p_post_b, float p_c) const { Variant::Type type_a = p_a.get_type(); Variant::Type type_b = p_b.get_type(); Variant::Type type_pa = p_pre_a.get_type(); Variant::Type type_pb = p_post_b.get_type(); //make int and real play along uint32_t vformat = 1 << type_a; vformat |= 1 << type_b; vformat |= 1 << type_pa; vformat |= 1 << type_pb; if (vformat == ((1 << Variant::INT) | (1 << Variant::REAL)) || vformat == (1 << Variant::REAL)) { //mix of real and int real_t p0 = p_pre_a; real_t p1 = p_a; real_t p2 = p_b; real_t p3 = p_post_b; float t = p_c; float t2 = t * t; float t3 = t2 * t; return 0.5f * ((p1 * 2.0f) + (-p0 + p2) * t + (2.0f * p0 - 5.0f * p1 + 4 * p2 - p3) * t2 + (-p0 + 3.0f * p1 - 3.0f * p2 + p3) * t3); } else if ((vformat & (vformat - 1))) { return p_a; //can't interpolate, mix of types } switch (type_a) { case Variant::VECTOR2: { Vector2 a = p_a; Vector2 b = p_b; Vector2 pa = p_pre_a; Vector2 pb = p_post_b; return a.cubic_interpolate(b, pa, pb, p_c); } break; case Variant::RECT2: { Rect2 a = p_a; Rect2 b = p_b; Rect2 pa = p_pre_a; Rect2 pb = p_post_b; return Rect2( a.pos.cubic_interpolate(b.pos, pa.pos, pb.pos, p_c), a.size.cubic_interpolate(b.size, pa.size, pb.size, p_c)); } break; case Variant::VECTOR3: { Vector3 a = p_a; Vector3 b = p_b; Vector3 pa = p_pre_a; Vector3 pb = p_post_b; return a.cubic_interpolate(b, pa, pb, p_c); } break; case Variant::QUAT: { Quat a = p_a; Quat b = p_b; Quat pa = p_pre_a; Quat pb = p_post_b; return a.cubic_slerp(b, pa, pb, p_c); } break; case Variant::RECT3: { Rect3 a = p_a; Rect3 b = p_b; Rect3 pa = p_pre_a; Rect3 pb = p_post_b; return Rect3( a.pos.cubic_interpolate(b.pos, pa.pos, pb.pos, p_c), a.size.cubic_interpolate(b.size, pa.size, pb.size, p_c)); } break; default: { return _interpolate(p_a, p_b, p_c); } } return Variant(); } float Animation::_cubic_interpolate(const float &p_pre_a, const float &p_a, const float &p_b, const float &p_post_b, float p_c) const { return _interpolate(p_a, p_b, p_c); } template T Animation::_interpolate(const Vector > &p_keys, float p_time, InterpolationType p_interp, bool p_loop_wrap, bool *p_ok) const { int len = _find(p_keys, length) + 1; // try to find last key (there may be more past the end) if (len <= 0) { // (-1 or -2 returned originally) (plus one above) // meaning no keys, or only key time is larger than length if (p_ok) *p_ok = false; return T(); } else if (len == 1) { // one key found (0+1), return it if (p_ok) *p_ok = true; return p_keys[0].value; } int idx = _find(p_keys, p_time); ERR_FAIL_COND_V(idx == -2, T()); if (p_ok) *p_ok = true; int next = 0; float c = 0; // prepare for all cases of interpolation if (loop && p_loop_wrap) { // loop if (idx >= 0) { if ((idx + 1) < len) { next = idx + 1; float delta = p_keys[next].time - p_keys[idx].time; float from = p_time - p_keys[idx].time; if (Math::absf(delta) > CMP_EPSILON) c = from / delta; else c = 0; } else { next = 0; float delta = (length - p_keys[idx].time) + p_keys[next].time; float from = p_time - p_keys[idx].time; if (Math::absf(delta) > CMP_EPSILON) c = from / delta; else c = 0; } } else { // on loop, behind first key idx = len - 1; next = 0; float endtime = (length - p_keys[idx].time); if (endtime < 0) // may be keys past the end endtime = 0; float delta = endtime + p_keys[next].time; float from = endtime + p_time; if (Math::absf(delta) > CMP_EPSILON) c = from / delta; else c = 0; } } else { // no loop if (idx >= 0) { if ((idx + 1) < len) { next = idx + 1; float delta = p_keys[next].time - p_keys[idx].time; float from = p_time - p_keys[idx].time; if (Math::absf(delta) > CMP_EPSILON) c = from / delta; else c = 0; } else { next = idx; } } else if (idx < 0) { idx = next = 0; } } float tr = p_keys[idx].transition; if (tr == 0 || idx == next) { // don't interpolate if not needed return p_keys[idx].value; } if (tr != 1.0) { c = Math::ease(c, tr); } switch (p_interp) { case INTERPOLATION_NEAREST: { return p_keys[idx].value; } break; case INTERPOLATION_LINEAR: { return _interpolate(p_keys[idx].value, p_keys[next].value, c); } break; case INTERPOLATION_CUBIC: { int pre = idx - 1; if (pre < 0) pre = 0; int post = next + 1; if (post >= len) post = next; return _cubic_interpolate(p_keys[pre].value, p_keys[idx].value, p_keys[next].value, p_keys[post].value, c); } break; default: return p_keys[idx].value; } // do a barrel roll } Error Animation::transform_track_interpolate(int p_track, float p_time, Vector3 *r_loc, Quat *r_rot, Vector3 *r_scale) const { ERR_FAIL_INDEX_V(p_track, tracks.size(), ERR_INVALID_PARAMETER); Track *t = tracks[p_track]; ERR_FAIL_COND_V(t->type != TYPE_TRANSFORM, ERR_INVALID_PARAMETER); TransformTrack *tt = static_cast(t); bool ok; TransformKey tk = _interpolate(tt->transforms, p_time, tt->interpolation, tt->loop_wrap, &ok); if (!ok) // ?? return ERR_UNAVAILABLE; if (r_loc) *r_loc = tk.loc; if (r_rot) *r_rot = tk.rot; if (r_scale) *r_scale = tk.scale; return OK; } Variant Animation::value_track_interpolate(int p_track, float p_time) const { ERR_FAIL_INDEX_V(p_track, tracks.size(), 0); Track *t = tracks[p_track]; ERR_FAIL_COND_V(t->type != TYPE_VALUE, Variant()); ValueTrack *vt = static_cast(t); bool ok; Variant res = _interpolate(vt->values, p_time, vt->update_mode == UPDATE_CONTINUOUS ? vt->interpolation : INTERPOLATION_NEAREST, vt->loop_wrap, &ok); if (ok) { return res; } return Variant(); } void Animation::_value_track_get_key_indices_in_range(const ValueTrack *vt, float from_time, float to_time, List *p_indices) const { if (from_time != length && to_time == length) to_time = length * 1.01; //include a little more if at the end int to = _find(vt->values, to_time); // can't really send the events == time, will be sent in the next frame. // if event>=len then it will probably never be requested by the anim player. if (to >= 0 && vt->values[to].time >= to_time) to--; if (to < 0) return; // not bother int from = _find(vt->values, from_time); // position in the right first event.+ if (from < 0 || vt->values[from].time < from_time) from++; int max = vt->values.size(); for (int i = from; i <= to; i++) { ERR_CONTINUE(i < 0 || i >= max); // shouldn't happen p_indices->push_back(i); } } void Animation::value_track_get_key_indices(int p_track, float p_time, float p_delta, List *p_indices) const { ERR_FAIL_INDEX(p_track, tracks.size()); Track *t = tracks[p_track]; ERR_FAIL_COND(t->type != TYPE_VALUE); ValueTrack *vt = static_cast(t); float from_time = p_time - p_delta; float to_time = p_time; if (from_time > to_time) SWAP(from_time, to_time); if (loop) { from_time = Math::fposmod(from_time, length); to_time = Math::fposmod(to_time, length); if (from_time > to_time) { // handle loop by splitting _value_track_get_key_indices_in_range(vt, length - from_time, length, p_indices); _value_track_get_key_indices_in_range(vt, 0, to_time, p_indices); return; } } else { if (from_time < 0) from_time = 0; if (from_time > length) from_time = length; if (to_time < 0) to_time = 0; if (to_time > length) to_time = length; } _value_track_get_key_indices_in_range(vt, from_time, to_time, p_indices); } void Animation::value_track_set_update_mode(int p_track, UpdateMode p_mode) { ERR_FAIL_INDEX(p_track, tracks.size()); Track *t = tracks[p_track]; ERR_FAIL_COND(t->type != TYPE_VALUE); ERR_FAIL_INDEX(p_mode, 3); ValueTrack *vt = static_cast(t); vt->update_mode = p_mode; } Animation::UpdateMode Animation::value_track_get_update_mode(int p_track) const { ERR_FAIL_INDEX_V(p_track, tracks.size(), UPDATE_CONTINUOUS); Track *t = tracks[p_track]; ERR_FAIL_COND_V(t->type != TYPE_VALUE, UPDATE_CONTINUOUS); ValueTrack *vt = static_cast(t); return vt->update_mode; } void Animation::_method_track_get_key_indices_in_range(const MethodTrack *mt, float from_time, float to_time, List *p_indices) const { if (from_time != length && to_time == length) to_time = length * 1.01; //include a little more if at the end int to = _find(mt->methods, to_time); // can't really send the events == time, will be sent in the next frame. // if event>=len then it will probably never be requested by the anim player. if (to >= 0 && mt->methods[to].time >= to_time) to--; if (to < 0) return; // not bother int from = _find(mt->methods, from_time); // position in the right first event.+ if (from < 0 || mt->methods[from].time < from_time) from++; int max = mt->methods.size(); for (int i = from; i <= to; i++) { ERR_CONTINUE(i < 0 || i >= max); // shouldn't happen p_indices->push_back(i); } } void Animation::method_track_get_key_indices(int p_track, float p_time, float p_delta, List *p_indices) const { ERR_FAIL_INDEX(p_track, tracks.size()); Track *t = tracks[p_track]; ERR_FAIL_COND(t->type != TYPE_METHOD); MethodTrack *mt = static_cast(t); float from_time = p_time - p_delta; float to_time = p_time; if (from_time > to_time) SWAP(from_time, to_time); if (loop) { if (from_time > length || from_time < 0) from_time = Math::fposmod(from_time, length); if (to_time > length || to_time < 0) to_time = Math::fposmod(to_time, length); if (from_time > to_time) { // handle loop by splitting _method_track_get_key_indices_in_range(mt, from_time, length, p_indices); _method_track_get_key_indices_in_range(mt, 0, to_time, p_indices); return; } } else { if (from_time < 0) from_time = 0; if (from_time > length) from_time = length; if (to_time < 0) to_time = 0; if (to_time > length) to_time = length; } _method_track_get_key_indices_in_range(mt, from_time, to_time, p_indices); } Vector Animation::method_track_get_params(int p_track, int p_key_idx) const { ERR_FAIL_INDEX_V(p_track, tracks.size(), Vector()); Track *t = tracks[p_track]; ERR_FAIL_COND_V(t->type != TYPE_METHOD, Vector()); MethodTrack *pm = static_cast(t); ERR_FAIL_INDEX_V(p_key_idx, pm->methods.size(), Vector()); const MethodKey &mk = pm->methods[p_key_idx]; return mk.params; } StringName Animation::method_track_get_name(int p_track, int p_key_idx) const { ERR_FAIL_INDEX_V(p_track, tracks.size(), StringName()); Track *t = tracks[p_track]; ERR_FAIL_COND_V(t->type != TYPE_METHOD, StringName()); MethodTrack *pm = static_cast(t); ERR_FAIL_INDEX_V(p_key_idx, pm->methods.size(), StringName()); return pm->methods[p_key_idx].method; } void Animation::set_length(float p_length) { ERR_FAIL_COND(length < 0); length = p_length; emit_changed(); } float Animation::get_length() const { return length; } void Animation::set_loop(bool p_enabled) { loop = p_enabled; emit_changed(); } bool Animation::has_loop() const { return loop; } void Animation::track_move_up(int p_track) { if (p_track >= 0 && p_track < (tracks.size() - 1)) { SWAP(tracks[p_track], tracks[p_track + 1]); } emit_changed(); } void Animation::track_set_imported(int p_track, bool p_imported) { ERR_FAIL_INDEX(p_track, tracks.size()); tracks[p_track]->imported = p_imported; } bool Animation::track_is_imported(int p_track) const { ERR_FAIL_INDEX_V(p_track, tracks.size(), false); return tracks[p_track]->imported; } void Animation::track_move_down(int p_track) { if (p_track > 0 && p_track < tracks.size()) { SWAP(tracks[p_track], tracks[p_track - 1]); } emit_changed(); } void Animation::set_step(float p_step) { step = p_step; emit_changed(); } float Animation::get_step() const { return step; } void Animation::_bind_methods() { ClassDB::bind_method(D_METHOD("add_track", "type", "at_pos"), &Animation::add_track, DEFVAL(-1)); ClassDB::bind_method(D_METHOD("remove_track", "idx"), &Animation::remove_track); ClassDB::bind_method(D_METHOD("get_track_count"), &Animation::get_track_count); ClassDB::bind_method(D_METHOD("track_get_type", "idx"), &Animation::track_get_type); ClassDB::bind_method(D_METHOD("track_get_path", "idx"), &Animation::track_get_path); ClassDB::bind_method(D_METHOD("track_set_path", "idx", "path"), &Animation::track_set_path); ClassDB::bind_method(D_METHOD("find_track", "path"), &Animation::find_track); ClassDB::bind_method(D_METHOD("track_move_up", "idx"), &Animation::track_move_up); ClassDB::bind_method(D_METHOD("track_move_down", "idx"), &Animation::track_move_down); ClassDB::bind_method(D_METHOD("track_set_imported", "idx", "imported"), &Animation::track_set_imported); ClassDB::bind_method(D_METHOD("track_is_imported", "idx"), &Animation::track_is_imported); ClassDB::bind_method(D_METHOD("transform_track_insert_key", "idx", "time", "loc", "rot", "scale"), &Animation::transform_track_insert_key); ClassDB::bind_method(D_METHOD("track_insert_key", "idx", "time", "key", "transition"), &Animation::track_insert_key, DEFVAL(1)); ClassDB::bind_method(D_METHOD("track_remove_key", "idx", "key_idx"), &Animation::track_remove_key); ClassDB::bind_method(D_METHOD("track_remove_key_at_pos", "idx", "pos"), &Animation::track_remove_key_at_pos); ClassDB::bind_method(D_METHOD("track_set_key_value", "idx", "key", "value"), &Animation::track_set_key_value); ClassDB::bind_method(D_METHOD("track_set_key_transition", "idx", "key_idx", "transition"), &Animation::track_set_key_transition); ClassDB::bind_method(D_METHOD("track_get_key_transition", "idx", "key_idx"), &Animation::track_get_key_transition); ClassDB::bind_method(D_METHOD("track_get_key_count", "idx"), &Animation::track_get_key_count); ClassDB::bind_method(D_METHOD("track_get_key_value", "idx", "key_idx"), &Animation::track_get_key_value); ClassDB::bind_method(D_METHOD("track_get_key_time", "idx", "key_idx"), &Animation::track_get_key_time); ClassDB::bind_method(D_METHOD("track_find_key", "idx", "time", "exact"), &Animation::track_find_key, DEFVAL(false)); ClassDB::bind_method(D_METHOD("track_set_interpolation_type", "idx", "interpolation"), &Animation::track_set_interpolation_type); ClassDB::bind_method(D_METHOD("track_get_interpolation_type", "idx"), &Animation::track_get_interpolation_type); ClassDB::bind_method(D_METHOD("track_set_interpolation_loop_wrap", "idx", "interpolation"), &Animation::track_set_interpolation_loop_wrap); ClassDB::bind_method(D_METHOD("track_get_interpolation_loop_wrap", "idx"), &Animation::track_get_interpolation_loop_wrap); ClassDB::bind_method(D_METHOD("transform_track_interpolate", "idx", "time_sec"), &Animation::_transform_track_interpolate); ClassDB::bind_method(D_METHOD("value_track_set_update_mode", "idx", "mode"), &Animation::value_track_set_update_mode); ClassDB::bind_method(D_METHOD("value_track_get_update_mode", "idx"), &Animation::value_track_get_update_mode); ClassDB::bind_method(D_METHOD("value_track_get_key_indices", "idx", "time_sec", "delta"), &Animation::_value_track_get_key_indices); ClassDB::bind_method(D_METHOD("method_track_get_key_indices", "idx", "time_sec", "delta"), &Animation::_method_track_get_key_indices); ClassDB::bind_method(D_METHOD("method_track_get_name", "idx", "key_idx"), &Animation::method_track_get_name); ClassDB::bind_method(D_METHOD("method_track_get_params", "idx", "key_idx"), &Animation::method_track_get_params); ClassDB::bind_method(D_METHOD("set_length", "time_sec"), &Animation::set_length); ClassDB::bind_method(D_METHOD("get_length"), &Animation::get_length); ClassDB::bind_method(D_METHOD("set_loop", "enabled"), &Animation::set_loop); ClassDB::bind_method(D_METHOD("has_loop"), &Animation::has_loop); ClassDB::bind_method(D_METHOD("set_step", "size_sec"), &Animation::set_step); ClassDB::bind_method(D_METHOD("get_step"), &Animation::get_step); ClassDB::bind_method(D_METHOD("clear"), &Animation::clear); BIND_CONSTANT(TYPE_VALUE); BIND_CONSTANT(TYPE_TRANSFORM); BIND_CONSTANT(TYPE_METHOD); BIND_CONSTANT(INTERPOLATION_NEAREST); BIND_CONSTANT(INTERPOLATION_LINEAR); BIND_CONSTANT(INTERPOLATION_CUBIC); BIND_CONSTANT(UPDATE_CONTINUOUS); BIND_CONSTANT(UPDATE_DISCRETE); BIND_CONSTANT(UPDATE_TRIGGER); } void Animation::clear() { for (int i = 0; i < tracks.size(); i++) memdelete(tracks[i]); tracks.clear(); loop = false; length = 1; } bool Animation::_transform_track_optimize_key(const TKey &t0, const TKey &t1, const TKey &t2, float p_alowed_linear_err, float p_alowed_angular_err, float p_max_optimizable_angle, const Vector3 &p_norm) { real_t c = (t1.time - t0.time) / (t2.time - t0.time); real_t t[3] = { -1, -1, -1 }; { //translation const Vector3 &v0 = t0.value.loc; const Vector3 &v1 = t1.value.loc; const Vector3 &v2 = t2.value.loc; if (v0.distance_to(v2) < CMP_EPSILON) { //0 and 2 are close, let's see if 1 is close if (v0.distance_to(v1) > CMP_EPSILON) { //not close, not optimizable return false; } } else { Vector3 pd = (v2 - v0); float d0 = pd.dot(v0); float d1 = pd.dot(v1); float d2 = pd.dot(v2); if (d1 < d0 || d1 > d2) { return false; } Vector3 s[2] = { v0, v2 }; real_t d = Geometry::get_closest_point_to_segment(v1, s).distance_to(v1); if (d > pd.length() * p_alowed_linear_err) { return false; //beyond allowed error for colinearity } if (p_norm != Vector3() && Math::acos(pd.normalized().dot(p_norm)) > p_alowed_angular_err) return false; t[0] = (d1 - d0) / (d2 - d0); } } { //rotation const Quat &q0 = t0.value.rot; const Quat &q1 = t1.value.rot; const Quat &q2 = t2.value.rot; //localize both to rotation from q0 if ((q0 - q2).length() < CMP_EPSILON) { if ((q0 - q1).length() > CMP_EPSILON) return false; } else { Quat r02 = (q0.inverse() * q2).normalized(); Quat r01 = (q0.inverse() * q1).normalized(); Vector3 v02, v01; real_t a02, a01; r02.get_axis_and_angle(v02, a02); r01.get_axis_and_angle(v01, a01); if (Math::abs(a02) > p_max_optimizable_angle) return false; if (v01.dot(v02) < 0) { //make sure both rotations go the same way to compare v02 = -v02; a02 = -a02; } real_t err_01 = Math::acos(v01.normalized().dot(v02.normalized())) / Math_PI; if (err_01 > p_alowed_angular_err) { //not rotating in the same axis return false; } if (a01 * a02 < 0) { //not rotating in the same direction return false; } real_t tr = a01 / a02; if (tr < 0 || tr > 1) return false; //rotating too much or too less t[1] = tr; } } { //scale const Vector3 &v0 = t0.value.scale; const Vector3 &v1 = t1.value.scale; const Vector3 &v2 = t2.value.scale; if (v0.distance_to(v2) < CMP_EPSILON) { //0 and 2 are close, let's see if 1 is close if (v0.distance_to(v1) > CMP_EPSILON) { //not close, not optimizable return false; } } else { Vector3 pd = (v2 - v0); float d0 = pd.dot(v0); float d1 = pd.dot(v1); float d2 = pd.dot(v2); if (d1 < d0 || d1 > d2) { return false; //beyond segment range } Vector3 s[2] = { v0, v2 }; real_t d = Geometry::get_closest_point_to_segment(v1, s).distance_to(v1); if (d > pd.length() * p_alowed_linear_err) { return false; //beyond allowed error for colinearity } t[2] = (d1 - d0) / (d2 - d0); } } bool erase = false; if (t[0] == -1 && t[1] == -1 && t[2] == -1) { erase = true; } else { erase = true; real_t lt = -1; for (int j = 0; j < 3; j++) { //search for t on first, one must be it if (t[j] != -1) { lt = t[j]; //official t //validate rest for (int k = j + 1; k < 3; k++) { if (t[k] == -1) continue; if (Math::abs(lt - t[k]) > p_alowed_linear_err) { erase = false; break; } } break; } } ERR_FAIL_COND_V(lt == -1, false); if (erase) { if (Math::abs(lt - c) > p_alowed_linear_err) { //todo, evaluate changing the transition if this fails? //this could be done as a second pass and would be //able to optimize more erase = false; } else { //print_line(itos(i)+"because of interp"); } } } return erase; } void Animation::_transform_track_optimize(int p_idx, float p_alowed_linear_err, float p_alowed_angular_err, float p_max_optimizable_angle) { ERR_FAIL_INDEX(p_idx, tracks.size()); ERR_FAIL_COND(tracks[p_idx]->type != TYPE_TRANSFORM); TransformTrack *tt = static_cast(tracks[p_idx]); bool prev_erased = false; TKey first_erased; Vector3 norm; for (int i = 1; i < tt->transforms.size() - 1; i++) { TKey &t0 = tt->transforms[i - 1]; TKey &t1 = tt->transforms[i]; TKey &t2 = tt->transforms[i + 1]; bool erase = _transform_track_optimize_key(t0, t1, t2, p_alowed_linear_err, p_alowed_angular_err, p_max_optimizable_angle, norm); if (erase && !prev_erased) { norm = (t2.value.loc - t1.value.loc).normalized(); } if (prev_erased && !_transform_track_optimize_key(t0, first_erased, t2, p_alowed_linear_err, p_alowed_angular_err, p_max_optimizable_angle, norm)) { //avoid error to go beyond first erased key erase = false; } if (erase) { if (!prev_erased) { first_erased = t1; prev_erased = true; } tt->transforms.remove(i); i--; } else { prev_erased = false; norm = Vector3(); } } } void Animation::optimize(float p_allowed_linear_err, float p_allowed_angular_err, float p_angle_max) { for (int i = 0; i < tracks.size(); i++) { if (tracks[i]->type == TYPE_TRANSFORM) _transform_track_optimize(i, p_allowed_linear_err, p_allowed_angular_err, p_angle_max); } } Animation::Animation() { step = 0.1; loop = false; length = 1; } Animation::~Animation() { for (int i = 0; i < tracks.size(); i++) memdelete(tracks[i]); }