/*************************************************************************/ /* node.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "node.h" #include "core/config/project_settings.h" #include "core/core_string_names.h" #include "core/io/resource_loader.h" #include "core/multiplayer/multiplayer_api.h" #include "core/object/message_queue.h" #include "core/string/print_string.h" #include "instance_placeholder.h" #include "scene/animation/tween.h" #include "scene/debugger/scene_debugger.h" #include "scene/resources/packed_scene.h" #include "scene/scene_string_names.h" #include "viewport.h" #include VARIANT_ENUM_CAST(Node::ProcessMode); VARIANT_ENUM_CAST(Node::InternalMode); int Node::orphan_node_count = 0; void Node::_notification(int p_notification) { switch (p_notification) { case NOTIFICATION_PROCESS: { GDVIRTUAL_CALL(_process, get_process_delta_time()); } break; case NOTIFICATION_PHYSICS_PROCESS: { GDVIRTUAL_CALL(_physics_process, get_physics_process_delta_time()); } break; case NOTIFICATION_ENTER_TREE: { ERR_FAIL_COND(!get_viewport()); ERR_FAIL_COND(!get_tree()); if (data.process_mode == PROCESS_MODE_INHERIT) { if (data.parent) { data.process_owner = data.parent->data.process_owner; } else { ERR_PRINT("The root node can't be set to Inherit process mode, reverting to Pausable instead."); data.process_mode = PROCESS_MODE_PAUSABLE; data.process_owner = this; } } else { data.process_owner = this; } if (data.input) { add_to_group("_vp_input" + itos(get_viewport()->get_instance_id())); } if (data.shortcut_input) { add_to_group("_vp_shortcut_input" + itos(get_viewport()->get_instance_id())); } if (data.unhandled_input) { add_to_group("_vp_unhandled_input" + itos(get_viewport()->get_instance_id())); } if (data.unhandled_key_input) { add_to_group("_vp_unhandled_key_input" + itos(get_viewport()->get_instance_id())); } get_tree()->node_count++; orphan_node_count--; } break; case NOTIFICATION_EXIT_TREE: { ERR_FAIL_COND(!get_viewport()); ERR_FAIL_COND(!get_tree()); get_tree()->node_count--; orphan_node_count++; if (data.input) { remove_from_group("_vp_input" + itos(get_viewport()->get_instance_id())); } if (data.shortcut_input) { remove_from_group("_vp_shortcut_input" + itos(get_viewport()->get_instance_id())); } if (data.unhandled_input) { remove_from_group("_vp_unhandled_input" + itos(get_viewport()->get_instance_id())); } if (data.unhandled_key_input) { remove_from_group("_vp_unhandled_key_input" + itos(get_viewport()->get_instance_id())); } data.process_owner = nullptr; if (data.path_cache) { memdelete(data.path_cache); data.path_cache = nullptr; } } break; case NOTIFICATION_PATH_RENAMED: { if (data.path_cache) { memdelete(data.path_cache); data.path_cache = nullptr; } } break; case NOTIFICATION_READY: { if (GDVIRTUAL_IS_OVERRIDDEN(_input)) { set_process_input(true); } if (GDVIRTUAL_IS_OVERRIDDEN(_shortcut_input)) { set_process_shortcut_input(true); } if (GDVIRTUAL_IS_OVERRIDDEN(_unhandled_input)) { set_process_unhandled_input(true); } if (GDVIRTUAL_IS_OVERRIDDEN(_unhandled_key_input)) { set_process_unhandled_key_input(true); } if (GDVIRTUAL_IS_OVERRIDDEN(_process)) { set_process(true); } if (GDVIRTUAL_IS_OVERRIDDEN(_physics_process)) { set_physics_process(true); } GDVIRTUAL_CALL(_ready); } break; case NOTIFICATION_POSTINITIALIZE: { data.in_constructor = false; } break; case NOTIFICATION_PREDELETE: { if (data.parent) { data.parent->remove_child(this); } // kill children as cleanly as possible while (data.children.size()) { Node *child = data.children[data.children.size() - 1]; //begin from the end because its faster and more consistent with creation memdelete(child); } } break; } } void Node::_propagate_ready() { data.ready_notified = true; data.blocked++; for (int i = 0; i < data.children.size(); i++) { data.children[i]->_propagate_ready(); } data.blocked--; notification(NOTIFICATION_POST_ENTER_TREE); if (data.ready_first) { data.ready_first = false; notification(NOTIFICATION_READY); emit_signal(SceneStringNames::get_singleton()->ready); } } void Node::_propagate_enter_tree() { // this needs to happen to all children before any enter_tree if (data.parent) { data.tree = data.parent->data.tree; data.depth = data.parent->data.depth + 1; } else { data.depth = 1; } data.viewport = Object::cast_to(this); if (!data.viewport && data.parent) { data.viewport = data.parent->data.viewport; } data.inside_tree = true; for (KeyValue &E : data.grouped) { E.value.group = data.tree->add_to_group(E.key, this); } notification(NOTIFICATION_ENTER_TREE); GDVIRTUAL_CALL(_enter_tree); emit_signal(SceneStringNames::get_singleton()->tree_entered); data.tree->node_added(this); if (data.parent) { Variant c = this; const Variant *cptr = &c; data.parent->emit_signalp(SNAME("child_entered_tree"), &cptr, 1); } data.blocked++; //block while adding children for (int i = 0; i < data.children.size(); i++) { if (!data.children[i]->is_inside_tree()) { // could have been added in enter_tree data.children[i]->_propagate_enter_tree(); } } data.blocked--; #ifdef DEBUG_ENABLED SceneDebugger::add_to_cache(data.scene_file_path, this); #endif // enter groups } void Node::_propagate_after_exit_tree() { // Clear owner if it was not part of the pruned branch if (data.owner) { bool found = false; Node *parent = data.parent; while (parent) { if (parent == data.owner) { found = true; break; } parent = parent->data.parent; } if (!found) { if (data.unique_name_in_owner) { _release_unique_name_in_owner(); } data.owner->data.owned.erase(data.OW); data.owner = nullptr; } } data.blocked++; for (int i = data.children.size() - 1; i >= 0; i--) { data.children[i]->_propagate_after_exit_tree(); } data.blocked--; emit_signal(SceneStringNames::get_singleton()->tree_exited); } void Node::_propagate_exit_tree() { //block while removing children #ifdef DEBUG_ENABLED SceneDebugger::remove_from_cache(data.scene_file_path, this); #endif data.blocked++; for (int i = data.children.size() - 1; i >= 0; i--) { data.children[i]->_propagate_exit_tree(); } data.blocked--; GDVIRTUAL_CALL(_exit_tree); emit_signal(SceneStringNames::get_singleton()->tree_exiting); notification(NOTIFICATION_EXIT_TREE, true); if (data.tree) { data.tree->node_removed(this); } if (data.parent) { Variant c = this; const Variant *cptr = &c; data.parent->emit_signalp(SNAME("child_exiting_tree"), &cptr, 1); } // exit groups for (KeyValue &E : data.grouped) { data.tree->remove_from_group(E.key, this); E.value.group = nullptr; } data.viewport = nullptr; if (data.tree) { data.tree->tree_changed(); } data.inside_tree = false; data.ready_notified = false; data.tree = nullptr; data.depth = -1; } void Node::move_child(Node *p_child, int p_pos) { ERR_FAIL_NULL(p_child); ERR_FAIL_COND_MSG(p_child->data.parent != this, "Child is not a child of this node."); // We need to check whether node is internal and move it only in the relevant node range. if (p_child->_is_internal_front()) { ERR_FAIL_INDEX_MSG(p_pos, data.internal_children_front, vformat("Invalid new child position: %d. Child is internal.", p_pos)); _move_child(p_child, p_pos); } else if (p_child->_is_internal_back()) { ERR_FAIL_INDEX_MSG(p_pos, data.internal_children_back, vformat("Invalid new child position: %d. Child is internal.", p_pos)); _move_child(p_child, data.children.size() - data.internal_children_back + p_pos); } else { ERR_FAIL_INDEX_MSG(p_pos, data.children.size() + 1 - data.internal_children_front - data.internal_children_back, vformat("Invalid new child position: %d.", p_pos)); _move_child(p_child, p_pos + data.internal_children_front); } } void Node::_move_child(Node *p_child, int p_pos, bool p_ignore_end) { ERR_FAIL_COND_MSG(data.blocked > 0, "Parent node is busy setting up children, move_child() failed. Consider using call_deferred(\"move_child\") instead (or \"popup\" if this is from a popup)."); // Specifying one place beyond the end // means the same as moving to the last position if (!p_ignore_end) { // p_ignore_end is a little hack to make back internal children work properly. if (p_child->_is_internal_front()) { if (p_pos == data.internal_children_front) { p_pos--; } } else if (p_child->_is_internal_back()) { if (p_pos == data.children.size()) { p_pos--; } } else { if (p_pos == data.children.size() - data.internal_children_back) { p_pos--; } } } if (p_child->data.pos == p_pos) { return; //do nothing } int motion_from = MIN(p_pos, p_child->data.pos); int motion_to = MAX(p_pos, p_child->data.pos); data.children.remove_at(p_child->data.pos); data.children.insert(p_pos, p_child); if (data.tree) { data.tree->tree_changed(); } data.blocked++; //new pos first for (int i = motion_from; i <= motion_to; i++) { data.children[i]->data.pos = i; } // notification second move_child_notify(p_child); for (int i = motion_from; i <= motion_to; i++) { data.children[i]->notification(NOTIFICATION_MOVED_IN_PARENT); } p_child->_propagate_groups_dirty(); data.blocked--; } void Node::raise() { if (!data.parent) { return; } // Internal children move within a different index range. if (_is_internal_front()) { data.parent->move_child(this, data.parent->data.internal_children_front - 1); } else if (_is_internal_back()) { data.parent->move_child(this, data.parent->data.internal_children_back - 1); } else { data.parent->move_child(this, data.parent->get_child_count(false) - 1); } } void Node::_propagate_groups_dirty() { for (const KeyValue &E : data.grouped) { if (E.value.group) { E.value.group->changed = true; } } for (int i = 0; i < data.children.size(); i++) { data.children[i]->_propagate_groups_dirty(); } } void Node::add_child_notify(Node *p_child) { // to be used when not wanted } void Node::remove_child_notify(Node *p_child) { // to be used when not wanted } void Node::move_child_notify(Node *p_child) { // to be used when not wanted } void Node::owner_changed_notify() { } void Node::set_physics_process(bool p_process) { if (data.physics_process == p_process) { return; } data.physics_process = p_process; if (data.physics_process) { add_to_group(SNAME("_physics_process"), false); } else { remove_from_group(SNAME("_physics_process")); } } bool Node::is_physics_processing() const { return data.physics_process; } void Node::set_physics_process_internal(bool p_process_internal) { if (data.physics_process_internal == p_process_internal) { return; } data.physics_process_internal = p_process_internal; if (data.physics_process_internal) { add_to_group(SNAME("_physics_process_internal"), false); } else { remove_from_group(SNAME("_physics_process_internal")); } } bool Node::is_physics_processing_internal() const { return data.physics_process_internal; } void Node::set_process_mode(ProcessMode p_mode) { if (data.process_mode == p_mode) { return; } if (!is_inside_tree()) { data.process_mode = p_mode; return; } bool prev_can_process = can_process(); bool prev_enabled = _is_enabled(); if (p_mode == PROCESS_MODE_INHERIT) { if (data.parent) { data.process_owner = data.parent->data.process_owner; } else { ERR_FAIL_MSG("The root node can't be set to Inherit process mode."); } } else { data.process_owner = this; } data.process_mode = p_mode; bool next_can_process = can_process(); bool next_enabled = _is_enabled(); int pause_notification = 0; if (prev_can_process && !next_can_process) { pause_notification = NOTIFICATION_PAUSED; } else if (!prev_can_process && next_can_process) { pause_notification = NOTIFICATION_UNPAUSED; } int enabled_notification = 0; if (prev_enabled && !next_enabled) { enabled_notification = NOTIFICATION_DISABLED; } else if (!prev_enabled && next_enabled) { enabled_notification = NOTIFICATION_ENABLED; } _propagate_process_owner(data.process_owner, pause_notification, enabled_notification); #ifdef TOOLS_ENABLED // This is required for the editor to update the visibility of disabled nodes // It's very expensive during runtime to change, so editor-only if (Engine::get_singleton()->is_editor_hint()) { get_tree()->emit_signal(SNAME("tree_process_mode_changed")); } #endif } void Node::_propagate_pause_notification(bool p_enable) { bool prev_can_process = _can_process(!p_enable); bool next_can_process = _can_process(p_enable); if (prev_can_process && !next_can_process) { notification(NOTIFICATION_PAUSED); } else if (!prev_can_process && next_can_process) { notification(NOTIFICATION_UNPAUSED); } for (int i = 0; i < data.children.size(); i++) { data.children[i]->_propagate_pause_notification(p_enable); } } Node::ProcessMode Node::get_process_mode() const { return data.process_mode; } void Node::_propagate_process_owner(Node *p_owner, int p_pause_notification, int p_enabled_notification) { data.process_owner = p_owner; if (p_pause_notification != 0) { notification(p_pause_notification); } if (p_enabled_notification != 0) { notification(p_enabled_notification); } for (int i = 0; i < data.children.size(); i++) { Node *c = data.children[i]; if (c->data.process_mode == PROCESS_MODE_INHERIT) { c->_propagate_process_owner(p_owner, p_pause_notification, p_enabled_notification); } } } void Node::set_multiplayer_authority(int p_peer_id, bool p_recursive) { data.multiplayer_authority = p_peer_id; if (p_recursive) { for (int i = 0; i < data.children.size(); i++) { data.children[i]->set_multiplayer_authority(p_peer_id, true); } } } int Node::get_multiplayer_authority() const { return data.multiplayer_authority; } bool Node::is_multiplayer_authority() const { ERR_FAIL_COND_V(!is_inside_tree(), false); return get_multiplayer()->get_unique_id() == data.multiplayer_authority; } /***** RPC CONFIG ********/ uint16_t Node::rpc_config(const StringName &p_method, Multiplayer::RPCMode p_rpc_mode, bool p_call_local, Multiplayer::TransferMode p_transfer_mode, int p_channel) { for (int i = 0; i < data.rpc_methods.size(); i++) { if (data.rpc_methods[i].name == p_method) { Multiplayer::RPCConfig &nd = data.rpc_methods.write[i]; nd.rpc_mode = p_rpc_mode; nd.transfer_mode = p_transfer_mode; nd.call_local = p_call_local; nd.channel = p_channel; return i | (1 << 15); } } // New method Multiplayer::RPCConfig nd; nd.name = p_method; nd.rpc_mode = p_rpc_mode; nd.transfer_mode = p_transfer_mode; nd.channel = p_channel; nd.call_local = p_call_local; data.rpc_methods.push_back(nd); return ((uint16_t)data.rpc_methods.size() - 1) | (1 << 15); } /***** RPC FUNCTIONS ********/ void Node::_rpc_bind(const Variant **p_args, int p_argcount, Callable::CallError &r_error) { if (p_argcount < 1) { r_error.error = Callable::CallError::CALL_ERROR_TOO_FEW_ARGUMENTS; r_error.argument = 1; return; } Variant::Type type = p_args[0]->get_type(); if (type != Variant::STRING_NAME && type != Variant::STRING) { r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT; r_error.argument = 0; r_error.expected = Variant::STRING_NAME; return; } StringName method = (*p_args[0]).operator StringName(); rpcp(0, method, &p_args[1], p_argcount - 1); r_error.error = Callable::CallError::CALL_OK; } void Node::_rpc_id_bind(const Variant **p_args, int p_argcount, Callable::CallError &r_error) { if (p_argcount < 2) { r_error.error = Callable::CallError::CALL_ERROR_TOO_FEW_ARGUMENTS; r_error.argument = 2; return; } if (p_args[0]->get_type() != Variant::INT) { r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT; r_error.argument = 0; r_error.expected = Variant::INT; return; } Variant::Type type = p_args[1]->get_type(); if (type != Variant::STRING_NAME && type != Variant::STRING) { r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT; r_error.argument = 1; r_error.expected = Variant::STRING_NAME; return; } int peer_id = *p_args[0]; StringName method = (*p_args[1]).operator StringName(); rpcp(peer_id, method, &p_args[2], p_argcount - 2); r_error.error = Callable::CallError::CALL_OK; } void Node::rpcp(int p_peer_id, const StringName &p_method, const Variant **p_arg, int p_argcount) { ERR_FAIL_COND(!is_inside_tree()); get_multiplayer()->rpcp(this, p_peer_id, p_method, p_arg, p_argcount); } Ref Node::get_multiplayer() const { if (!is_inside_tree()) { return Ref(); } return get_tree()->get_multiplayer(get_path()); } Vector Node::get_node_rpc_methods() const { return data.rpc_methods; } //////////// end of rpc bool Node::can_process_notification(int p_what) const { switch (p_what) { case NOTIFICATION_PHYSICS_PROCESS: return data.physics_process; case NOTIFICATION_PROCESS: return data.process; case NOTIFICATION_INTERNAL_PROCESS: return data.process_internal; case NOTIFICATION_INTERNAL_PHYSICS_PROCESS: return data.physics_process_internal; } return true; } bool Node::can_process() const { ERR_FAIL_COND_V(!is_inside_tree(), false); return _can_process(get_tree()->is_paused()); } bool Node::_can_process(bool p_paused) const { ProcessMode process_mode; if (data.process_mode == PROCESS_MODE_INHERIT) { if (!data.process_owner) { process_mode = PROCESS_MODE_PAUSABLE; } else { process_mode = data.process_owner->data.process_mode; } } else { process_mode = data.process_mode; } // The owner can't be set to inherit, must be a bug. ERR_FAIL_COND_V(process_mode == PROCESS_MODE_INHERIT, false); if (process_mode == PROCESS_MODE_DISABLED) { return false; } else if (process_mode == PROCESS_MODE_ALWAYS) { return true; } if (p_paused) { return process_mode == PROCESS_MODE_WHEN_PAUSED; } else { return process_mode == PROCESS_MODE_PAUSABLE; } } bool Node::_is_enabled() const { ProcessMode process_mode; if (data.process_mode == PROCESS_MODE_INHERIT) { if (!data.process_owner) { process_mode = PROCESS_MODE_PAUSABLE; } else { process_mode = data.process_owner->data.process_mode; } } else { process_mode = data.process_mode; } return (process_mode != PROCESS_MODE_DISABLED); } bool Node::is_enabled() const { ERR_FAIL_COND_V(!is_inside_tree(), false); return _is_enabled(); } double Node::get_physics_process_delta_time() const { if (data.tree) { return data.tree->get_physics_process_time(); } else { return 0; } } double Node::get_process_delta_time() const { if (data.tree) { return data.tree->get_process_time(); } else { return 0; } } void Node::set_process(bool p_process) { if (data.process == p_process) { return; } data.process = p_process; if (data.process) { add_to_group(SNAME("_process"), false); } else { remove_from_group(SNAME("_process")); } } bool Node::is_processing() const { return data.process; } void Node::set_process_internal(bool p_process_internal) { if (data.process_internal == p_process_internal) { return; } data.process_internal = p_process_internal; if (data.process_internal) { add_to_group(SNAME("_process_internal"), false); } else { remove_from_group(SNAME("_process_internal")); } } bool Node::is_processing_internal() const { return data.process_internal; } void Node::set_process_priority(int p_priority) { data.process_priority = p_priority; // Make sure we are in SceneTree. if (data.tree == nullptr) { return; } if (is_processing()) { data.tree->make_group_changed(SNAME("_process")); } if (is_processing_internal()) { data.tree->make_group_changed(SNAME("_process_internal")); } if (is_physics_processing()) { data.tree->make_group_changed(SNAME("_physics_process")); } if (is_physics_processing_internal()) { data.tree->make_group_changed(SNAME("_physics_process_internal")); } } int Node::get_process_priority() const { return data.process_priority; } void Node::set_process_input(bool p_enable) { if (p_enable == data.input) { return; } data.input = p_enable; if (!is_inside_tree()) { return; } if (p_enable) { add_to_group("_vp_input" + itos(get_viewport()->get_instance_id())); } else { remove_from_group("_vp_input" + itos(get_viewport()->get_instance_id())); } } bool Node::is_processing_input() const { return data.input; } void Node::set_process_shortcut_input(bool p_enable) { if (p_enable == data.shortcut_input) { return; } data.shortcut_input = p_enable; if (!is_inside_tree()) { return; } if (p_enable) { add_to_group("_vp_shortcut_input" + itos(get_viewport()->get_instance_id())); } else { remove_from_group("_vp_shortcut_input" + itos(get_viewport()->get_instance_id())); } } bool Node::is_processing_shortcut_input() const { return data.shortcut_input; } void Node::set_process_unhandled_input(bool p_enable) { if (p_enable == data.unhandled_input) { return; } data.unhandled_input = p_enable; if (!is_inside_tree()) { return; } if (p_enable) { add_to_group("_vp_unhandled_input" + itos(get_viewport()->get_instance_id())); } else { remove_from_group("_vp_unhandled_input" + itos(get_viewport()->get_instance_id())); } } bool Node::is_processing_unhandled_input() const { return data.unhandled_input; } void Node::set_process_unhandled_key_input(bool p_enable) { if (p_enable == data.unhandled_key_input) { return; } data.unhandled_key_input = p_enable; if (!is_inside_tree()) { return; } if (p_enable) { add_to_group("_vp_unhandled_key_input" + itos(get_viewport()->get_instance_id())); } else { remove_from_group("_vp_unhandled_key_input" + itos(get_viewport()->get_instance_id())); } } bool Node::is_processing_unhandled_key_input() const { return data.unhandled_key_input; } StringName Node::get_name() const { return data.name; } void Node::_set_name_nocheck(const StringName &p_name) { data.name = p_name; } void Node::set_name(const String &p_name) { String name = p_name.validate_node_name(); ERR_FAIL_COND(name.is_empty()); if (data.unique_name_in_owner && data.owner) { _release_unique_name_in_owner(); } data.name = name; if (data.parent) { data.parent->_validate_child_name(this, true); } if (data.unique_name_in_owner && data.owner) { _acquire_unique_name_in_owner(); } propagate_notification(NOTIFICATION_PATH_RENAMED); if (is_inside_tree()) { emit_signal(SNAME("renamed")); get_tree()->node_renamed(this); get_tree()->tree_changed(); } } static SafeRefCount node_hrcr_count; void Node::init_node_hrcr() { node_hrcr_count.init(1); } #ifdef TOOLS_ENABLED String Node::validate_child_name(Node *p_child) { StringName name = p_child->data.name; _generate_serial_child_name(p_child, name); return name; } #endif void Node::_validate_child_name(Node *p_child, bool p_force_human_readable) { /* Make sure the name is unique */ if (p_force_human_readable) { //this approach to autoset node names is human readable but very slow StringName name = p_child->data.name; _generate_serial_child_name(p_child, name); p_child->data.name = name; } else { //this approach to autoset node names is fast but not as readable //it's the default and reserves the '@' character for unique names. bool unique = true; if (p_child->data.name == StringName()) { //new unique name must be assigned unique = false; } else { //check if exists Node **children = data.children.ptrw(); int cc = data.children.size(); for (int i = 0; i < cc; i++) { if (children[i] == p_child) { continue; } if (children[i]->data.name == p_child->data.name) { unique = false; break; } } } if (!unique) { ERR_FAIL_COND(!node_hrcr_count.ref()); String name = "@" + String(p_child->get_name()) + "@" + itos(node_hrcr_count.get()); p_child->data.name = name; } } } // Return s + 1 as if it were an integer String increase_numeric_string(const String &s) { String res = s; bool carry = res.length() > 0; for (int i = res.length() - 1; i >= 0; i--) { if (!carry) { break; } char32_t n = s[i]; if (n == '9') { // keep carry as true: 9 + 1 res[i] = '0'; } else { res[i] = s[i] + 1; carry = false; } } if (carry) { res = "1" + res; } return res; } void Node::_generate_serial_child_name(const Node *p_child, StringName &name) const { if (name == StringName()) { //no name and a new name is needed, create one. name = p_child->get_class(); // Adjust casing according to project setting. The current type name is expected to be in PascalCase. switch (ProjectSettings::get_singleton()->get("editor/node_naming/name_casing").operator int()) { case NAME_CASING_PASCAL_CASE: break; case NAME_CASING_CAMEL_CASE: { String n = name; n[0] = n.to_lower()[0]; name = n; } break; case NAME_CASING_SNAKE_CASE: name = String(name).camelcase_to_underscore(true); break; } } //quickly test if proposed name exists int cc = data.children.size(); //children count const Node *const *children_ptr = data.children.ptr(); { bool exists = false; for (int i = 0; i < cc; i++) { if (children_ptr[i] == p_child) { //exclude self in renaming if it's already a child continue; } if (children_ptr[i]->data.name == name) { exists = true; } } if (!exists) { return; //if it does not exist, it does not need validation } } // Extract trailing number String name_string = name; String nums; for (int i = name_string.length() - 1; i >= 0; i--) { char32_t n = name_string[i]; if (is_digit(n)) { nums = String::chr(name_string[i]) + nums; } else { break; } } String nnsep = _get_name_num_separator(); int name_last_index = name_string.length() - nnsep.length() - nums.length(); // Assign the base name + separator to name if we have numbers preceded by a separator if (nums.length() > 0 && name_string.substr(name_last_index, nnsep.length()) == nnsep) { name_string = name_string.substr(0, name_last_index + nnsep.length()); } else { nums = ""; } for (;;) { StringName attempt = name_string + nums; bool exists = false; for (int i = 0; i < cc; i++) { if (children_ptr[i] == p_child) { continue; } if (children_ptr[i]->data.name == attempt) { exists = true; } } if (!exists) { name = attempt; return; } else { if (nums.length() == 0) { // Name was undecorated so skip to 2 for a more natural result nums = "2"; name_string += nnsep; // Add separator because nums.length() > 0 was false } else { nums = increase_numeric_string(nums); } } } } void Node::_add_child_nocheck(Node *p_child, const StringName &p_name) { //add a child node quickly, without name validation p_child->data.name = p_name; p_child->data.pos = data.children.size(); data.children.push_back(p_child); p_child->data.parent = this; if (data.internal_children_back > 0) { _move_child(p_child, data.children.size() - data.internal_children_back - 1); } p_child->notification(NOTIFICATION_PARENTED); if (data.tree) { p_child->_set_tree(data.tree); } /* Notify */ //recognize children created in this node constructor p_child->data.parent_owned = data.in_constructor; add_child_notify(p_child); } void Node::add_child(Node *p_child, bool p_legible_unique_name, InternalMode p_internal) { ERR_FAIL_NULL(p_child); ERR_FAIL_COND_MSG(p_child == this, vformat("Can't add child '%s' to itself.", p_child->get_name())); // adding to itself! ERR_FAIL_COND_MSG(p_child->data.parent, vformat("Can't add child '%s' to '%s', already has a parent '%s'.", p_child->get_name(), get_name(), p_child->data.parent->get_name())); //Fail if node has a parent #ifdef DEBUG_ENABLED ERR_FAIL_COND_MSG(p_child->is_ancestor_of(this), vformat("Can't add child '%s' to '%s' as it would result in a cyclic dependency since '%s' is already a parent of '%s'.", p_child->get_name(), get_name(), p_child->get_name(), get_name())); #endif ERR_FAIL_COND_MSG(data.blocked > 0, "Parent node is busy setting up children, add_node() failed. Consider using call_deferred(\"add_child\", child) instead."); _validate_child_name(p_child, p_legible_unique_name); _add_child_nocheck(p_child, p_child->data.name); if (p_internal == INTERNAL_MODE_FRONT) { _move_child(p_child, data.internal_children_front); data.internal_children_front++; } else if (p_internal == INTERNAL_MODE_BACK) { if (data.internal_children_back > 0) { _move_child(p_child, data.children.size() - 1, true); } data.internal_children_back++; } } void Node::add_sibling(Node *p_sibling, bool p_legible_unique_name) { ERR_FAIL_NULL(p_sibling); ERR_FAIL_NULL(data.parent); ERR_FAIL_COND_MSG(p_sibling == this, vformat("Can't add sibling '%s' to itself.", p_sibling->get_name())); // adding to itself! ERR_FAIL_COND_MSG(data.blocked > 0, "Parent node is busy setting up children, add_sibling() failed. Consider using call_deferred(\"add_sibling\", sibling) instead."); InternalMode internal = INTERNAL_MODE_DISABLED; if (_is_internal_front()) { // The sibling will have the same internal status. internal = INTERNAL_MODE_FRONT; } else if (_is_internal_back()) { internal = INTERNAL_MODE_BACK; } data.parent->add_child(p_sibling, p_legible_unique_name, internal); data.parent->_move_child(p_sibling, get_index() + 1); } void Node::remove_child(Node *p_child) { ERR_FAIL_NULL(p_child); ERR_FAIL_COND_MSG(data.blocked > 0, "Parent node is busy setting up children, remove_node() failed. Consider using call_deferred(\"remove_child\", child) instead."); int child_count = data.children.size(); Node **children = data.children.ptrw(); int idx = -1; if (p_child->data.pos >= 0 && p_child->data.pos < child_count) { if (children[p_child->data.pos] == p_child) { idx = p_child->data.pos; } } if (idx == -1) { //maybe removed while unparenting or something and index was not updated, so just in case the above fails, try this. for (int i = 0; i < child_count; i++) { if (children[i] == p_child) { idx = i; break; } } } ERR_FAIL_COND_MSG(idx == -1, vformat("Cannot remove child node '%s' as it is not a child of this node.", p_child->get_name())); //ERR_FAIL_COND( p_child->data.blocked > 0 ); // If internal child, update the counter. if (p_child->_is_internal_front()) { data.internal_children_front--; } else if (p_child->_is_internal_back()) { data.internal_children_back--; } p_child->_set_tree(nullptr); //} remove_child_notify(p_child); p_child->notification(NOTIFICATION_UNPARENTED); data.children.remove_at(idx); //update pointer and size child_count = data.children.size(); children = data.children.ptrw(); for (int i = idx; i < child_count; i++) { children[i]->data.pos = i; children[i]->notification(NOTIFICATION_MOVED_IN_PARENT); } p_child->data.parent = nullptr; p_child->data.pos = -1; if (data.inside_tree) { p_child->_propagate_after_exit_tree(); } } int Node::get_child_count(bool p_include_internal) const { if (p_include_internal) { return data.children.size(); } else { return data.children.size() - data.internal_children_front - data.internal_children_back; } } Node *Node::get_child(int p_index, bool p_include_internal) const { if (p_include_internal) { if (p_index < 0) { p_index += data.children.size(); } ERR_FAIL_INDEX_V(p_index, data.children.size(), nullptr); return data.children[p_index]; } else { if (p_index < 0) { p_index += data.children.size() - data.internal_children_front - data.internal_children_back; } ERR_FAIL_INDEX_V(p_index, data.children.size() - data.internal_children_front - data.internal_children_back, nullptr); p_index += data.internal_children_front; return data.children[p_index]; } } Node *Node::_get_child_by_name(const StringName &p_name) const { int cc = data.children.size(); Node *const *cd = data.children.ptr(); for (int i = 0; i < cc; i++) { if (cd[i]->data.name == p_name) { return cd[i]; } } return nullptr; } Node *Node::get_node_or_null(const NodePath &p_path) const { if (p_path.is_empty()) { return nullptr; } ERR_FAIL_COND_V_MSG(!data.inside_tree && p_path.is_absolute(), nullptr, "Can't use get_node() with absolute paths from outside the active scene tree."); Node *current = nullptr; Node *root = nullptr; if (!p_path.is_absolute()) { current = const_cast(this); //start from this } else { root = const_cast(this); while (root->data.parent) { root = root->data.parent; //start from root } } for (int i = 0; i < p_path.get_name_count(); i++) { StringName name = p_path.get_name(i); Node *next = nullptr; if (name == SceneStringNames::get_singleton()->dot) { // . next = current; } else if (name == SceneStringNames::get_singleton()->doubledot) { // .. if (current == nullptr || !current->data.parent) { return nullptr; } next = current->data.parent; } else if (current == nullptr) { if (name == root->get_name()) { next = root; } } else if (name.is_node_unique_name()) { if (current->data.owned_unique_nodes.size()) { // Has unique nodes in ownership Node **unique = current->data.owned_unique_nodes.getptr(name); if (!unique) { return nullptr; } next = *unique; } else if (current->data.owner) { Node **unique = current->data.owner->data.owned_unique_nodes.getptr(name); if (!unique) { return nullptr; } next = *unique; } else { return nullptr; } } else { next = nullptr; for (int j = 0; j < current->data.children.size(); j++) { Node *child = current->data.children[j]; if (child->data.name == name) { next = child; break; } } if (next == nullptr) { return nullptr; }; } current = next; } return current; } Node *Node::get_node(const NodePath &p_path) const { Node *node = get_node_or_null(p_path); if (unlikely(!node)) { if (p_path.is_absolute()) { ERR_FAIL_V_MSG(nullptr, vformat(R"(Node not found: "%s" (absolute path attempted from "%s").)", p_path, get_path())); } else { ERR_FAIL_V_MSG(nullptr, vformat(R"(Node not found: "%s" (relative to "%s").)", p_path, get_path())); } } return node; } bool Node::has_node(const NodePath &p_path) const { return get_node_or_null(p_path) != nullptr; } // Finds the first child node (in tree order) whose name matches the given pattern. // Can be recursive or not, and limited to owned nodes. Node *Node::find_child(const String &p_pattern, bool p_recursive, bool p_owned) const { ERR_FAIL_COND_V(p_pattern.is_empty(), nullptr); Node *const *cptr = data.children.ptr(); int ccount = data.children.size(); for (int i = 0; i < ccount; i++) { if (p_owned && !cptr[i]->data.owner) { continue; } if (cptr[i]->data.name.operator String().match(p_pattern)) { return cptr[i]; } if (!p_recursive) { continue; } Node *ret = cptr[i]->find_child(p_pattern, true, p_owned); if (ret) { return ret; } } return nullptr; } // Finds child nodes based on their name using pattern matching, or class name, // or both (either pattern or type can be left empty). // Can be recursive or not, and limited to owned nodes. TypedArray Node::find_children(const String &p_pattern, const String &p_type, bool p_recursive, bool p_owned) const { TypedArray ret; ERR_FAIL_COND_V(p_pattern.is_empty() && p_type.is_empty(), ret); Node *const *cptr = data.children.ptr(); int ccount = data.children.size(); for (int i = 0; i < ccount; i++) { if (p_owned && !cptr[i]->data.owner) { continue; } if (!p_pattern.is_empty()) { if (!cptr[i]->data.name.operator String().match(p_pattern)) { continue; } else if (p_type.is_empty()) { ret.append(cptr[i]); } } if (cptr[i]->is_class(p_type)) { ret.append(cptr[i]); } else if (cptr[i]->get_script_instance()) { Ref