/*************************************************************************/ /* tween_interpolaters.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2018 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2018 Godot Engine contributors (cf. AUTHORS.md) */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ /** * Adapted from Penner Easing equations' C++ port. * Source: https://github.com/jesusgollonet/ofpennereasing * License: BSD-3-clause */ #include "tween.h" const real_t pi = 3.1415926535898; /////////////////////////////////////////////////////////////////////////// // linear /////////////////////////////////////////////////////////////////////////// namespace linear { static real_t in(real_t t, real_t b, real_t c, real_t d) { return c * t / d + b; } static real_t out(real_t t, real_t b, real_t c, real_t d) { return c * t / d + b; } static real_t in_out(real_t t, real_t b, real_t c, real_t d) { return c * t / d + b; } static real_t out_in(real_t t, real_t b, real_t c, real_t d) { return c * t / d + b; } }; // namespace linear /////////////////////////////////////////////////////////////////////////// // sine /////////////////////////////////////////////////////////////////////////// namespace sine { static real_t in(real_t t, real_t b, real_t c, real_t d) { return -c * cos(t / d * (pi / 2)) + c + b; } static real_t out(real_t t, real_t b, real_t c, real_t d) { return c * sin(t / d * (pi / 2)) + b; } static real_t in_out(real_t t, real_t b, real_t c, real_t d) { return -c / 2 * (cos(pi * t / d) - 1) + b; } static real_t out_in(real_t t, real_t b, real_t c, real_t d) { return (t < d / 2) ? out(t * 2, b, c / 2, d) : in((t * 2) - d, b + c / 2, c / 2, d); } }; // namespace sine /////////////////////////////////////////////////////////////////////////// // quint /////////////////////////////////////////////////////////////////////////// namespace quint { static real_t in(real_t t, real_t b, real_t c, real_t d) { return c * pow(t / d, 5) + b; } static real_t out(real_t t, real_t b, real_t c, real_t d) { return c * (pow(t / d - 1, 5) + 1) + b; } static real_t in_out(real_t t, real_t b, real_t c, real_t d) { t = t / d * 2; if (t < 1) return c / 2 * pow(t, 5) + b; return c / 2 * (pow(t - 2, 5) + 2) + b; } static real_t out_in(real_t t, real_t b, real_t c, real_t d) { return (t < d / 2) ? out(t * 2, b, c / 2, d) : in((t * 2) - d, b + c / 2, c / 2, d); } }; // namespace quint /////////////////////////////////////////////////////////////////////////// // quart /////////////////////////////////////////////////////////////////////////// namespace quart { static real_t in(real_t t, real_t b, real_t c, real_t d) { return c * pow(t / d, 4) + b; } static real_t out(real_t t, real_t b, real_t c, real_t d) { return -c * (pow(t / d - 1, 4) - 1) + b; } static real_t in_out(real_t t, real_t b, real_t c, real_t d) { t = t / d * 2; if (t < 1) return c / 2 * pow(t, 4) + b; return -c / 2 * (pow(t - 2, 4) - 2) + b; } static real_t out_in(real_t t, real_t b, real_t c, real_t d) { return (t < d / 2) ? out(t * 2, b, c / 2, d) : in((t * 2) - d, b + c / 2, c / 2, d); } }; // namespace quart /////////////////////////////////////////////////////////////////////////// // quad /////////////////////////////////////////////////////////////////////////// namespace quad { static real_t in(real_t t, real_t b, real_t c, real_t d) { return c * pow(t / d, 2) + b; } static real_t out(real_t t, real_t b, real_t c, real_t d) { t = t / d; return -c * t * (t - 2) + b; } static real_t in_out(real_t t, real_t b, real_t c, real_t d) { t = t / d * 2; if (t < 1) return c / 2 * pow(t, 2) + b; return -c / 2 * ((t - 1) * (t - 3) - 1) + b; } static real_t out_in(real_t t, real_t b, real_t c, real_t d) { return (t < d / 2) ? out(t * 2, b, c / 2, d) : in((t * 2) - d, b + c / 2, c / 2, d); } }; // namespace quad /////////////////////////////////////////////////////////////////////////// // expo /////////////////////////////////////////////////////////////////////////// namespace expo { static real_t in(real_t t, real_t b, real_t c, real_t d) { if (t == 0) return b; return c * pow(2, 10 * (t / d - 1)) + b - c * 0.001; } static real_t out(real_t t, real_t b, real_t c, real_t d) { if (t == d) return b + c; return c * 1.001 * (-pow(2, -10 * t / d) + 1) + b; } static real_t in_out(real_t t, real_t b, real_t c, real_t d) { if (t == 0) return b; if (t == d) return b + c; t = t / d * 2; if (t < 1) return c / 2 * pow(2, 10 * (t - 1)) + b - c * 0.0005; return c / 2 * 1.0005 * (-pow(2, -10 * (t - 1)) + 2) + b; } static real_t out_in(real_t t, real_t b, real_t c, real_t d) { return (t < d / 2) ? out(t * 2, b, c / 2, d) : in((t * 2) - d, b + c / 2, c / 2, d); } }; // namespace expo /////////////////////////////////////////////////////////////////////////// // elastic /////////////////////////////////////////////////////////////////////////// namespace elastic { static real_t in(real_t t, real_t b, real_t c, real_t d) { if (t == 0) return b; if ((t /= d) == 1) return b + c; float p = d * 0.3f; float a = c; float s = p / 4; float postFix = a * pow(2, 10 * (t -= 1)); // this is a fix, again, with post-increment operators return -(postFix * sin((t * d - s) * (2 * pi) / p)) + b; } static real_t out(real_t t, real_t b, real_t c, real_t d) { if (t == 0) return b; if ((t /= d) == 1) return b + c; float p = d * 0.3f; float a = c; float s = p / 4; return (a * pow(2, -10 * t) * sin((t * d - s) * (2 * pi) / p) + c + b); } static real_t in_out(real_t t, real_t b, real_t c, real_t d) { if (t == 0) return b; if ((t /= d / 2) == 2) return b + c; float p = d * (0.3f * 1.5f); float a = c; float s = p / 4; if (t < 1) { float postFix = a * pow(2, 10 * (t -= 1)); // postIncrement is evil return -0.5f * (postFix * sin((t * d - s) * (2 * pi) / p)) + b; } float postFix = a * pow(2, -10 * (t -= 1)); // postIncrement is evil return postFix * sin((t * d - s) * (2 * pi) / p) * 0.5f + c + b; } static real_t out_in(real_t t, real_t b, real_t c, real_t d) { return (t < d / 2) ? out(t * 2, b, c / 2, d) : in((t * 2) - d, b + c / 2, c / 2, d); } }; // namespace elastic /////////////////////////////////////////////////////////////////////////// // cubic /////////////////////////////////////////////////////////////////////////// namespace cubic { static real_t in(real_t t, real_t b, real_t c, real_t d) { return c * (t /= d) * t * t + b; } static real_t out(real_t t, real_t b, real_t c, real_t d) { t = t / d - 1; return c * (t * t * t + 1) + b; } static real_t in_out(real_t t, real_t b, real_t c, real_t d) { if ((t /= d / 2) < 1) return c / 2 * t * t * t + b; return c / 2 * ((t -= 2) * t * t + 2) + b; } static real_t out_in(real_t t, real_t b, real_t c, real_t d) { return (t < d / 2) ? out(t * 2, b, c / 2, d) : in((t * 2) - d, b + c / 2, c / 2, d); } }; // namespace cubic /////////////////////////////////////////////////////////////////////////// // circ /////////////////////////////////////////////////////////////////////////// namespace circ { static real_t in(real_t t, real_t b, real_t c, real_t d) { return -c * (sqrt(1 - (t /= d) * t) - 1) + b; // TODO: ehrich: operation with t is undefined } static real_t out(real_t t, real_t b, real_t c, real_t d) { return c * sqrt(1 - (t = t / d - 1) * t) + b; // TODO: ehrich: operation with t is undefined } static real_t in_out(real_t t, real_t b, real_t c, real_t d) { if ((t /= d / 2) < 1) return -c / 2 * (sqrt(1 - t * t) - 1) + b; return c / 2 * (sqrt(1 - t * (t -= 2)) + 1) + b; // TODO: ehrich: operation with t is undefined } static real_t out_in(real_t t, real_t b, real_t c, real_t d) { return (t < d / 2) ? out(t * 2, b, c / 2, d) : in((t * 2) - d, b + c / 2, c / 2, d); } }; // namespace circ /////////////////////////////////////////////////////////////////////////// // bounce /////////////////////////////////////////////////////////////////////////// namespace bounce { static real_t out(real_t t, real_t b, real_t c, real_t d); static real_t in(real_t t, real_t b, real_t c, real_t d) { return c - out(d - t, 0, c, d) + b; } static real_t out(real_t t, real_t b, real_t c, real_t d) { if ((t /= d) < (1 / 2.75f)) { return c * (7.5625f * t * t) + b; } else if (t < (2 / 2.75f)) { float postFix = t -= (1.5f / 2.75f); return c * (7.5625f * (postFix)*t + .75f) + b; } else if (t < (2.5 / 2.75)) { float postFix = t -= (2.25f / 2.75f); return c * (7.5625f * (postFix)*t + .9375f) + b; } else { float postFix = t -= (2.625f / 2.75f); return c * (7.5625f * (postFix)*t + .984375f) + b; } } static real_t in_out(real_t t, real_t b, real_t c, real_t d) { return (t < d / 2) ? in(t * 2, b, c / 2, d) : out((t * 2) - d, b + c / 2, c / 2, d); } static real_t out_in(real_t t, real_t b, real_t c, real_t d) { return (t < d / 2) ? out(t * 2, b, c / 2, d) : in((t * 2) - d, b + c / 2, c / 2, d); } }; // namespace bounce /////////////////////////////////////////////////////////////////////////// // back /////////////////////////////////////////////////////////////////////////// namespace back { static real_t in(real_t t, real_t b, real_t c, real_t d) { float s = 1.70158f; float postFix = t /= d; return c * (postFix)*t * ((s + 1) * t - s) + b; } static real_t out(real_t t, real_t b, real_t c, real_t d) { float s = 1.70158f; return c * ((t = t / d - 1) * t * ((s + 1) * t + s) + 1) + b; // TODO: ehrich: operation with t is undefined } static real_t in_out(real_t t, real_t b, real_t c, real_t d) { float s = 1.70158f; if ((t /= d / 2) < 1) return c / 2 * (t * t * (((s *= (1.525f)) + 1) * t - s)) + b; // TODO: ehrich: operation with s is undefined float postFix = t -= 2; return c / 2 * ((postFix)*t * (((s *= (1.525f)) + 1) * t + s) + 2) + b; // TODO: ehrich: operation with s is undefined } static real_t out_in(real_t t, real_t b, real_t c, real_t d) { return (t < d / 2) ? out(t * 2, b, c / 2, d) : in((t * 2) - d, b + c / 2, c / 2, d); } }; // namespace back Tween::interpolater Tween::interpolaters[Tween::TRANS_COUNT][Tween::EASE_COUNT] = { { &linear::in, &linear::out, &linear::in_out, &linear::out_in }, { &sine::in, &sine::out, &sine::in_out, &sine::out_in }, { &quint::in, &quint::out, &quint::in_out, &quint::out_in }, { &quart::in, &quart::out, &quart::in_out, &quart::out_in }, { &quad::in, &quad::out, &quad::in_out, &quad::out_in }, { &expo::in, &expo::out, &expo::in_out, &expo::out_in }, { &elastic::in, &elastic::out, &elastic::in_out, &elastic::out_in }, { &cubic::in, &cubic::out, &cubic::in_out, &cubic::out_in }, { &circ::in, &circ::out, &circ::in_out, &circ::out_in }, { &bounce::in, &bounce::out, &bounce::in_out, &bounce::out_in }, { &back::in, &back::out, &back::in_out, &back::out_in }, }; real_t Tween::_run_equation(TransitionType p_trans_type, EaseType p_ease_type, real_t t, real_t b, real_t c, real_t d) { interpolater cb = interpolaters[p_trans_type][p_ease_type]; ERR_FAIL_COND_V(cb == NULL, b); return cb(t, b, c, d); }