/*************************************************************************/ /* tween.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "tween.h" #include "scene/animation/easing_equations.h" #include "scene/main/node.h" Tween::interpolater Tween::interpolaters[Tween::TRANS_MAX][Tween::EASE_MAX] = { { &linear::in, &linear::in, &linear::in, &linear::in }, // Linear is the same for each easing. { &sine::in, &sine::out, &sine::in_out, &sine::out_in }, { &quint::in, &quint::out, &quint::in_out, &quint::out_in }, { &quart::in, &quart::out, &quart::in_out, &quart::out_in }, { &quad::in, &quad::out, &quad::in_out, &quad::out_in }, { &expo::in, &expo::out, &expo::in_out, &expo::out_in }, { &elastic::in, &elastic::out, &elastic::in_out, &elastic::out_in }, { &cubic::in, &cubic::out, &cubic::in_out, &cubic::out_in }, { &circ::in, &circ::out, &circ::in_out, &circ::out_in }, { &bounce::in, &bounce::out, &bounce::in_out, &bounce::out_in }, { &back::in, &back::out, &back::in_out, &back::out_in }, }; void Tweener::set_tween(Ref p_tween) { tween = p_tween; } void Tweener::clear_tween() { tween.unref(); } void Tweener::_bind_methods() { ADD_SIGNAL(MethodInfo("finished")); } void Tween::start_tweeners() { if (tweeners.is_empty()) { dead = true; ERR_FAIL_MSG("Tween without commands, aborting."); } for (Ref &tweener : tweeners.write[current_step]) { tweener->start(); } } Ref Tween::tween_property(Object *p_target, NodePath p_property, Variant p_to, float p_duration) { ERR_FAIL_NULL_V(p_target, nullptr); ERR_FAIL_COND_V_MSG(!valid, nullptr, "Tween invalid. Either finished or created outside scene tree."); ERR_FAIL_COND_V_MSG(started, nullptr, "Can't append to a Tween that has started. Use stop() first."); #ifdef DEBUG_ENABLED Variant::Type property_type = p_target->get_indexed(p_property.get_as_property_path().get_subnames()).get_type(); ERR_FAIL_COND_V_MSG(property_type != p_to.get_type(), Ref(), "Type mismatch between property and final value: " + Variant::get_type_name(property_type) + " and " + Variant::get_type_name(p_to.get_type())); #endif Ref tweener = memnew(PropertyTweener(p_target, p_property, p_to, p_duration)); append(tweener); return tweener; } Ref Tween::tween_interval(float p_time) { ERR_FAIL_COND_V_MSG(!valid, nullptr, "Tween invalid. Either finished or created outside scene tree."); ERR_FAIL_COND_V_MSG(started, nullptr, "Can't append to a Tween that has started. Use stop() first."); Ref tweener = memnew(IntervalTweener(p_time)); append(tweener); return tweener; } Ref Tween::tween_callback(Callable p_callback) { ERR_FAIL_COND_V_MSG(!valid, nullptr, "Tween invalid. Either finished or created outside scene tree."); ERR_FAIL_COND_V_MSG(started, nullptr, "Can't append to a Tween that has started. Use stop() first."); Ref tweener = memnew(CallbackTweener(p_callback)); append(tweener); return tweener; } Ref Tween::tween_method(Callable p_callback, Variant p_from, Variant p_to, float p_duration) { ERR_FAIL_COND_V_MSG(!valid, nullptr, "Tween invalid. Either finished or created outside scene tree."); ERR_FAIL_COND_V_MSG(started, nullptr, "Can't append to a Tween that has started. Use stop() first."); Ref tweener = memnew(MethodTweener(p_callback, p_from, p_to, p_duration)); append(tweener); return tweener; } void Tween::append(Ref p_tweener) { p_tweener->set_tween(this); if (parallel_enabled) { current_step = MAX(current_step, 0); } else { current_step++; } parallel_enabled = default_parallel; tweeners.resize(current_step + 1); tweeners.write[current_step].push_back(p_tweener); } void Tween::stop() { started = false; running = false; dead = false; } void Tween::pause() { running = false; } void Tween::play() { ERR_FAIL_COND_MSG(!valid, "Tween invalid. Either finished or created outside scene tree."); ERR_FAIL_COND_MSG(dead, "Can't play finished Tween, use stop() first to reset its state."); running = true; } void Tween::kill() { running = false; // For the sake of is_running(). dead = true; } bool Tween::is_running() { return running; } void Tween::set_valid(bool p_valid) { valid = p_valid; } bool Tween::is_valid() { return valid; } void Tween::clear() { valid = false; for (List> &step : tweeners) { for (Ref &tweener : step) { tweener->clear_tween(); } } tweeners.clear(); } Ref Tween::bind_node(Node *p_node) { ERR_FAIL_NULL_V(p_node, this); bound_node = p_node->get_instance_id(); is_bound = true; return this; } Ref Tween::set_process_mode(TweenProcessMode p_mode) { process_mode = p_mode; return this; } Tween::TweenProcessMode Tween::get_process_mode() { return process_mode; } Ref Tween::set_pause_mode(TweenPauseMode p_mode) { pause_mode = p_mode; return this; } Tween::TweenPauseMode Tween::get_pause_mode() { return pause_mode; } Ref Tween::set_parallel(bool p_parallel) { default_parallel = p_parallel; parallel_enabled = p_parallel; return this; } Ref Tween::set_loops(int p_loops) { loops = p_loops; return this; } Ref Tween::set_speed_scale(float p_speed) { speed_scale = p_speed; return this; } Ref Tween::set_trans(TransitionType p_trans) { default_transition = p_trans; return this; } Tween::TransitionType Tween::get_trans() { return default_transition; } Ref Tween::set_ease(EaseType p_ease) { default_ease = p_ease; return this; } Tween::EaseType Tween::get_ease() { return default_ease; } Ref Tween::parallel() { parallel_enabled = true; return this; } Ref Tween::chain() { parallel_enabled = false; return this; } bool Tween::custom_step(float p_delta) { bool r = running; running = true; bool ret = step(p_delta); running = running && r; // Running might turn false when Tween finished. return ret; } bool Tween::step(float p_delta) { ERR_FAIL_COND_V_MSG(tweeners.is_empty(), false, "Tween started, but has no Tweeners."); if (dead) { return false; } if (!running) { return true; } if (is_bound) { Object *bound_instance = ObjectDB::get_instance(bound_node); if (bound_instance) { Node *bound_node = Object::cast_to(bound_instance); // This can't by anything else than Node, so we can omit checking if casting succeeded. if (!bound_node->is_inside_tree()) { return true; } } else { return false; } } if (!started) { current_step = 0; loops_done = 0; start_tweeners(); started = true; } float rem_delta = p_delta * speed_scale; bool step_active = false; while (rem_delta > 0 && running) { float step_delta = rem_delta; step_active = false; for (Ref &tweener : tweeners.write[current_step]) { // Modified inside Tweener.step(). float temp_delta = rem_delta; // Turns to true if any Tweener returns true (i.e. is still not finished). step_active = tweener->step(temp_delta) || step_active; step_delta = MIN(temp_delta, step_delta); } rem_delta = step_delta; if (!step_active) { emit_signal(SNAME("step_finished"), current_step); current_step++; if (current_step == tweeners.size()) { loops_done++; if (loops_done == loops) { running = false; dead = true; emit_signal(SNAME("finished")); } else { emit_signal(SNAME("loop_finished"), loops_done); current_step = 0; start_tweeners(); } } else { start_tweeners(); } } } return true; } bool Tween::should_pause() { if (is_bound && pause_mode == TWEEN_PAUSE_BOUND) { Object *bound_instance = ObjectDB::get_instance(bound_node); if (bound_instance) { Node *bound_node = Object::cast_to(bound_instance); return !bound_node->can_process(); } } return pause_mode != TWEEN_PAUSE_PROCESS; } real_t Tween::run_equation(TransitionType p_trans_type, EaseType p_ease_type, real_t p_time, real_t p_initial, real_t p_delta, real_t p_duration) { if (p_duration == 0) { // Special case to avoid dividing by 0 in equations. return p_initial + p_delta; } interpolater func = interpolaters[p_trans_type][p_ease_type]; return func(p_time, p_initial, p_delta, p_duration); } Variant Tween::interpolate_variant(Variant p_initial_val, Variant p_delta_val, float p_time, float p_duration, TransitionType p_trans, EaseType p_ease) { ERR_FAIL_INDEX_V(p_trans, TransitionType::TRANS_MAX, Variant()); ERR_FAIL_INDEX_V(p_ease, EaseType::EASE_MAX, Variant()); // Helper macro to run equation on sub-elements of the value (e.g. x and y of Vector2). #define APPLY_EQUATION(element) \ r.element = run_equation(p_trans, p_ease, p_time, i.element, d.element, p_duration); switch (p_initial_val.get_type()) { case Variant::BOOL: { return (run_equation(p_trans, p_ease, p_time, p_initial_val, p_delta_val, p_duration)) >= 0.5; } case Variant::INT: { return (int)run_equation(p_trans, p_ease, p_time, (int)p_initial_val, (int)p_delta_val, p_duration); } case Variant::FLOAT: { return run_equation(p_trans, p_ease, p_time, (real_t)p_initial_val, (real_t)p_delta_val, p_duration); } case Variant::VECTOR2: { Vector2 i = p_initial_val; Vector2 d = p_delta_val; Vector2 r; APPLY_EQUATION(x); APPLY_EQUATION(y); return r; } case Variant::VECTOR2I: { Vector2i i = p_initial_val; Vector2i d = p_delta_val; Vector2i r; APPLY_EQUATION(x); APPLY_EQUATION(y); return r; } case Variant::RECT2: { Rect2 i = p_initial_val; Rect2 d = p_delta_val; Rect2 r; APPLY_EQUATION(position.x); APPLY_EQUATION(position.y); APPLY_EQUATION(size.x); APPLY_EQUATION(size.y); return r; } case Variant::RECT2I: { Rect2i i = p_initial_val; Rect2i d = p_delta_val; Rect2i r; APPLY_EQUATION(position.x); APPLY_EQUATION(position.y); APPLY_EQUATION(size.x); APPLY_EQUATION(size.y); return r; } case Variant::VECTOR3: { Vector3 i = p_initial_val; Vector3 d = p_delta_val; Vector3 r; APPLY_EQUATION(x); APPLY_EQUATION(y); APPLY_EQUATION(z); return r; } case Variant::VECTOR3I: { Vector3i i = p_initial_val; Vector3i d = p_delta_val; Vector3i r; APPLY_EQUATION(x); APPLY_EQUATION(y); APPLY_EQUATION(z); return r; } case Variant::TRANSFORM2D: { Transform2D i = p_initial_val; Transform2D d = p_delta_val; Transform2D r; APPLY_EQUATION(elements[0][0]); APPLY_EQUATION(elements[0][1]); APPLY_EQUATION(elements[1][0]); APPLY_EQUATION(elements[1][1]); APPLY_EQUATION(elements[2][0]); APPLY_EQUATION(elements[2][1]); return r; } case Variant::QUATERNION: { Quaternion i = p_initial_val; Quaternion d = p_delta_val; Quaternion r; APPLY_EQUATION(x); APPLY_EQUATION(y); APPLY_EQUATION(z); APPLY_EQUATION(w); return r; } case Variant::AABB: { AABB i = p_initial_val; AABB d = p_delta_val; AABB r; APPLY_EQUATION(position.x); APPLY_EQUATION(position.y); APPLY_EQUATION(position.z); APPLY_EQUATION(size.x); APPLY_EQUATION(size.y); APPLY_EQUATION(size.z); return r; } case Variant::BASIS: { Basis i = p_initial_val; Basis d = p_delta_val; Basis r; APPLY_EQUATION(elements[0][0]); APPLY_EQUATION(elements[0][1]); APPLY_EQUATION(elements[0][2]); APPLY_EQUATION(elements[1][0]); APPLY_EQUATION(elements[1][1]); APPLY_EQUATION(elements[1][2]); APPLY_EQUATION(elements[2][0]); APPLY_EQUATION(elements[2][1]); APPLY_EQUATION(elements[2][2]); return r; } case Variant::TRANSFORM3D: { Transform3D i = p_initial_val; Transform3D d = p_delta_val; Transform3D r; APPLY_EQUATION(basis.elements[0][0]); APPLY_EQUATION(basis.elements[0][1]); APPLY_EQUATION(basis.elements[0][2]); APPLY_EQUATION(basis.elements[1][0]); APPLY_EQUATION(basis.elements[1][1]); APPLY_EQUATION(basis.elements[1][2]); APPLY_EQUATION(basis.elements[2][0]); APPLY_EQUATION(basis.elements[2][1]); APPLY_EQUATION(basis.elements[2][2]); APPLY_EQUATION(origin.x); APPLY_EQUATION(origin.y); APPLY_EQUATION(origin.z); return r; } case Variant::COLOR: { Color i = p_initial_val; Color d = p_delta_val; Color r; APPLY_EQUATION(r); APPLY_EQUATION(g); APPLY_EQUATION(b); APPLY_EQUATION(a); return r; } default: { return p_initial_val; } }; #undef APPLY_EQUATION } Variant Tween::calculate_delta_value(Variant p_intial_val, Variant p_final_val) { ERR_FAIL_COND_V_MSG(p_intial_val.get_type() != p_final_val.get_type(), p_intial_val, "Type mismatch between initial and final value: " + Variant::get_type_name(p_intial_val.get_type()) + " and " + Variant::get_type_name(p_final_val.get_type())); switch (p_intial_val.get_type()) { case Variant::BOOL: { return (int)p_final_val - (int)p_intial_val; } case Variant::RECT2: { Rect2 i = p_intial_val; Rect2 f = p_final_val; return Rect2(f.position - i.position, f.size - i.size); } case Variant::RECT2I: { Rect2i i = p_intial_val; Rect2i f = p_final_val; return Rect2i(f.position - i.position, f.size - i.size); } case Variant::TRANSFORM2D: { Transform2D i = p_intial_val; Transform2D f = p_final_val; return Transform2D(f.elements[0][0] - i.elements[0][0], f.elements[0][1] - i.elements[0][1], f.elements[1][0] - i.elements[1][0], f.elements[1][1] - i.elements[1][1], f.elements[2][0] - i.elements[2][0], f.elements[2][1] - i.elements[2][1]); } case Variant::AABB: { AABB i = p_intial_val; AABB f = p_final_val; return AABB(f.position - i.position, f.size - i.size); } case Variant::BASIS: { Basis i = p_intial_val; Basis f = p_final_val; return Basis(f.elements[0][0] - i.elements[0][0], f.elements[0][1] - i.elements[0][1], f.elements[0][2] - i.elements[0][2], f.elements[1][0] - i.elements[1][0], f.elements[1][1] - i.elements[1][1], f.elements[1][2] - i.elements[1][2], f.elements[2][0] - i.elements[2][0], f.elements[2][1] - i.elements[2][1], f.elements[2][2] - i.elements[2][2]); } case Variant::TRANSFORM3D: { Transform3D i = p_intial_val; Transform3D f = p_final_val; return Transform3D(f.basis.elements[0][0] - i.basis.elements[0][0], f.basis.elements[0][1] - i.basis.elements[0][1], f.basis.elements[0][2] - i.basis.elements[0][2], f.basis.elements[1][0] - i.basis.elements[1][0], f.basis.elements[1][1] - i.basis.elements[1][1], f.basis.elements[1][2] - i.basis.elements[1][2], f.basis.elements[2][0] - i.basis.elements[2][0], f.basis.elements[2][1] - i.basis.elements[2][1], f.basis.elements[2][2] - i.basis.elements[2][2], f.origin.x - i.origin.x, f.origin.y - i.origin.y, f.origin.z - i.origin.z); } default: { return Variant::evaluate(Variant::OP_SUBTRACT, p_final_val, p_intial_val); } }; } void Tween::_bind_methods() { ClassDB::bind_method(D_METHOD("tween_property", "object", "property", "final_val", "duration"), &Tween::tween_property); ClassDB::bind_method(D_METHOD("tween_interval", "time"), &Tween::tween_interval); ClassDB::bind_method(D_METHOD("tween_callback", "callback"), &Tween::tween_callback); ClassDB::bind_method(D_METHOD("tween_method", "method", "from", "to", "duration"), &Tween::tween_method); ClassDB::bind_method(D_METHOD("custom_step", "delta"), &Tween::custom_step); ClassDB::bind_method(D_METHOD("stop"), &Tween::stop); ClassDB::bind_method(D_METHOD("pause"), &Tween::pause); ClassDB::bind_method(D_METHOD("play"), &Tween::play); ClassDB::bind_method(D_METHOD("kill"), &Tween::kill); ClassDB::bind_method(D_METHOD("is_running"), &Tween::is_running); ClassDB::bind_method(D_METHOD("is_valid"), &Tween::is_valid); ClassDB::bind_method(D_METHOD("bind_node", "node"), &Tween::bind_node); ClassDB::bind_method(D_METHOD("set_process_mode", "mode"), &Tween::set_process_mode); ClassDB::bind_method(D_METHOD("set_pause_mode", "mode"), &Tween::set_pause_mode); ClassDB::bind_method(D_METHOD("set_parallel", "parallel"), &Tween::set_parallel, DEFVAL(true)); ClassDB::bind_method(D_METHOD("set_loops", "loops"), &Tween::set_loops, DEFVAL(0)); ClassDB::bind_method(D_METHOD("set_speed_scale", "speed"), &Tween::set_speed_scale); ClassDB::bind_method(D_METHOD("set_trans", "trans"), &Tween::set_trans); ClassDB::bind_method(D_METHOD("set_ease", "ease"), &Tween::set_ease); ClassDB::bind_method(D_METHOD("parallel"), &Tween::parallel); ClassDB::bind_method(D_METHOD("chain"), &Tween::chain); ClassDB::bind_method(D_METHOD("interpolate_value", "initial_value", "delta_value", "elapsed_time", "duration", "trans_type", "ease_type"), &Tween::interpolate_variant); ADD_SIGNAL(MethodInfo("step_finished", PropertyInfo(Variant::INT, "idx"))); ADD_SIGNAL(MethodInfo("loop_finished", PropertyInfo(Variant::INT, "loop_count"))); ADD_SIGNAL(MethodInfo("finished")); BIND_ENUM_CONSTANT(TWEEN_PROCESS_PHYSICS); BIND_ENUM_CONSTANT(TWEEN_PROCESS_IDLE); BIND_ENUM_CONSTANT(TWEEN_PAUSE_BOUND); BIND_ENUM_CONSTANT(TWEEN_PAUSE_STOP); BIND_ENUM_CONSTANT(TWEEN_PAUSE_PROCESS); BIND_ENUM_CONSTANT(TRANS_LINEAR); BIND_ENUM_CONSTANT(TRANS_SINE); BIND_ENUM_CONSTANT(TRANS_QUINT); BIND_ENUM_CONSTANT(TRANS_QUART); BIND_ENUM_CONSTANT(TRANS_QUAD); BIND_ENUM_CONSTANT(TRANS_EXPO); BIND_ENUM_CONSTANT(TRANS_ELASTIC); BIND_ENUM_CONSTANT(TRANS_CUBIC); BIND_ENUM_CONSTANT(TRANS_CIRC); BIND_ENUM_CONSTANT(TRANS_BOUNCE); BIND_ENUM_CONSTANT(TRANS_BACK); BIND_ENUM_CONSTANT(EASE_IN); BIND_ENUM_CONSTANT(EASE_OUT); BIND_ENUM_CONSTANT(EASE_IN_OUT); BIND_ENUM_CONSTANT(EASE_OUT_IN); } Ref PropertyTweener::from(Variant p_value) { initial_val = p_value; do_continue = false; return this; } Ref PropertyTweener::from_current() { do_continue = false; return this; } Ref PropertyTweener::as_relative() { relative = true; return this; } Ref PropertyTweener::set_trans(Tween::TransitionType p_trans) { trans_type = p_trans; return this; } Ref PropertyTweener::set_ease(Tween::EaseType p_ease) { ease_type = p_ease; return this; } Ref PropertyTweener::set_delay(float p_delay) { delay = p_delay; return this; } void PropertyTweener::start() { elapsed_time = 0; finished = false; Object *target_instance = ObjectDB::get_instance(target); if (!target_instance) { WARN_PRINT("Target object freed before starting, aborting Tweener."); return; } if (do_continue) { initial_val = target_instance->get_indexed(property); } if (relative) { final_val = Variant::evaluate(Variant::Operator::OP_ADD, initial_val, base_final_val); } delta_val = tween->calculate_delta_value(initial_val, final_val); } bool PropertyTweener::step(float &r_delta) { if (finished) { // This is needed in case there's a parallel Tweener with longer duration. return false; } Object *target_instance = ObjectDB::get_instance(target); if (!target_instance) { return false; } elapsed_time += r_delta; if (elapsed_time < delay) { r_delta = 0; return true; } float time = MIN(elapsed_time - delay, duration); target_instance->set_indexed(property, tween->interpolate_variant(initial_val, delta_val, time, duration, trans_type, ease_type)); if (time < duration) { r_delta = 0; return true; } else { finished = true; r_delta = elapsed_time - delay - duration; emit_signal(SNAME("finished")); return false; } } void PropertyTweener::set_tween(Ref p_tween) { tween = p_tween; if (trans_type == Tween::TRANS_MAX) { trans_type = tween->get_trans(); } if (ease_type == Tween::EASE_MAX) { ease_type = tween->get_ease(); } } void PropertyTweener::_bind_methods() { ClassDB::bind_method(D_METHOD("from", "value"), &PropertyTweener::from); ClassDB::bind_method(D_METHOD("from_current"), &PropertyTweener::from_current); ClassDB::bind_method(D_METHOD("as_relative"), &PropertyTweener::as_relative); ClassDB::bind_method(D_METHOD("set_trans", "trans"), &PropertyTweener::set_trans); ClassDB::bind_method(D_METHOD("set_ease", "ease"), &PropertyTweener::set_ease); ClassDB::bind_method(D_METHOD("set_delay", "delay"), &PropertyTweener::set_delay); } PropertyTweener::PropertyTweener(Object *p_target, NodePath p_property, Variant p_to, float p_duration) { target = p_target->get_instance_id(); property = p_property.get_as_property_path().get_subnames(); initial_val = p_target->get_indexed(property); base_final_val = p_to; final_val = base_final_val; duration = p_duration; } PropertyTweener::PropertyTweener() { ERR_FAIL_MSG("Can't create empty PropertyTweener. Use get_tree().tween_property() or tween_property() instead."); } void IntervalTweener::start() { elapsed_time = 0; finished = false; } bool IntervalTweener::step(float &r_delta) { if (finished) { return false; } elapsed_time += r_delta; if (elapsed_time < duration) { r_delta = 0; return true; } else { finished = true; r_delta = elapsed_time - duration; emit_signal(SNAME("finished")); return false; } } IntervalTweener::IntervalTweener(float p_time) { duration = p_time; } IntervalTweener::IntervalTweener() { ERR_FAIL_MSG("Can't create empty IntervalTweener. Use get_tree().tween_interval() instead."); } Ref CallbackTweener::set_delay(float p_delay) { delay = p_delay; return this; } void CallbackTweener::start() { elapsed_time = 0; finished = false; } bool CallbackTweener::step(float &r_delta) { if (finished) { return false; } elapsed_time += r_delta; if (elapsed_time >= delay) { Variant result; Callable::CallError ce; callback.call(nullptr, 0, result, ce); if (ce.error != Callable::CallError::CALL_OK) { ERR_FAIL_V_MSG(false, "Error calling method from CallbackTweener: " + Variant::get_call_error_text(this, callback.get_method(), nullptr, 0, ce)); } finished = true; r_delta = elapsed_time - delay; emit_signal(SNAME("finished")); return false; } r_delta = 0; return true; } void CallbackTweener::_bind_methods() { ClassDB::bind_method(D_METHOD("set_delay", "delay"), &CallbackTweener::set_delay); } CallbackTweener::CallbackTweener(Callable p_callback) { callback = p_callback; } CallbackTweener::CallbackTweener() { ERR_FAIL_MSG("Can't create empty CallbackTweener. Use get_tree().tween_callback() instead."); } Ref MethodTweener::set_delay(float p_delay) { delay = p_delay; return this; } Ref MethodTweener::set_trans(Tween::TransitionType p_trans) { trans_type = p_trans; return this; } Ref MethodTweener::set_ease(Tween::EaseType p_ease) { ease_type = p_ease; return this; } void MethodTweener::start() { elapsed_time = 0; finished = false; } bool MethodTweener::step(float &r_delta) { if (finished) { return false; } elapsed_time += r_delta; if (elapsed_time < delay) { r_delta = 0; return true; } float time = MIN(elapsed_time - delay, duration); Variant current_val = tween->interpolate_variant(initial_val, delta_val, time, duration, trans_type, ease_type); const Variant **argptr = (const Variant **)alloca(sizeof(Variant *)); argptr[0] = ¤t_val; Variant result; Callable::CallError ce; callback.call(argptr, 1, result, ce); if (ce.error != Callable::CallError::CALL_OK) { ERR_FAIL_V_MSG(false, "Error calling method from MethodTweener: " + Variant::get_call_error_text(this, callback.get_method(), argptr, 1, ce)); } if (time < duration) { r_delta = 0; return true; } else { finished = true; r_delta = elapsed_time - delay - duration; emit_signal(SNAME("finished")); return false; } } void MethodTweener::set_tween(Ref p_tween) { tween = p_tween; if (trans_type == Tween::TRANS_MAX) { trans_type = tween->get_trans(); } if (ease_type == Tween::EASE_MAX) { ease_type = tween->get_ease(); } } void MethodTweener::_bind_methods() { ClassDB::bind_method(D_METHOD("set_delay", "delay"), &MethodTweener::set_delay); ClassDB::bind_method(D_METHOD("set_trans", "trans"), &MethodTweener::set_trans); ClassDB::bind_method(D_METHOD("set_ease", "ease"), &MethodTweener::set_ease); } MethodTweener::MethodTweener(Callable p_callback, Variant p_from, Variant p_to, float p_duration) { callback = p_callback; initial_val = p_from; delta_val = tween->calculate_delta_value(p_from, p_to); duration = p_duration; } MethodTweener::MethodTweener() { ERR_FAIL_MSG("Can't create empty MethodTweener. Use get_tree().tween_method() instead."); }