/*************************************************************************/ /* tween.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "tween.h" void Tween::_add_pending_command(StringName p_key, const Variant &p_arg1, const Variant &p_arg2, const Variant &p_arg3, const Variant &p_arg4, const Variant &p_arg5, const Variant &p_arg6, const Variant &p_arg7, const Variant &p_arg8, const Variant &p_arg9, const Variant &p_arg10) { // Add a new pending command and reference it pending_commands.push_back(PendingCommand()); PendingCommand &cmd = pending_commands.back()->get(); // Update the command with the target key cmd.key = p_key; // Determine command argument count int &count = cmd.args; if (p_arg10.get_type() != Variant::NIL) { count = 10; } else if (p_arg9.get_type() != Variant::NIL) { count = 9; } else if (p_arg8.get_type() != Variant::NIL) { count = 8; } else if (p_arg7.get_type() != Variant::NIL) { count = 7; } else if (p_arg6.get_type() != Variant::NIL) { count = 6; } else if (p_arg5.get_type() != Variant::NIL) { count = 5; } else if (p_arg4.get_type() != Variant::NIL) { count = 4; } else if (p_arg3.get_type() != Variant::NIL) { count = 3; } else if (p_arg2.get_type() != Variant::NIL) { count = 2; } else if (p_arg1.get_type() != Variant::NIL) { count = 1; } else { count = 0; } // Add the specified arguments to the command if (count > 0) { cmd.arg[0] = p_arg1; } if (count > 1) { cmd.arg[1] = p_arg2; } if (count > 2) { cmd.arg[2] = p_arg3; } if (count > 3) { cmd.arg[3] = p_arg4; } if (count > 4) { cmd.arg[4] = p_arg5; } if (count > 5) { cmd.arg[5] = p_arg6; } if (count > 6) { cmd.arg[6] = p_arg7; } if (count > 7) { cmd.arg[7] = p_arg8; } if (count > 8) { cmd.arg[8] = p_arg9; } if (count > 9) { cmd.arg[9] = p_arg10; } } void Tween::_process_pending_commands() { // For each pending command... for (List::Element *E = pending_commands.front(); E; E = E->next()) { // Get the command PendingCommand &cmd = E->get(); Callable::CallError err; // Grab all of the arguments for the command Variant *arg[10] = { &cmd.arg[0], &cmd.arg[1], &cmd.arg[2], &cmd.arg[3], &cmd.arg[4], &cmd.arg[5], &cmd.arg[6], &cmd.arg[7], &cmd.arg[8], &cmd.arg[9], }; // Execute the command (and retrieve any errors) this->call(cmd.key, (const Variant **)arg, cmd.args, err); } // Clear the pending commands pending_commands.clear(); } bool Tween::_set(const StringName &p_name, const Variant &p_value) { // Set the correct attribute based on the given name String name = p_name; if (name == "playback/speed" || name == "speed") { // Backwards compatibility set_speed_scale(p_value); return true; } else if (name == "playback/active") { set_active(p_value); return true; } else if (name == "playback/repeat") { set_repeat(p_value); return true; } return false; } bool Tween::_get(const StringName &p_name, Variant &r_ret) const { // Get the correct attribute based on the given name String name = p_name; if (name == "playback/speed") { // Backwards compatibility r_ret = speed_scale; return true; } else if (name == "playback/active") { r_ret = is_active(); return true; } else if (name == "playback/repeat") { r_ret = is_repeat(); return true; } return false; } void Tween::_get_property_list(List *p_list) const { // Add the property info for the Tween object p_list->push_back(PropertyInfo(Variant::BOOL, "playback/active", PROPERTY_HINT_NONE, "")); p_list->push_back(PropertyInfo(Variant::BOOL, "playback/repeat", PROPERTY_HINT_NONE, "")); p_list->push_back(PropertyInfo(Variant::FLOAT, "playback/speed", PROPERTY_HINT_RANGE, "-64,64,0.01")); } void Tween::_notification(int p_what) { // What notification did we receive? switch (p_what) { case NOTIFICATION_ENTER_TREE: { // Are we not already active? if (!is_active()) { // Make sure that a previous process state was not saved // Only process if "processing" is set set_physics_process_internal(false); set_process_internal(false); } } break; case NOTIFICATION_READY: { // Do nothing } break; case NOTIFICATION_INTERNAL_PROCESS: { // Are we processing during physics time? if (tween_process_mode == TWEEN_PROCESS_PHYSICS) { // Do nothing since we aren't aligned with physics when we should be break; } // Should we update? if (is_active()) { // Update the tweens _tween_process(get_process_delta_time()); } } break; case NOTIFICATION_INTERNAL_PHYSICS_PROCESS: { // Are we processing during 'regular' time? if (tween_process_mode == TWEEN_PROCESS_IDLE) { // Do nothing since we would only process during idle time break; } // Should we update? if (is_active()) { // Update the tweens _tween_process(get_physics_process_delta_time()); } } break; case NOTIFICATION_EXIT_TREE: { // We've left the tree. Stop all tweens stop_all(); } break; } } void Tween::_bind_methods() { // Bind getters and setters ClassDB::bind_method(D_METHOD("is_active"), &Tween::is_active); ClassDB::bind_method(D_METHOD("set_active", "active"), &Tween::set_active); ClassDB::bind_method(D_METHOD("is_repeat"), &Tween::is_repeat); ClassDB::bind_method(D_METHOD("set_repeat", "repeat"), &Tween::set_repeat); ClassDB::bind_method(D_METHOD("set_speed_scale", "speed"), &Tween::set_speed_scale); ClassDB::bind_method(D_METHOD("get_speed_scale"), &Tween::get_speed_scale); ClassDB::bind_method(D_METHOD("set_tween_process_mode", "mode"), &Tween::set_tween_process_mode); ClassDB::bind_method(D_METHOD("get_tween_process_mode"), &Tween::get_tween_process_mode); // Bind the various Tween control methods ClassDB::bind_method(D_METHOD("start"), &Tween::start); ClassDB::bind_method(D_METHOD("reset", "object", "key"), &Tween::reset, DEFVAL("")); ClassDB::bind_method(D_METHOD("reset_all"), &Tween::reset_all); ClassDB::bind_method(D_METHOD("stop", "object", "key"), &Tween::stop, DEFVAL("")); ClassDB::bind_method(D_METHOD("stop_all"), &Tween::stop_all); ClassDB::bind_method(D_METHOD("resume", "object", "key"), &Tween::resume, DEFVAL("")); ClassDB::bind_method(D_METHOD("resume_all"), &Tween::resume_all); ClassDB::bind_method(D_METHOD("remove", "object", "key"), &Tween::remove, DEFVAL("")); ClassDB::bind_method(D_METHOD("_remove_by_uid", "uid"), &Tween::_remove_by_uid); ClassDB::bind_method(D_METHOD("remove_all"), &Tween::remove_all); ClassDB::bind_method(D_METHOD("seek", "time"), &Tween::seek); ClassDB::bind_method(D_METHOD("tell"), &Tween::tell); ClassDB::bind_method(D_METHOD("get_runtime"), &Tween::get_runtime); // Bind interpolation and follow methods ClassDB::bind_method(D_METHOD("interpolate_property", "object", "property", "initial_val", "final_val", "duration", "trans_type", "ease_type", "delay"), &Tween::interpolate_property, DEFVAL(TRANS_LINEAR), DEFVAL(EASE_IN_OUT), DEFVAL(0)); ClassDB::bind_method(D_METHOD("interpolate_method", "object", "method", "initial_val", "final_val", "duration", "trans_type", "ease_type", "delay"), &Tween::interpolate_method, DEFVAL(TRANS_LINEAR), DEFVAL(EASE_IN_OUT), DEFVAL(0)); ClassDB::bind_method(D_METHOD("interpolate_callback", "object", "duration", "callback", "arg1", "arg2", "arg3", "arg4", "arg5"), &Tween::interpolate_callback, DEFVAL(Variant()), DEFVAL(Variant()), DEFVAL(Variant()), DEFVAL(Variant()), DEFVAL(Variant())); ClassDB::bind_method(D_METHOD("interpolate_deferred_callback", "object", "duration", "callback", "arg1", "arg2", "arg3", "arg4", "arg5"), &Tween::interpolate_deferred_callback, DEFVAL(Variant()), DEFVAL(Variant()), DEFVAL(Variant()), DEFVAL(Variant()), DEFVAL(Variant())); ClassDB::bind_method(D_METHOD("follow_property", "object", "property", "initial_val", "target", "target_property", "duration", "trans_type", "ease_type", "delay"), &Tween::follow_property, DEFVAL(TRANS_LINEAR), DEFVAL(EASE_IN_OUT), DEFVAL(0)); ClassDB::bind_method(D_METHOD("follow_method", "object", "method", "initial_val", "target", "target_method", "duration", "trans_type", "ease_type", "delay"), &Tween::follow_method, DEFVAL(TRANS_LINEAR), DEFVAL(EASE_IN_OUT), DEFVAL(0)); ClassDB::bind_method(D_METHOD("targeting_property", "object", "property", "initial", "initial_val", "final_val", "duration", "trans_type", "ease_type", "delay"), &Tween::targeting_property, DEFVAL(TRANS_LINEAR), DEFVAL(EASE_IN_OUT), DEFVAL(0)); ClassDB::bind_method(D_METHOD("targeting_method", "object", "method", "initial", "initial_method", "final_val", "duration", "trans_type", "ease_type", "delay"), &Tween::targeting_method, DEFVAL(TRANS_LINEAR), DEFVAL(EASE_IN_OUT), DEFVAL(0)); // Add the Tween signals ADD_SIGNAL(MethodInfo("tween_started", PropertyInfo(Variant::OBJECT, "object"), PropertyInfo(Variant::NODE_PATH, "key"))); ADD_SIGNAL(MethodInfo("tween_step", PropertyInfo(Variant::OBJECT, "object"), PropertyInfo(Variant::NODE_PATH, "key"), PropertyInfo(Variant::FLOAT, "elapsed"), PropertyInfo(Variant::OBJECT, "value"))); ADD_SIGNAL(MethodInfo("tween_completed", PropertyInfo(Variant::OBJECT, "object"), PropertyInfo(Variant::NODE_PATH, "key"))); ADD_SIGNAL(MethodInfo("tween_all_completed")); // Add the properties and tie them to the getters and setters ADD_PROPERTY(PropertyInfo(Variant::BOOL, "repeat"), "set_repeat", "is_repeat"); ADD_PROPERTY(PropertyInfo(Variant::INT, "playback_process_mode", PROPERTY_HINT_ENUM, "Physics,Idle"), "set_tween_process_mode", "get_tween_process_mode"); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "playback_speed", PROPERTY_HINT_RANGE, "-64,64,0.01"), "set_speed_scale", "get_speed_scale"); // Bind Idle vs Physics process BIND_ENUM_CONSTANT(TWEEN_PROCESS_PHYSICS); BIND_ENUM_CONSTANT(TWEEN_PROCESS_IDLE); // Bind the Transition type constants BIND_ENUM_CONSTANT(TRANS_LINEAR); BIND_ENUM_CONSTANT(TRANS_SINE); BIND_ENUM_CONSTANT(TRANS_QUINT); BIND_ENUM_CONSTANT(TRANS_QUART); BIND_ENUM_CONSTANT(TRANS_QUAD); BIND_ENUM_CONSTANT(TRANS_EXPO); BIND_ENUM_CONSTANT(TRANS_ELASTIC); BIND_ENUM_CONSTANT(TRANS_CUBIC); BIND_ENUM_CONSTANT(TRANS_CIRC); BIND_ENUM_CONSTANT(TRANS_BOUNCE); BIND_ENUM_CONSTANT(TRANS_BACK); // Bind the easing constants BIND_ENUM_CONSTANT(EASE_IN); BIND_ENUM_CONSTANT(EASE_OUT); BIND_ENUM_CONSTANT(EASE_IN_OUT); BIND_ENUM_CONSTANT(EASE_OUT_IN); } Variant Tween::_get_initial_val(const InterpolateData &p_data) const { // What type of data are we interpolating? switch (p_data.type) { case INTER_PROPERTY: case INTER_METHOD: case FOLLOW_PROPERTY: case FOLLOW_METHOD: // Simply use the given initial value return p_data.initial_val; case TARGETING_PROPERTY: case TARGETING_METHOD: { // Get the object that is being targeted Object *object = ObjectDB::get_instance(p_data.target_id); ERR_FAIL_COND_V(object == nullptr, p_data.initial_val); // Are we targeting a property or a method? Variant initial_val; if (p_data.type == TARGETING_PROPERTY) { // Get the property from the target object bool valid = false; initial_val = object->get_indexed(p_data.target_key, &valid); ERR_FAIL_COND_V(!valid, p_data.initial_val); } else { // Call the method and get the initial value from it Callable::CallError error; initial_val = object->call(p_data.target_key[0], nullptr, 0, error); ERR_FAIL_COND_V(error.error != Callable::CallError::CALL_OK, p_data.initial_val); } return initial_val; } case INTER_CALLBACK: // Callback does not have a special initial value break; } // If we've made it here, just return the delta value as the initial value return p_data.delta_val; } Variant Tween::_get_final_val(const InterpolateData &p_data) const { switch (p_data.type) { case FOLLOW_PROPERTY: case FOLLOW_METHOD: { // Get the object that is being followed Object *target = ObjectDB::get_instance(p_data.target_id); ERR_FAIL_COND_V(target == nullptr, p_data.initial_val); // We want to figure out the final value Variant final_val; if (p_data.type == FOLLOW_PROPERTY) { // Read the property as-is bool valid = false; final_val = target->get_indexed(p_data.target_key, &valid); ERR_FAIL_COND_V(!valid, p_data.initial_val); } else { // We're looking at a method. Call the method on the target object Callable::CallError error; final_val = target->call(p_data.target_key[0], nullptr, 0, error); ERR_FAIL_COND_V(error.error != Callable::CallError::CALL_OK, p_data.initial_val); } // If we're looking at an INT value, instead convert it to a FLOAT // This is better for interpolation if (final_val.get_type() == Variant::INT) { final_val = final_val.operator real_t(); } return final_val; } default: { // If we're not following a final value/method, use the final value from the data return p_data.final_val; } } } Variant &Tween::_get_delta_val(InterpolateData &p_data) { // What kind of data are we interpolating? switch (p_data.type) { case INTER_PROPERTY: case INTER_METHOD: // Simply return the given delta value return p_data.delta_val; case FOLLOW_PROPERTY: case FOLLOW_METHOD: { // We're following an object, so grab that instance Object *target = ObjectDB::get_instance(p_data.target_id); ERR_FAIL_COND_V(target == nullptr, p_data.initial_val); // We want to figure out the final value Variant final_val; if (p_data.type == FOLLOW_PROPERTY) { // Read the property as-is bool valid = false; final_val = target->get_indexed(p_data.target_key, &valid); ERR_FAIL_COND_V(!valid, p_data.initial_val); } else { // We're looking at a method. Call the method on the target object Callable::CallError error; final_val = target->call(p_data.target_key[0], nullptr, 0, error); ERR_FAIL_COND_V(error.error != Callable::CallError::CALL_OK, p_data.initial_val); } // If we're looking at an INT value, instead convert it to a FLOAT // This is better for interpolation if (final_val.get_type() == Variant::INT) { final_val = final_val.operator real_t(); } // Calculate the delta based on the initial value and the final value _calc_delta_val(p_data.initial_val, final_val, p_data.delta_val); return p_data.delta_val; } case TARGETING_PROPERTY: case TARGETING_METHOD: { // Grab the initial value from the data to calculate delta Variant initial_val = _get_initial_val(p_data); // If we're looking at an INT value, instead convert it to a FLOAT // This is better for interpolation if (initial_val.get_type() == Variant::INT) { initial_val = initial_val.operator real_t(); } // Calculate the delta based on the initial value and the final value _calc_delta_val(initial_val, p_data.final_val, p_data.delta_val); return p_data.delta_val; } case INTER_CALLBACK: // Callbacks have no special delta break; } // If we've made it here, use the initial value as the delta return p_data.initial_val; } Variant Tween::_run_equation(InterpolateData &p_data) { // Get the initial and delta values from the data Variant initial_val = _get_initial_val(p_data); Variant &delta_val = _get_delta_val(p_data); Variant result; #define APPLY_EQUATION(element) \ r.element = _run_equation(p_data.trans_type, p_data.ease_type, p_data.elapsed - p_data.delay, i.element, d.element, p_data.duration); // What type of data are we interpolating? switch (initial_val.get_type()) { case Variant::BOOL: // Run the boolean specific equation (checking if it is at least 0.5) result = (_run_equation(p_data.trans_type, p_data.ease_type, p_data.elapsed - p_data.delay, initial_val, delta_val, p_data.duration)) >= 0.5; break; case Variant::INT: // Run the integer specific equation result = (int)_run_equation(p_data.trans_type, p_data.ease_type, p_data.elapsed - p_data.delay, (int)initial_val, (int)delta_val, p_data.duration); break; case Variant::FLOAT: // Run the FLOAT specific equation result = _run_equation(p_data.trans_type, p_data.ease_type, p_data.elapsed - p_data.delay, (real_t)initial_val, (real_t)delta_val, p_data.duration); break; case Variant::VECTOR2: { // Get vectors for initial and delta values Vector2 i = initial_val; Vector2 d = delta_val; Vector2 r; // Execute the equation and mutate the r vector // This uses the custom APPLY_EQUATION macro defined above APPLY_EQUATION(x); APPLY_EQUATION(y); result = r; } break; case Variant::RECT2: { // Get the Rect2 for initial and delta value Rect2 i = initial_val; Rect2 d = delta_val; Rect2 r; // Execute the equation for the position and size of Rect2 APPLY_EQUATION(position.x); APPLY_EQUATION(position.y); APPLY_EQUATION(size.x); APPLY_EQUATION(size.y); result = r; } break; case Variant::VECTOR3: { // Get vectors for initial and delta values Vector3 i = initial_val; Vector3 d = delta_val; Vector3 r; // Execute the equation and mutate the r vector // This uses the custom APPLY_EQUATION macro defined above APPLY_EQUATION(x); APPLY_EQUATION(y); APPLY_EQUATION(z); result = r; } break; case Variant::TRANSFORM2D: { // Get the transforms for initial and delta values Transform2D i = initial_val; Transform2D d = delta_val; Transform2D r; // Execute the equation on the transforms and mutate the r transform // This uses the custom APPLY_EQUATION macro defined above APPLY_EQUATION(elements[0][0]); APPLY_EQUATION(elements[0][1]); APPLY_EQUATION(elements[1][0]); APPLY_EQUATION(elements[1][1]); APPLY_EQUATION(elements[2][0]); APPLY_EQUATION(elements[2][1]); result = r; } break; case Variant::QUAT: { // Get the quaternian for the initial and delta values Quat i = initial_val; Quat d = delta_val; Quat r; // Execute the equation on the quaternian values and mutate the r quaternian // This uses the custom APPLY_EQUATION macro defined above APPLY_EQUATION(x); APPLY_EQUATION(y); APPLY_EQUATION(z); APPLY_EQUATION(w); result = r; } break; case Variant::AABB: { // Get the AABB's for the initial and delta values AABB i = initial_val; AABB d = delta_val; AABB r; // Execute the equation for the position and size of the AABB's and mutate the r AABB // This uses the custom APPLY_EQUATION macro defined above APPLY_EQUATION(position.x); APPLY_EQUATION(position.y); APPLY_EQUATION(position.z); APPLY_EQUATION(size.x); APPLY_EQUATION(size.y); APPLY_EQUATION(size.z); result = r; } break; case Variant::BASIS: { // Get the basis for initial and delta values Basis i = initial_val; Basis d = delta_val; Basis r; // Execute the equation on all the basis and mutate the r basis // This uses the custom APPLY_EQUATION macro defined above APPLY_EQUATION(elements[0][0]); APPLY_EQUATION(elements[0][1]); APPLY_EQUATION(elements[0][2]); APPLY_EQUATION(elements[1][0]); APPLY_EQUATION(elements[1][1]); APPLY_EQUATION(elements[1][2]); APPLY_EQUATION(elements[2][0]); APPLY_EQUATION(elements[2][1]); APPLY_EQUATION(elements[2][2]); result = r; } break; case Variant::TRANSFORM: { // Get the transforms for the initial and delta values Transform i = initial_val; Transform d = delta_val; Transform r; // Execute the equation for each of the transforms and their origin and mutate the r transform // This uses the custom APPLY_EQUATION macro defined above APPLY_EQUATION(basis.elements[0][0]); APPLY_EQUATION(basis.elements[0][1]); APPLY_EQUATION(basis.elements[0][2]); APPLY_EQUATION(basis.elements[1][0]); APPLY_EQUATION(basis.elements[1][1]); APPLY_EQUATION(basis.elements[1][2]); APPLY_EQUATION(basis.elements[2][0]); APPLY_EQUATION(basis.elements[2][1]); APPLY_EQUATION(basis.elements[2][2]); APPLY_EQUATION(origin.x); APPLY_EQUATION(origin.y); APPLY_EQUATION(origin.z); result = r; } break; case Variant::COLOR: { // Get the Color for initial and delta value Color i = initial_val; Color d = delta_val; Color r; // Apply the equation on the Color RGBA, and mutate the r color // This uses the custom APPLY_EQUATION macro defined above APPLY_EQUATION(r); APPLY_EQUATION(g); APPLY_EQUATION(b); APPLY_EQUATION(a); result = r; } break; default: { // If unknown, just return the initial value result = initial_val; } break; }; #undef APPLY_EQUATION // Return the result that was computed return result; } bool Tween::_apply_tween_value(InterpolateData &p_data, Variant &value) { // Get the object we want to apply the new value to Object *object = ObjectDB::get_instance(p_data.id); ERR_FAIL_COND_V(object == nullptr, false); // What kind of data are we mutating? switch (p_data.type) { case INTER_PROPERTY: case FOLLOW_PROPERTY: case TARGETING_PROPERTY: { // Simply set the property on the object bool valid = false; object->set_indexed(p_data.key, value, &valid); return valid; } case INTER_METHOD: case FOLLOW_METHOD: case TARGETING_METHOD: { // We want to call the method on the target object Callable::CallError error; // Do we have a non-nil value passed in? if (value.get_type() != Variant::NIL) { // Pass it as an argument to the function call Variant *arg[1] = { &value }; object->call(p_data.key[0], (const Variant **)arg, 1, error); } else { // Don't pass any argument object->call(p_data.key[0], nullptr, 0, error); } // Did we get an error from the function call? return error.error == Callable::CallError::CALL_OK; } case INTER_CALLBACK: // Nothing to apply for a callback break; }; // No issues found! return true; } void Tween::_tween_process(float p_delta) { // Process all of the pending commands _process_pending_commands(); // If the scale is 0, make no progress on the tweens if (speed_scale == 0) { return; } // Update the delta and whether we are pending an update p_delta *= speed_scale; pending_update++; // Are we repeating the interpolations? if (repeat) { // For each interpolation... bool repeats_finished = true; for (List::Element *E = interpolates.front(); E; E = E->next()) { // Get the data from it InterpolateData &data = E->get(); // Is not finished? if (!data.finish) { // We aren't finished yet, no need to check the rest repeats_finished = false; break; } } // If we are all finished, we can reset all of the tweens if (repeats_finished) { reset_all(); } } // Are all of the tweens complete? int any_unfinished = 0; // For each tween we wish to interpolate... for (List::Element *E = interpolates.front(); E; E = E->next()) { // Get the data from it InterpolateData &data = E->get(); // Is the data not active or already finished? No need to go any further if (!data.active || data.finish) { continue; } // Track if we hit one that isn't finished yet any_unfinished++; // Get the target object for this interpolation Object *object = ObjectDB::get_instance(data.id); if (object == nullptr) { continue; } // Are we still delaying this tween? bool prev_delaying = data.elapsed <= data.delay; data.elapsed += p_delta; if (data.elapsed < data.delay) { continue; } else if (prev_delaying) { // We can apply the tween's value to the data and emit that the tween has started _apply_tween_value(data, data.initial_val); emit_signal("tween_started", object, NodePath(Vector(), data.key, false)); } // Are we at the end of the tween? if (data.elapsed > (data.delay + data.duration)) { // Set the elapsed time to the end and mark this one as finished data.elapsed = data.delay + data.duration; data.finish = true; } // Are we interpolating a callback? if (data.type == INTER_CALLBACK) { // Is the tween completed? if (data.finish) { // Are we calling this callback deferred or immediately? if (data.call_deferred) { // Run the deferred function callback, applying the correct number of arguments switch (data.args) { case 0: object->call_deferred(data.key[0]); break; case 1: object->call_deferred(data.key[0], data.arg[0]); break; case 2: object->call_deferred(data.key[0], data.arg[0], data.arg[1]); break; case 3: object->call_deferred(data.key[0], data.arg[0], data.arg[1], data.arg[2]); break; case 4: object->call_deferred(data.key[0], data.arg[0], data.arg[1], data.arg[2], data.arg[3]); break; case 5: object->call_deferred(data.key[0], data.arg[0], data.arg[1], data.arg[2], data.arg[3], data.arg[4]); break; } } else { // Call the function directly with the arguments Callable::CallError error; Variant *arg[5] = { &data.arg[0], &data.arg[1], &data.arg[2], &data.arg[3], &data.arg[4], }; object->call(data.key[0], (const Variant **)arg, data.args, error); } } } else { // We can apply the value directly Variant result = _run_equation(data); _apply_tween_value(data, result); // Emit that the tween has taken a step emit_signal("tween_step", object, NodePath(Vector(), data.key, false), data.elapsed, result); } // Is the tween now finished? if (data.finish) { // Set it to the final value directly Variant final_val = _get_final_val(data); _apply_tween_value(data, final_val); // Mark the tween as completed and emit the signal data.elapsed = 0; emit_signal("tween_completed", object, NodePath(Vector(), data.key, false)); // If we are not repeating the tween, remove it if (!repeat) { call_deferred("_remove_by_uid", data.uid); any_unfinished--; } } } // One less update left to go pending_update--; // If all tweens are completed, we no longer need to be active if (any_unfinished == 0) { set_active(false); emit_signal("tween_all_completed"); } } void Tween::set_tween_process_mode(TweenProcessMode p_mode) { tween_process_mode = p_mode; } Tween::TweenProcessMode Tween::get_tween_process_mode() const { return tween_process_mode; } bool Tween::is_active() const { return is_processing_internal() || is_physics_processing_internal(); } void Tween::set_active(bool p_active) { // Do nothing if it's the same active mode that we currently are if (is_active() == p_active) { return; } // Depending on physics or idle, set processing switch (tween_process_mode) { case TWEEN_PROCESS_IDLE: set_process_internal(p_active); break; case TWEEN_PROCESS_PHYSICS: set_physics_process_internal(p_active); break; } } bool Tween::is_repeat() const { return repeat; } void Tween::set_repeat(bool p_repeat) { repeat = p_repeat; } void Tween::set_speed_scale(float p_speed) { speed_scale = p_speed; } float Tween::get_speed_scale() const { return speed_scale; } void Tween::start() { ERR_FAIL_COND_MSG(!is_inside_tree(), "Tween was not added to the SceneTree!"); // Are there any pending updates? if (pending_update != 0) { // Start the tweens after deferring call_deferred("start"); return; } // We want to be activated set_active(true); } void Tween::reset(Object *p_object, StringName p_key) { // Find all interpolations that use the same object and target string pending_update++; for (List::Element *E = interpolates.front(); E; E = E->next()) { // Get the target object InterpolateData &data = E->get(); Object *object = ObjectDB::get_instance(data.id); if (object == nullptr) { continue; } // Do we have the correct object and key? if (object == p_object && (data.concatenated_key == p_key || p_key == "")) { // Reset the tween to the initial state data.elapsed = 0; data.finish = false; // Also apply the initial state if there isn't a delay if (data.delay == 0) { _apply_tween_value(data, data.initial_val); } } } pending_update--; } void Tween::reset_all() { // Go through all interpolations pending_update++; for (List::Element *E = interpolates.front(); E; E = E->next()) { // Get the target data and set it back to the initial state InterpolateData &data = E->get(); data.elapsed = 0; data.finish = false; // If there isn't a delay, apply the value to the object if (data.delay == 0) { _apply_tween_value(data, data.initial_val); } } pending_update--; } void Tween::stop(Object *p_object, StringName p_key) { // Find the tween that has the given target object and string key pending_update++; for (List::Element *E = interpolates.front(); E; E = E->next()) { // Get the object the tween is targeting InterpolateData &data = E->get(); Object *object = ObjectDB::get_instance(data.id); if (object == nullptr) { continue; } // Is this the correct object and does it have the given key? if (object == p_object && (data.concatenated_key == p_key || p_key == "")) { // Disable the tween data.active = false; } } pending_update--; } void Tween::stop_all() { // We no longer need to be active since all tweens have been stopped set_active(false); // For each interpolation... pending_update++; for (List::Element *E = interpolates.front(); E; E = E->next()) { // Simply set it inactive InterpolateData &data = E->get(); data.active = false; } pending_update--; } void Tween::resume(Object *p_object, StringName p_key) { // We need to be activated // TODO: What if no tween is found?? set_active(true); // Find the tween that uses the given target object and string key pending_update++; for (List::Element *E = interpolates.front(); E; E = E->next()) { // Grab the object InterpolateData &data = E->get(); Object *object = ObjectDB::get_instance(data.id); if (object == nullptr) { continue; } // If the object and string key match, activate it if (object == p_object && (data.concatenated_key == p_key || p_key == "")) { data.active = true; } } pending_update--; } void Tween::resume_all() { // Set ourselves active so we can process tweens // TODO: What if there are no tweens? We get set to active for no reason! set_active(true); // For each interpolation... pending_update++; for (List::Element *E = interpolates.front(); E; E = E->next()) { // Simply grab it and set it to active InterpolateData &data = E->get(); data.active = true; } pending_update--; } void Tween::remove(Object *p_object, StringName p_key) { // If we are still updating, call this function again later if (pending_update != 0) { call_deferred("remove", p_object, p_key); return; } // For each interpolation... List::Element *> for_removal; for (List::Element *E = interpolates.front(); E; E = E->next()) { // Get the target object InterpolateData &data = E->get(); Object *object = ObjectDB::get_instance(data.id); if (object == nullptr) { continue; } // If the target object and string key match, queue it for removal if (object == p_object && (data.concatenated_key == p_key || p_key == "")) { for_removal.push_back(E); } } // For each interpolation we wish to remove... for (List::Element *>::Element *E = for_removal.front(); E; E = E->next()) { // Erase it interpolates.erase(E->get()); } } void Tween::_remove_by_uid(int uid) { // If we are still updating, call this function again later if (pending_update != 0) { call_deferred("_remove_by_uid", uid); return; } // Find the interpolation that matches the given UID for (List::Element *E = interpolates.front(); E; E = E->next()) { if (uid == E->get().uid) { // It matches, erase it and stop looking E->erase(); break; } } } void Tween::_push_interpolate_data(InterpolateData &p_data) { pending_update++; // Add the new interpolation p_data.uid = ++uid; interpolates.push_back(p_data); pending_update--; } void Tween::remove_all() { // If we are still updating, call this function again later if (pending_update != 0) { call_deferred("remove_all"); return; } // We no longer need to be active set_active(false); // Clear out all interpolations and reset the uid interpolates.clear(); uid = 0; } void Tween::seek(real_t p_time) { // Go through each interpolation... pending_update++; for (List::Element *E = interpolates.front(); E; E = E->next()) { // Get the target data InterpolateData &data = E->get(); // Update the elapsed data to be set to the target time data.elapsed = p_time; // Are we at the end? if (data.elapsed < data.delay) { // There is still time left to go data.finish = false; continue; } else if (data.elapsed >= (data.delay + data.duration)) { // We are past the end of it, set the elapsed time to the end and mark as finished data.elapsed = (data.delay + data.duration); data.finish = true; } else { // We are not finished with this interpolation yet data.finish = false; } // If we are a callback, do nothing special if (data.type == INTER_CALLBACK) { continue; } // Run the equation on the data and apply the value Variant result = _run_equation(data); _apply_tween_value(data, result); } pending_update--; } real_t Tween::tell() const { // We want to grab the position of the furthest along tween pending_update++; real_t pos = 0.0; // For each interpolation... for (const List::Element *E = interpolates.front(); E; E = E->next()) { // Get the data and figure out if it's position is further along than the previous ones const InterpolateData &data = E->get(); if (data.elapsed > pos) { // Save it if so pos = data.elapsed; } } pending_update--; return pos; } real_t Tween::get_runtime() const { // If the tween isn't moving, it'll last forever if (speed_scale == 0) { return INFINITY; } pending_update++; // For each interpolation... real_t runtime = 0.0; for (const List::Element *E = interpolates.front(); E; E = E->next()) { // Get the tween data and see if it's runtime is greater than the previous tweens const InterpolateData &data = E->get(); real_t t = data.delay + data.duration; if (t > runtime) { // This is the longest running tween runtime = t; } } pending_update--; // Adjust the runtime for the current speed scale return runtime / speed_scale; } bool Tween::_calc_delta_val(const Variant &p_initial_val, const Variant &p_final_val, Variant &p_delta_val) { // Get the initial, final, and delta values const Variant &initial_val = p_initial_val; const Variant &final_val = p_final_val; Variant &delta_val = p_delta_val; // What kind of data are we interpolating? switch (initial_val.get_type()) { case Variant::BOOL: // We'll treat booleans just like integers case Variant::INT: // Compute the integer delta delta_val = (int)final_val - (int)initial_val; break; case Variant::FLOAT: // Convert to FLOAT and find the delta delta_val = (real_t)final_val - (real_t)initial_val; break; case Variant::VECTOR2: // Convert to Vectors and find the delta delta_val = final_val.operator Vector2() - initial_val.operator Vector2(); break; case Variant::RECT2: { // Build a new Rect2 and use the new position and sizes to make a delta Rect2 i = initial_val; Rect2 f = final_val; delta_val = Rect2(f.position - i.position, f.size - i.size); } break; case Variant::VECTOR3: // Convert to Vectors and find the delta delta_val = final_val.operator Vector3() - initial_val.operator Vector3(); break; case Variant::TRANSFORM2D: { // Build a new transform which is the difference between the initial and final values Transform2D i = initial_val; Transform2D f = final_val; Transform2D d = Transform2D(); d[0][0] = f.elements[0][0] - i.elements[0][0]; d[0][1] = f.elements[0][1] - i.elements[0][1]; d[1][0] = f.elements[1][0] - i.elements[1][0]; d[1][1] = f.elements[1][1] - i.elements[1][1]; d[2][0] = f.elements[2][0] - i.elements[2][0]; d[2][1] = f.elements[2][1] - i.elements[2][1]; delta_val = d; } break; case Variant::QUAT: // Convert to quaternianls and find the delta delta_val = final_val.operator Quat() - initial_val.operator Quat(); break; case Variant::AABB: { // Build a new AABB and use the new position and sizes to make a delta AABB i = initial_val; AABB f = final_val; delta_val = AABB(f.position - i.position, f.size - i.size); } break; case Variant::BASIS: { // Build a new basis which is the delta between the initial and final values Basis i = initial_val; Basis f = final_val; delta_val = Basis(f.elements[0][0] - i.elements[0][0], f.elements[0][1] - i.elements[0][1], f.elements[0][2] - i.elements[0][2], f.elements[1][0] - i.elements[1][0], f.elements[1][1] - i.elements[1][1], f.elements[1][2] - i.elements[1][2], f.elements[2][0] - i.elements[2][0], f.elements[2][1] - i.elements[2][1], f.elements[2][2] - i.elements[2][2]); } break; case Variant::TRANSFORM: { // Build a new transform which is the difference between the initial and final values Transform i = initial_val; Transform f = final_val; Transform d; d.set(f.basis.elements[0][0] - i.basis.elements[0][0], f.basis.elements[0][1] - i.basis.elements[0][1], f.basis.elements[0][2] - i.basis.elements[0][2], f.basis.elements[1][0] - i.basis.elements[1][0], f.basis.elements[1][1] - i.basis.elements[1][1], f.basis.elements[1][2] - i.basis.elements[1][2], f.basis.elements[2][0] - i.basis.elements[2][0], f.basis.elements[2][1] - i.basis.elements[2][1], f.basis.elements[2][2] - i.basis.elements[2][2], f.origin.x - i.origin.x, f.origin.y - i.origin.y, f.origin.z - i.origin.z); delta_val = d; } break; case Variant::COLOR: { // Make a new color which is the difference between each the color's RGBA attributes Color i = initial_val; Color f = final_val; delta_val = Color(f.r - i.r, f.g - i.g, f.b - i.b, f.a - i.a); } break; default: { static Variant::Type supported_types[] = { Variant::BOOL, Variant::INT, Variant::FLOAT, Variant::VECTOR2, Variant::RECT2, Variant::VECTOR3, Variant::TRANSFORM2D, Variant::QUAT, Variant::AABB, Variant::BASIS, Variant::TRANSFORM, Variant::COLOR, }; int length = *(&supported_types + 1) - supported_types; String error_msg = "Invalid parameter type. Supported types are: "; for (int i = 0; i < length; i++) { if (i != 0) { error_msg += ", "; } error_msg += Variant::get_type_name(supported_types[i]); } error_msg += "."; ERR_PRINT(error_msg); return false; } }; return true; } void Tween::_build_interpolation(InterpolateType p_interpolation_type, Object *p_object, NodePath *p_property, StringName *p_method, Variant p_initial_val, Variant p_final_val, real_t p_duration, TransitionType p_trans_type, EaseType p_ease_type, real_t p_delay) { // TODO: Add initialization+implementation for remaining interpolation types // TODO: Fix this method's organization to take advantage of the type // Make a new interpolation data InterpolateData data; data.active = true; data.type = p_interpolation_type; data.finish = false; data.elapsed = 0; // Validate and apply interpolation data // Give it the object ERR_FAIL_COND_MSG(p_object == nullptr, "Invalid object provided to Tween."); data.id = p_object->get_instance_id(); // Validate the initial and final values ERR_FAIL_COND_MSG(p_initial_val.get_type() != p_final_val.get_type(), "Initial value type '" + Variant::get_type_name(p_initial_val.get_type()) + "' does not match final value type '" + Variant::get_type_name(p_final_val.get_type()) + "'."); data.initial_val = p_initial_val; data.final_val = p_final_val; // Check the Duration ERR_FAIL_COND_MSG(p_duration < 0, "Only non-negative duration values allowed in Tweens."); data.duration = p_duration; // Tween Delay ERR_FAIL_COND_MSG(p_delay < 0, "Only non-negative delay values allowed in Tweens."); data.delay = p_delay; // Transition type ERR_FAIL_COND_MSG(p_trans_type < 0 || p_trans_type >= TRANS_COUNT, "Invalid transition type provided to Tween."); data.trans_type = p_trans_type; // Easing type ERR_FAIL_COND_MSG(p_ease_type < 0 || p_ease_type >= EASE_COUNT, "Invalid easing type provided to Tween."); data.ease_type = p_ease_type; // Is the property defined? if (p_property) { // Check that the object actually contains the given property bool prop_valid = false; p_object->get_indexed(p_property->get_subnames(), &prop_valid); ERR_FAIL_COND_MSG(!prop_valid, "Tween target object has no property named: " + p_property->get_concatenated_subnames() + "."); data.key = p_property->get_subnames(); data.concatenated_key = p_property->get_concatenated_subnames(); } // Is the method defined? if (p_method) { // Does the object even have the requested method? ERR_FAIL_COND_MSG(!p_object->has_method(*p_method), "Tween target object has no method named: " + *p_method + "."); data.key.push_back(*p_method); data.concatenated_key = *p_method; } // Is there not a valid delta? if (!_calc_delta_val(data.initial_val, data.final_val, data.delta_val)) { return; } // Add this interpolation to the total _push_interpolate_data(data); } void Tween::interpolate_property(Object *p_object, NodePath p_property, Variant p_initial_val, Variant p_final_val, real_t p_duration, TransitionType p_trans_type, EaseType p_ease_type, real_t p_delay) { // If we are busy updating, call this function again later if (pending_update != 0) { _add_pending_command("interpolate_property", p_object, p_property, p_initial_val, p_final_val, p_duration, p_trans_type, p_ease_type, p_delay); return; } // Check that the target object is valid ERR_FAIL_COND_MSG(p_object == nullptr, vformat("The Tween \"%s\"'s target node is `null`. Is the node reference correct?", get_name())); // Get the property from the node path p_property = p_property.get_as_property_path(); // If no initial value given, grab the initial value from the object // TODO: Is this documented? This is very useful and removes a lot of clutter from tweens! if (p_initial_val.get_type() == Variant::NIL) { p_initial_val = p_object->get_indexed(p_property.get_subnames()); } // Convert any integers into REALs as they are better for interpolation if (p_initial_val.get_type() == Variant::INT) { p_initial_val = p_initial_val.operator real_t(); } if (p_final_val.get_type() == Variant::INT) { p_final_val = p_final_val.operator real_t(); } // Build the interpolation data _build_interpolation(INTER_PROPERTY, p_object, &p_property, nullptr, p_initial_val, p_final_val, p_duration, p_trans_type, p_ease_type, p_delay); } void Tween::interpolate_method(Object *p_object, StringName p_method, Variant p_initial_val, Variant p_final_val, real_t p_duration, TransitionType p_trans_type, EaseType p_ease_type, real_t p_delay) { // If we are busy updating, call this function again later if (pending_update != 0) { _add_pending_command("interpolate_method", p_object, p_method, p_initial_val, p_final_val, p_duration, p_trans_type, p_ease_type, p_delay); return; } // Check that the target object is valid ERR_FAIL_COND_MSG(p_object == nullptr, vformat("The Tween \"%s\"'s target node is `null`. Is the node reference correct?", get_name())); // Convert any integers into REALs as they are better for interpolation if (p_initial_val.get_type() == Variant::INT) { p_initial_val = p_initial_val.operator real_t(); } if (p_final_val.get_type() == Variant::INT) { p_final_val = p_final_val.operator real_t(); } // Build the interpolation data _build_interpolation(INTER_METHOD, p_object, nullptr, &p_method, p_initial_val, p_final_val, p_duration, p_trans_type, p_ease_type, p_delay); } void Tween::interpolate_callback(Object *p_object, real_t p_duration, String p_callback, VARIANT_ARG_DECLARE) { // If we are already updating, call this function again later if (pending_update != 0) { _add_pending_command("interpolate_callback", p_object, p_duration, p_callback, p_arg1, p_arg2, p_arg3, p_arg4, p_arg5); return; } // Check that the target object is valid ERR_FAIL_COND(p_object == nullptr); // Duration cannot be negative ERR_FAIL_COND(p_duration < 0); // Check whether the object even has the callback ERR_FAIL_COND_MSG(!p_object->has_method(p_callback), "Object has no callback named: " + p_callback + "."); // Build a new InterpolationData InterpolateData data; data.active = true; data.type = INTER_CALLBACK; data.finish = false; data.call_deferred = false; data.elapsed = 0; // Give the data it's configuration data.id = p_object->get_instance_id(); data.key.push_back(p_callback); data.concatenated_key = p_callback; data.duration = p_duration; data.delay = 0; // Add arguments to the interpolation int args = 0; if (p_arg5.get_type() != Variant::NIL) { args = 5; } else if (p_arg4.get_type() != Variant::NIL) { args = 4; } else if (p_arg3.get_type() != Variant::NIL) { args = 3; } else if (p_arg2.get_type() != Variant::NIL) { args = 2; } else if (p_arg1.get_type() != Variant::NIL) { args = 1; } else { args = 0; } data.args = args; data.arg[0] = p_arg1; data.arg[1] = p_arg2; data.arg[2] = p_arg3; data.arg[3] = p_arg4; data.arg[4] = p_arg5; // Add the new interpolation _push_interpolate_data(data); } void Tween::interpolate_deferred_callback(Object *p_object, real_t p_duration, String p_callback, VARIANT_ARG_DECLARE) { // If we are already updating, call this function again later if (pending_update != 0) { _add_pending_command("interpolate_deferred_callback", p_object, p_duration, p_callback, p_arg1, p_arg2, p_arg3, p_arg4, p_arg5); return; } // Check that the target object is valid ERR_FAIL_COND(p_object == nullptr); // No negative durations allowed ERR_FAIL_COND(p_duration < 0); // Confirm the callback exists on the object ERR_FAIL_COND_MSG(!p_object->has_method(p_callback), "Object has no callback named: " + p_callback + "."); // Create a new InterpolateData for the callback InterpolateData data; data.active = true; data.type = INTER_CALLBACK; data.finish = false; data.call_deferred = true; data.elapsed = 0; // Give the data it's configuration data.id = p_object->get_instance_id(); data.key.push_back(p_callback); data.concatenated_key = p_callback; data.duration = p_duration; data.delay = 0; // Collect arguments for the callback int args = 0; if (p_arg5.get_type() != Variant::NIL) { args = 5; } else if (p_arg4.get_type() != Variant::NIL) { args = 4; } else if (p_arg3.get_type() != Variant::NIL) { args = 3; } else if (p_arg2.get_type() != Variant::NIL) { args = 2; } else if (p_arg1.get_type() != Variant::NIL) { args = 1; } else { args = 0; } data.args = args; data.arg[0] = p_arg1; data.arg[1] = p_arg2; data.arg[2] = p_arg3; data.arg[3] = p_arg4; data.arg[4] = p_arg5; // Add the new interpolation _push_interpolate_data(data); } void Tween::follow_property(Object *p_object, NodePath p_property, Variant p_initial_val, Object *p_target, NodePath p_target_property, real_t p_duration, TransitionType p_trans_type, EaseType p_ease_type, real_t p_delay) { // If we are already updating, call this function again later if (pending_update != 0) { _add_pending_command("follow_property", p_object, p_property, p_initial_val, p_target, p_target_property, p_duration, p_trans_type, p_ease_type, p_delay); return; } // Get the two properties from their paths p_property = p_property.get_as_property_path(); p_target_property = p_target_property.get_as_property_path(); // If no initial value is given, grab it from the source object // TODO: Is this documented? It's really helpful for decluttering tweens if (p_initial_val.get_type() == Variant::NIL) { p_initial_val = p_object->get_indexed(p_property.get_subnames()); } // Convert initial INT values to FLOAT as they are better for interpolation if (p_initial_val.get_type() == Variant::INT) { p_initial_val = p_initial_val.operator real_t(); } // Confirm the source and target objects are valid ERR_FAIL_COND(p_object == nullptr); ERR_FAIL_COND(p_target == nullptr); // No negative durations ERR_FAIL_COND(p_duration < 0); // Ensure transition and easing types are valid ERR_FAIL_COND(p_trans_type < 0 || p_trans_type >= TRANS_COUNT); ERR_FAIL_COND(p_ease_type < 0 || p_ease_type >= EASE_COUNT); // No negative delays ERR_FAIL_COND(p_delay < 0); // Confirm the source and target objects have the desired properties bool prop_valid = false; p_object->get_indexed(p_property.get_subnames(), &prop_valid); ERR_FAIL_COND(!prop_valid); bool target_prop_valid = false; Variant target_val = p_target->get_indexed(p_target_property.get_subnames(), &target_prop_valid); ERR_FAIL_COND(!target_prop_valid); // Convert target INT to FLOAT since it is better for interpolation if (target_val.get_type() == Variant::INT) { target_val = target_val.operator real_t(); } // Verify that the target value and initial value are the same type ERR_FAIL_COND(target_val.get_type() != p_initial_val.get_type()); // Create a new InterpolateData InterpolateData data; data.active = true; data.type = FOLLOW_PROPERTY; data.finish = false; data.elapsed = 0; // Give the InterpolateData it's configuration data.id = p_object->get_instance_id(); data.key = p_property.get_subnames(); data.concatenated_key = p_property.get_concatenated_subnames(); data.initial_val = p_initial_val; data.target_id = p_target->get_instance_id(); data.target_key = p_target_property.get_subnames(); data.duration = p_duration; data.trans_type = p_trans_type; data.ease_type = p_ease_type; data.delay = p_delay; // Add the interpolation _push_interpolate_data(data); } void Tween::follow_method(Object *p_object, StringName p_method, Variant p_initial_val, Object *p_target, StringName p_target_method, real_t p_duration, TransitionType p_trans_type, EaseType p_ease_type, real_t p_delay) { // If we are currently updating, call this function again later if (pending_update != 0) { _add_pending_command("follow_method", p_object, p_method, p_initial_val, p_target, p_target_method, p_duration, p_trans_type, p_ease_type, p_delay); return; } // Convert initial INT values to FLOAT as they are better for interpolation if (p_initial_val.get_type() == Variant::INT) { p_initial_val = p_initial_val.operator real_t(); } // Verify the source and target objects are valid ERR_FAIL_COND(p_object == nullptr); ERR_FAIL_COND(p_target == nullptr); // No negative durations ERR_FAIL_COND(p_duration < 0); // Ensure that the transition and ease types are valid ERR_FAIL_COND(p_trans_type < 0 || p_trans_type >= TRANS_COUNT); ERR_FAIL_COND(p_ease_type < 0 || p_ease_type >= EASE_COUNT); // No negative delays ERR_FAIL_COND(p_delay < 0); // Confirm both objects have the target methods ERR_FAIL_COND_MSG(!p_object->has_method(p_method), "Object has no method named: " + p_method + "."); ERR_FAIL_COND_MSG(!p_target->has_method(p_target_method), "Target has no method named: " + p_target_method + "."); // Call the method to get the target value Callable::CallError error; Variant target_val = p_target->call(p_target_method, nullptr, 0, error); ERR_FAIL_COND(error.error != Callable::CallError::CALL_OK); // Convert target INT values to FLOAT as they are better for interpolation if (target_val.get_type() == Variant::INT) { target_val = target_val.operator real_t(); } ERR_FAIL_COND(target_val.get_type() != p_initial_val.get_type()); // Make the new InterpolateData for the method follow InterpolateData data; data.active = true; data.type = FOLLOW_METHOD; data.finish = false; data.elapsed = 0; // Give the data it's configuration data.id = p_object->get_instance_id(); data.key.push_back(p_method); data.concatenated_key = p_method; data.initial_val = p_initial_val; data.target_id = p_target->get_instance_id(); data.target_key.push_back(p_target_method); data.duration = p_duration; data.trans_type = p_trans_type; data.ease_type = p_ease_type; data.delay = p_delay; // Add the new interpolation _push_interpolate_data(data); } void Tween::targeting_property(Object *p_object, NodePath p_property, Object *p_initial, NodePath p_initial_property, Variant p_final_val, real_t p_duration, TransitionType p_trans_type, EaseType p_ease_type, real_t p_delay) { // If we are currently updating, call this function again later if (pending_update != 0) { _add_pending_command("targeting_property", p_object, p_property, p_initial, p_initial_property, p_final_val, p_duration, p_trans_type, p_ease_type, p_delay); return; } // Grab the target property and the target property p_property = p_property.get_as_property_path(); p_initial_property = p_initial_property.get_as_property_path(); // Convert the initial INT values to FLOAT as they are better for Interpolation if (p_final_val.get_type() == Variant::INT) { p_final_val = p_final_val.operator real_t(); } // Verify both objects are valid ERR_FAIL_COND(p_object == nullptr); ERR_FAIL_COND(p_initial == nullptr); // No negative durations ERR_FAIL_COND(p_duration < 0); // Ensure transition and easing types are valid ERR_FAIL_COND(p_trans_type < 0 || p_trans_type >= TRANS_COUNT); ERR_FAIL_COND(p_ease_type < 0 || p_ease_type >= EASE_COUNT); // No negative delays ERR_FAIL_COND(p_delay < 0); // Ensure the initial and target properties exist on their objects bool prop_valid = false; p_object->get_indexed(p_property.get_subnames(), &prop_valid); ERR_FAIL_COND(!prop_valid); bool initial_prop_valid = false; Variant initial_val = p_initial->get_indexed(p_initial_property.get_subnames(), &initial_prop_valid); ERR_FAIL_COND(!initial_prop_valid); // Convert the initial INT value to FLOAT as it is better for interpolation if (initial_val.get_type() == Variant::INT) { initial_val = initial_val.operator real_t(); } ERR_FAIL_COND(initial_val.get_type() != p_final_val.get_type()); // Build the InterpolateData object InterpolateData data; data.active = true; data.type = TARGETING_PROPERTY; data.finish = false; data.elapsed = 0; // Give the data it's configuration data.id = p_object->get_instance_id(); data.key = p_property.get_subnames(); data.concatenated_key = p_property.get_concatenated_subnames(); data.target_id = p_initial->get_instance_id(); data.target_key = p_initial_property.get_subnames(); data.initial_val = initial_val; data.final_val = p_final_val; data.duration = p_duration; data.trans_type = p_trans_type; data.ease_type = p_ease_type; data.delay = p_delay; // Ensure there is a valid delta if (!_calc_delta_val(data.initial_val, data.final_val, data.delta_val)) { return; } // Add the interpolation _push_interpolate_data(data); } void Tween::targeting_method(Object *p_object, StringName p_method, Object *p_initial, StringName p_initial_method, Variant p_final_val, real_t p_duration, TransitionType p_trans_type, EaseType p_ease_type, real_t p_delay) { // If we are currently updating, call this function again later if (pending_update != 0) { _add_pending_command("targeting_method", p_object, p_method, p_initial, p_initial_method, p_final_val, p_duration, p_trans_type, p_ease_type, p_delay); return; } // Convert final INT values to FLOAT as they are better for interpolation if (p_final_val.get_type() == Variant::INT) { p_final_val = p_final_val.operator real_t(); } // Make sure the given objects are valid ERR_FAIL_COND(p_object == nullptr); ERR_FAIL_COND(p_initial == nullptr); // No negative durations ERR_FAIL_COND(p_duration < 0); // Ensure transition and easing types are valid ERR_FAIL_COND(p_trans_type < 0 || p_trans_type >= TRANS_COUNT); ERR_FAIL_COND(p_ease_type < 0 || p_ease_type >= EASE_COUNT); // No negative delays ERR_FAIL_COND(p_delay < 0); // Make sure both objects have the given method ERR_FAIL_COND_MSG(!p_object->has_method(p_method), "Object has no method named: " + p_method + "."); ERR_FAIL_COND_MSG(!p_initial->has_method(p_initial_method), "Initial Object has no method named: " + p_initial_method + "."); // Call the method to get the initial value Callable::CallError error; Variant initial_val = p_initial->call(p_initial_method, nullptr, 0, error); ERR_FAIL_COND(error.error != Callable::CallError::CALL_OK); // Convert initial INT values to FLOAT as they aer better for interpolation if (initial_val.get_type() == Variant::INT) { initial_val = initial_val.operator real_t(); } ERR_FAIL_COND(initial_val.get_type() != p_final_val.get_type()); // Build the new InterpolateData object InterpolateData data; data.active = true; data.type = TARGETING_METHOD; data.finish = false; data.elapsed = 0; // Configure the data data.id = p_object->get_instance_id(); data.key.push_back(p_method); data.concatenated_key = p_method; data.target_id = p_initial->get_instance_id(); data.target_key.push_back(p_initial_method); data.initial_val = initial_val; data.final_val = p_final_val; data.duration = p_duration; data.trans_type = p_trans_type; data.ease_type = p_ease_type; data.delay = p_delay; // Ensure there is a valid delta if (!_calc_delta_val(data.initial_val, data.final_val, data.delta_val)) { return; } // Add the interpolation _push_interpolate_data(data); } Tween::Tween() { } Tween::~Tween() { }