/*************************************************************************/ /* physics_body_3d.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "physics_body_3d.h" #include "core/core_string_names.h" #include "scene/scene_string_names.h" void PhysicsBody3D::_bind_methods() { ClassDB::bind_method(D_METHOD("move_and_collide", "distance", "test_only", "safe_margin", "recovery_as_collision", "max_collisions"), &PhysicsBody3D::_move, DEFVAL(false), DEFVAL(0.001), DEFVAL(false), DEFVAL(1)); ClassDB::bind_method(D_METHOD("test_move", "from", "distance", "collision", "safe_margin", "recovery_as_collision", "max_collisions"), &PhysicsBody3D::test_move, DEFVAL(Variant()), DEFVAL(0.001), DEFVAL(false), DEFVAL(1)); ClassDB::bind_method(D_METHOD("set_axis_lock", "axis", "lock"), &PhysicsBody3D::set_axis_lock); ClassDB::bind_method(D_METHOD("get_axis_lock", "axis"), &PhysicsBody3D::get_axis_lock); ClassDB::bind_method(D_METHOD("get_collision_exceptions"), &PhysicsBody3D::get_collision_exceptions); ClassDB::bind_method(D_METHOD("add_collision_exception_with", "body"), &PhysicsBody3D::add_collision_exception_with); ClassDB::bind_method(D_METHOD("remove_collision_exception_with", "body"), &PhysicsBody3D::remove_collision_exception_with); ADD_GROUP("Axis Lock", "axis_lock_"); ADD_PROPERTYI(PropertyInfo(Variant::BOOL, "axis_lock_linear_x"), "set_axis_lock", "get_axis_lock", PhysicsServer3D::BODY_AXIS_LINEAR_X); ADD_PROPERTYI(PropertyInfo(Variant::BOOL, "axis_lock_linear_y"), "set_axis_lock", "get_axis_lock", PhysicsServer3D::BODY_AXIS_LINEAR_Y); ADD_PROPERTYI(PropertyInfo(Variant::BOOL, "axis_lock_linear_z"), "set_axis_lock", "get_axis_lock", PhysicsServer3D::BODY_AXIS_LINEAR_Z); ADD_PROPERTYI(PropertyInfo(Variant::BOOL, "axis_lock_angular_x"), "set_axis_lock", "get_axis_lock", PhysicsServer3D::BODY_AXIS_ANGULAR_X); ADD_PROPERTYI(PropertyInfo(Variant::BOOL, "axis_lock_angular_y"), "set_axis_lock", "get_axis_lock", PhysicsServer3D::BODY_AXIS_ANGULAR_Y); ADD_PROPERTYI(PropertyInfo(Variant::BOOL, "axis_lock_angular_z"), "set_axis_lock", "get_axis_lock", PhysicsServer3D::BODY_AXIS_ANGULAR_Z); } PhysicsBody3D::PhysicsBody3D(PhysicsServer3D::BodyMode p_mode) : CollisionObject3D(PhysicsServer3D::get_singleton()->body_create(), false) { set_body_mode(p_mode); } PhysicsBody3D::~PhysicsBody3D() { if (motion_cache.is_valid()) { motion_cache->owner = nullptr; } } TypedArray PhysicsBody3D::get_collision_exceptions() { List exceptions; PhysicsServer3D::get_singleton()->body_get_collision_exceptions(get_rid(), &exceptions); Array ret; for (const RID &body : exceptions) { ObjectID instance_id = PhysicsServer3D::get_singleton()->body_get_object_instance_id(body); Object *obj = ObjectDB::get_instance(instance_id); PhysicsBody3D *physics_body = Object::cast_to(obj); ret.append(physics_body); } return ret; } void PhysicsBody3D::add_collision_exception_with(Node *p_node) { ERR_FAIL_NULL(p_node); CollisionObject3D *collision_object = Object::cast_to(p_node); ERR_FAIL_COND_MSG(!collision_object, "Collision exception only works between two CollisionObject3Ds."); PhysicsServer3D::get_singleton()->body_add_collision_exception(get_rid(), collision_object->get_rid()); } void PhysicsBody3D::remove_collision_exception_with(Node *p_node) { ERR_FAIL_NULL(p_node); CollisionObject3D *collision_object = Object::cast_to(p_node); ERR_FAIL_COND_MSG(!collision_object, "Collision exception only works between two CollisionObject3Ds."); PhysicsServer3D::get_singleton()->body_remove_collision_exception(get_rid(), collision_object->get_rid()); } Ref PhysicsBody3D::_move(const Vector3 &p_distance, bool p_test_only, real_t p_margin, bool p_recovery_as_collision, int p_max_collisions) { PhysicsServer3D::MotionParameters parameters(get_global_transform(), p_distance, p_margin); parameters.max_collisions = p_max_collisions; parameters.recovery_as_collision = p_recovery_as_collision; PhysicsServer3D::MotionResult result; if (move_and_collide(parameters, result, p_test_only)) { // Create a new instance when the cached reference is invalid or still in use in script. if (motion_cache.is_null() || motion_cache->get_reference_count() > 1) { motion_cache.instantiate(); motion_cache->owner = this; } motion_cache->result = result; return motion_cache; } return Ref(); } bool PhysicsBody3D::move_and_collide(const PhysicsServer3D::MotionParameters &p_parameters, PhysicsServer3D::MotionResult &r_result, bool p_test_only, bool p_cancel_sliding) { bool colliding = PhysicsServer3D::get_singleton()->body_test_motion(get_rid(), p_parameters, &r_result); // Restore direction of motion to be along original motion, // in order to avoid sliding due to recovery, // but only if collision depth is low enough to avoid tunneling. if (p_cancel_sliding) { real_t motion_length = p_parameters.motion.length(); real_t precision = 0.001; if (colliding) { // Can't just use margin as a threshold because collision depth is calculated on unsafe motion, // so even in normal resting cases the depth can be a bit more than the margin. precision += motion_length * (r_result.collision_unsafe_fraction - r_result.collision_safe_fraction); if (r_result.collisions[0].depth > p_parameters.margin + precision) { p_cancel_sliding = false; } } if (p_cancel_sliding) { // When motion is null, recovery is the resulting motion. Vector3 motion_normal; if (motion_length > CMP_EPSILON) { motion_normal = p_parameters.motion / motion_length; } // Check depth of recovery. real_t projected_length = r_result.travel.dot(motion_normal); Vector3 recovery = r_result.travel - motion_normal * projected_length; real_t recovery_length = recovery.length(); // Fixes cases where canceling slide causes the motion to go too deep into the ground, // because we're only taking rest information into account and not general recovery. if (recovery_length < p_parameters.margin + precision) { // Apply adjustment to motion. r_result.travel = motion_normal * projected_length; r_result.remainder = p_parameters.motion - r_result.travel; } } } for (int i = 0; i < 3; i++) { if (locked_axis & (1 << i)) { r_result.travel[i] = 0; } } if (!p_test_only) { Transform3D gt = p_parameters.from; gt.origin += r_result.travel; set_global_transform(gt); } return colliding; } bool PhysicsBody3D::test_move(const Transform3D &p_from, const Vector3 &p_distance, const Ref &r_collision, real_t p_margin, bool p_recovery_as_collision, int p_max_collisions) { ERR_FAIL_COND_V(!is_inside_tree(), false); PhysicsServer3D::MotionResult *r = nullptr; PhysicsServer3D::MotionResult temp_result; if (r_collision.is_valid()) { // Needs const_cast because method bindings don't support non-const Ref. r = const_cast(&r_collision->result); } else { r = &temp_result; } PhysicsServer3D::MotionParameters parameters(p_from, p_distance, p_margin); parameters.recovery_as_collision = p_recovery_as_collision; return PhysicsServer3D::get_singleton()->body_test_motion(get_rid(), parameters, r); } void PhysicsBody3D::set_axis_lock(PhysicsServer3D::BodyAxis p_axis, bool p_lock) { if (p_lock) { locked_axis |= p_axis; } else { locked_axis &= (~p_axis); } PhysicsServer3D::get_singleton()->body_set_axis_lock(get_rid(), p_axis, p_lock); } bool PhysicsBody3D::get_axis_lock(PhysicsServer3D::BodyAxis p_axis) const { return (locked_axis & p_axis); } Vector3 PhysicsBody3D::get_linear_velocity() const { return Vector3(); } Vector3 PhysicsBody3D::get_angular_velocity() const { return Vector3(); } real_t PhysicsBody3D::get_inverse_mass() const { return 0; } void StaticBody3D::set_physics_material_override(const Ref &p_physics_material_override) { if (physics_material_override.is_valid()) { if (physics_material_override->is_connected(CoreStringNames::get_singleton()->changed, callable_mp(this, &StaticBody3D::_reload_physics_characteristics))) { physics_material_override->disconnect(CoreStringNames::get_singleton()->changed, callable_mp(this, &StaticBody3D::_reload_physics_characteristics)); } } physics_material_override = p_physics_material_override; if (physics_material_override.is_valid()) { physics_material_override->connect(CoreStringNames::get_singleton()->changed, callable_mp(this, &StaticBody3D::_reload_physics_characteristics)); } _reload_physics_characteristics(); } Ref StaticBody3D::get_physics_material_override() const { return physics_material_override; } void StaticBody3D::set_constant_linear_velocity(const Vector3 &p_vel) { constant_linear_velocity = p_vel; PhysicsServer3D::get_singleton()->body_set_state(get_rid(), PhysicsServer3D::BODY_STATE_LINEAR_VELOCITY, constant_linear_velocity); } void StaticBody3D::set_constant_angular_velocity(const Vector3 &p_vel) { constant_angular_velocity = p_vel; PhysicsServer3D::get_singleton()->body_set_state(get_rid(), PhysicsServer3D::BODY_STATE_ANGULAR_VELOCITY, constant_angular_velocity); } Vector3 StaticBody3D::get_constant_linear_velocity() const { return constant_linear_velocity; } Vector3 StaticBody3D::get_constant_angular_velocity() const { return constant_angular_velocity; } void StaticBody3D::_bind_methods() { ClassDB::bind_method(D_METHOD("set_constant_linear_velocity", "vel"), &StaticBody3D::set_constant_linear_velocity); ClassDB::bind_method(D_METHOD("set_constant_angular_velocity", "vel"), &StaticBody3D::set_constant_angular_velocity); ClassDB::bind_method(D_METHOD("get_constant_linear_velocity"), &StaticBody3D::get_constant_linear_velocity); ClassDB::bind_method(D_METHOD("get_constant_angular_velocity"), &StaticBody3D::get_constant_angular_velocity); ClassDB::bind_method(D_METHOD("set_physics_material_override", "physics_material_override"), &StaticBody3D::set_physics_material_override); ClassDB::bind_method(D_METHOD("get_physics_material_override"), &StaticBody3D::get_physics_material_override); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "physics_material_override", PROPERTY_HINT_RESOURCE_TYPE, "PhysicsMaterial"), "set_physics_material_override", "get_physics_material_override"); ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "constant_linear_velocity", PROPERTY_HINT_NONE, "suffix:m/s"), "set_constant_linear_velocity", "get_constant_linear_velocity"); ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "constant_angular_velocity", PROPERTY_HINT_NONE, U"radians,suffix:\u00B0/s"), "set_constant_angular_velocity", "get_constant_angular_velocity"); } StaticBody3D::StaticBody3D(PhysicsServer3D::BodyMode p_mode) : PhysicsBody3D(p_mode) { } void StaticBody3D::_reload_physics_characteristics() { if (physics_material_override.is_null()) { PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_BOUNCE, 0); PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_FRICTION, 1); } else { PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_BOUNCE, physics_material_override->computed_bounce()); PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_FRICTION, physics_material_override->computed_friction()); } } Vector3 AnimatableBody3D::get_linear_velocity() const { return linear_velocity; } Vector3 AnimatableBody3D::get_angular_velocity() const { return angular_velocity; } void AnimatableBody3D::set_sync_to_physics(bool p_enable) { if (sync_to_physics == p_enable) { return; } sync_to_physics = p_enable; _update_kinematic_motion(); } bool AnimatableBody3D::is_sync_to_physics_enabled() const { return sync_to_physics; } void AnimatableBody3D::_update_kinematic_motion() { #ifdef TOOLS_ENABLED if (Engine::get_singleton()->is_editor_hint()) { return; } #endif if (sync_to_physics) { set_only_update_transform_changes(true); set_notify_local_transform(true); } else { set_only_update_transform_changes(false); set_notify_local_transform(false); } } void AnimatableBody3D::_body_state_changed(PhysicsDirectBodyState3D *p_state) { linear_velocity = p_state->get_linear_velocity(); angular_velocity = p_state->get_angular_velocity(); if (!sync_to_physics) { return; } last_valid_transform = p_state->get_transform(); set_notify_local_transform(false); set_global_transform(last_valid_transform); set_notify_local_transform(true); _on_transform_changed(); } void AnimatableBody3D::_notification(int p_what) { switch (p_what) { case NOTIFICATION_ENTER_TREE: { last_valid_transform = get_global_transform(); _update_kinematic_motion(); } break; case NOTIFICATION_EXIT_TREE: { set_only_update_transform_changes(false); set_notify_local_transform(false); } break; case NOTIFICATION_LOCAL_TRANSFORM_CHANGED: { // Used by sync to physics, send the new transform to the physics... Transform3D new_transform = get_global_transform(); PhysicsServer3D::get_singleton()->body_set_state(get_rid(), PhysicsServer3D::BODY_STATE_TRANSFORM, new_transform); // ... but then revert changes. set_notify_local_transform(false); set_global_transform(last_valid_transform); set_notify_local_transform(true); _on_transform_changed(); } break; } } void AnimatableBody3D::_bind_methods() { ClassDB::bind_method(D_METHOD("set_sync_to_physics", "enable"), &AnimatableBody3D::set_sync_to_physics); ClassDB::bind_method(D_METHOD("is_sync_to_physics_enabled"), &AnimatableBody3D::is_sync_to_physics_enabled); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "sync_to_physics"), "set_sync_to_physics", "is_sync_to_physics_enabled"); } AnimatableBody3D::AnimatableBody3D() : StaticBody3D(PhysicsServer3D::BODY_MODE_KINEMATIC) { PhysicsServer3D::get_singleton()->body_set_state_sync_callback(get_rid(), callable_mp(this, &AnimatableBody3D::_body_state_changed)); } void RigidBody3D::_body_enter_tree(ObjectID p_id) { Object *obj = ObjectDB::get_instance(p_id); Node *node = Object::cast_to(obj); ERR_FAIL_COND(!node); ERR_FAIL_COND(!contact_monitor); HashMap::Iterator E = contact_monitor->body_map.find(p_id); ERR_FAIL_COND(!E); ERR_FAIL_COND(E->value.in_tree); E->value.in_tree = true; contact_monitor->locked = true; emit_signal(SceneStringNames::get_singleton()->body_entered, node); for (int i = 0; i < E->value.shapes.size(); i++) { emit_signal(SceneStringNames::get_singleton()->body_shape_entered, E->value.rid, node, E->value.shapes[i].body_shape, E->value.shapes[i].local_shape); } contact_monitor->locked = false; } void RigidBody3D::_body_exit_tree(ObjectID p_id) { Object *obj = ObjectDB::get_instance(p_id); Node *node = Object::cast_to(obj); ERR_FAIL_COND(!node); ERR_FAIL_COND(!contact_monitor); HashMap::Iterator E = contact_monitor->body_map.find(p_id); ERR_FAIL_COND(!E); ERR_FAIL_COND(!E->value.in_tree); E->value.in_tree = false; contact_monitor->locked = true; emit_signal(SceneStringNames::get_singleton()->body_exited, node); for (int i = 0; i < E->value.shapes.size(); i++) { emit_signal(SceneStringNames::get_singleton()->body_shape_exited, E->value.rid, node, E->value.shapes[i].body_shape, E->value.shapes[i].local_shape); } contact_monitor->locked = false; } void RigidBody3D::_body_inout(int p_status, const RID &p_body, ObjectID p_instance, int p_body_shape, int p_local_shape) { bool body_in = p_status == 1; ObjectID objid = p_instance; Object *obj = ObjectDB::get_instance(objid); Node *node = Object::cast_to(obj); ERR_FAIL_COND(!contact_monitor); HashMap::Iterator E = contact_monitor->body_map.find(objid); ERR_FAIL_COND(!body_in && !E); if (body_in) { if (!E) { E = contact_monitor->body_map.insert(objid, BodyState()); E->value.rid = p_body; //E->value.rc=0; E->value.in_tree = node && node->is_inside_tree(); if (node) { node->connect(SceneStringNames::get_singleton()->tree_entered, callable_mp(this, &RigidBody3D::_body_enter_tree).bind(objid)); node->connect(SceneStringNames::get_singleton()->tree_exiting, callable_mp(this, &RigidBody3D::_body_exit_tree).bind(objid)); if (E->value.in_tree) { emit_signal(SceneStringNames::get_singleton()->body_entered, node); } } } //E->value.rc++; if (node) { E->value.shapes.insert(ShapePair(p_body_shape, p_local_shape)); } if (E->value.in_tree) { emit_signal(SceneStringNames::get_singleton()->body_shape_entered, p_body, node, p_body_shape, p_local_shape); } } else { //E->value.rc--; if (node) { E->value.shapes.erase(ShapePair(p_body_shape, p_local_shape)); } bool in_tree = E->value.in_tree; if (E->value.shapes.is_empty()) { if (node) { node->disconnect(SceneStringNames::get_singleton()->tree_entered, callable_mp(this, &RigidBody3D::_body_enter_tree)); node->disconnect(SceneStringNames::get_singleton()->tree_exiting, callable_mp(this, &RigidBody3D::_body_exit_tree)); if (in_tree) { emit_signal(SceneStringNames::get_singleton()->body_exited, node); } } contact_monitor->body_map.remove(E); } if (node && in_tree) { emit_signal(SceneStringNames::get_singleton()->body_shape_exited, p_body, obj, p_body_shape, p_local_shape); } } } struct _RigidBodyInOut { RID rid; ObjectID id; int shape = 0; int local_shape = 0; }; void RigidBody3D::_body_state_changed(PhysicsDirectBodyState3D *p_state) { set_ignore_transform_notification(true); set_global_transform(p_state->get_transform()); linear_velocity = p_state->get_linear_velocity(); angular_velocity = p_state->get_angular_velocity(); inverse_inertia_tensor = p_state->get_inverse_inertia_tensor(); if (sleeping != p_state->is_sleeping()) { sleeping = p_state->is_sleeping(); emit_signal(SceneStringNames::get_singleton()->sleeping_state_changed); } GDVIRTUAL_CALL(_integrate_forces, p_state); set_ignore_transform_notification(false); _on_transform_changed(); if (contact_monitor) { contact_monitor->locked = true; //untag all int rc = 0; for (KeyValue &E : contact_monitor->body_map) { for (int i = 0; i < E.value.shapes.size(); i++) { E.value.shapes[i].tagged = false; rc++; } } _RigidBodyInOut *toadd = (_RigidBodyInOut *)alloca(p_state->get_contact_count() * sizeof(_RigidBodyInOut)); int toadd_count = 0; RigidBody3D_RemoveAction *toremove = (RigidBody3D_RemoveAction *)alloca(rc * sizeof(RigidBody3D_RemoveAction)); int toremove_count = 0; //put the ones to add for (int i = 0; i < p_state->get_contact_count(); i++) { RID col_rid = p_state->get_contact_collider(i); ObjectID col_obj = p_state->get_contact_collider_id(i); int local_shape = p_state->get_contact_local_shape(i); int col_shape = p_state->get_contact_collider_shape(i); HashMap::Iterator E = contact_monitor->body_map.find(col_obj); if (!E) { toadd[toadd_count].rid = col_rid; toadd[toadd_count].local_shape = local_shape; toadd[toadd_count].id = col_obj; toadd[toadd_count].shape = col_shape; toadd_count++; continue; } ShapePair sp(col_shape, local_shape); int idx = E->value.shapes.find(sp); if (idx == -1) { toadd[toadd_count].rid = col_rid; toadd[toadd_count].local_shape = local_shape; toadd[toadd_count].id = col_obj; toadd[toadd_count].shape = col_shape; toadd_count++; continue; } E->value.shapes[idx].tagged = true; } //put the ones to remove for (const KeyValue &E : contact_monitor->body_map) { for (int i = 0; i < E.value.shapes.size(); i++) { if (!E.value.shapes[i].tagged) { toremove[toremove_count].rid = E.value.rid; toremove[toremove_count].body_id = E.key; toremove[toremove_count].pair = E.value.shapes[i]; toremove_count++; } } } //process removals for (int i = 0; i < toremove_count; i++) { _body_inout(0, toremove[i].rid, toremove[i].body_id, toremove[i].pair.body_shape, toremove[i].pair.local_shape); } //process additions for (int i = 0; i < toadd_count; i++) { _body_inout(1, toremove[i].rid, toadd[i].id, toadd[i].shape, toadd[i].local_shape); } contact_monitor->locked = false; } } void RigidBody3D::_notification(int p_what) { #ifdef TOOLS_ENABLED switch (p_what) { case NOTIFICATION_ENTER_TREE: { if (Engine::get_singleton()->is_editor_hint()) { set_notify_local_transform(true); // Used for warnings and only in editor. } } break; case NOTIFICATION_LOCAL_TRANSFORM_CHANGED: { if (Engine::get_singleton()->is_editor_hint()) { update_configuration_warnings(); } } break; } #endif } void RigidBody3D::_apply_body_mode() { if (freeze) { switch (freeze_mode) { case FREEZE_MODE_STATIC: { set_body_mode(PhysicsServer3D::BODY_MODE_STATIC); } break; case FREEZE_MODE_KINEMATIC: { set_body_mode(PhysicsServer3D::BODY_MODE_KINEMATIC); } break; } } else if (lock_rotation) { set_body_mode(PhysicsServer3D::BODY_MODE_RIGID_LINEAR); } else { set_body_mode(PhysicsServer3D::BODY_MODE_RIGID); } } void RigidBody3D::set_lock_rotation_enabled(bool p_lock_rotation) { if (p_lock_rotation == lock_rotation) { return; } lock_rotation = p_lock_rotation; _apply_body_mode(); } bool RigidBody3D::is_lock_rotation_enabled() const { return lock_rotation; } void RigidBody3D::set_freeze_enabled(bool p_freeze) { if (p_freeze == freeze) { return; } freeze = p_freeze; _apply_body_mode(); } bool RigidBody3D::is_freeze_enabled() const { return freeze; } void RigidBody3D::set_freeze_mode(FreezeMode p_freeze_mode) { if (p_freeze_mode == freeze_mode) { return; } freeze_mode = p_freeze_mode; _apply_body_mode(); } RigidBody3D::FreezeMode RigidBody3D::get_freeze_mode() const { return freeze_mode; } void RigidBody3D::set_mass(real_t p_mass) { ERR_FAIL_COND(p_mass <= 0); mass = p_mass; PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_MASS, mass); } real_t RigidBody3D::get_mass() const { return mass; } void RigidBody3D::set_inertia(const Vector3 &p_inertia) { ERR_FAIL_COND(p_inertia.x < 0); ERR_FAIL_COND(p_inertia.y < 0); ERR_FAIL_COND(p_inertia.z < 0); inertia = p_inertia; PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_INERTIA, inertia); } const Vector3 &RigidBody3D::get_inertia() const { return inertia; } void RigidBody3D::set_center_of_mass_mode(CenterOfMassMode p_mode) { if (center_of_mass_mode == p_mode) { return; } center_of_mass_mode = p_mode; switch (center_of_mass_mode) { case CENTER_OF_MASS_MODE_AUTO: { center_of_mass = Vector3(); PhysicsServer3D::get_singleton()->body_reset_mass_properties(get_rid()); if (inertia != Vector3()) { PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_INERTIA, inertia); } } break; case CENTER_OF_MASS_MODE_CUSTOM: { PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_CENTER_OF_MASS, center_of_mass); } break; } } RigidBody3D::CenterOfMassMode RigidBody3D::get_center_of_mass_mode() const { return center_of_mass_mode; } void RigidBody3D::set_center_of_mass(const Vector3 &p_center_of_mass) { if (center_of_mass == p_center_of_mass) { return; } ERR_FAIL_COND(center_of_mass_mode != CENTER_OF_MASS_MODE_CUSTOM); center_of_mass = p_center_of_mass; PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_CENTER_OF_MASS, center_of_mass); } const Vector3 &RigidBody3D::get_center_of_mass() const { return center_of_mass; } void RigidBody3D::set_physics_material_override(const Ref &p_physics_material_override) { if (physics_material_override.is_valid()) { if (physics_material_override->is_connected(CoreStringNames::get_singleton()->changed, callable_mp(this, &RigidBody3D::_reload_physics_characteristics))) { physics_material_override->disconnect(CoreStringNames::get_singleton()->changed, callable_mp(this, &RigidBody3D::_reload_physics_characteristics)); } } physics_material_override = p_physics_material_override; if (physics_material_override.is_valid()) { physics_material_override->connect(CoreStringNames::get_singleton()->changed, callable_mp(this, &RigidBody3D::_reload_physics_characteristics)); } _reload_physics_characteristics(); } Ref RigidBody3D::get_physics_material_override() const { return physics_material_override; } void RigidBody3D::set_gravity_scale(real_t p_gravity_scale) { gravity_scale = p_gravity_scale; PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_GRAVITY_SCALE, gravity_scale); } real_t RigidBody3D::get_gravity_scale() const { return gravity_scale; } void RigidBody3D::set_linear_damp_mode(DampMode p_mode) { linear_damp_mode = p_mode; PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_LINEAR_DAMP_MODE, linear_damp_mode); } RigidBody3D::DampMode RigidBody3D::get_linear_damp_mode() const { return linear_damp_mode; } void RigidBody3D::set_angular_damp_mode(DampMode p_mode) { angular_damp_mode = p_mode; PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_ANGULAR_DAMP_MODE, angular_damp_mode); } RigidBody3D::DampMode RigidBody3D::get_angular_damp_mode() const { return angular_damp_mode; } void RigidBody3D::set_linear_damp(real_t p_linear_damp) { ERR_FAIL_COND(p_linear_damp < 0.0); linear_damp = p_linear_damp; PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_LINEAR_DAMP, linear_damp); } real_t RigidBody3D::get_linear_damp() const { return linear_damp; } void RigidBody3D::set_angular_damp(real_t p_angular_damp) { ERR_FAIL_COND(p_angular_damp < 0.0); angular_damp = p_angular_damp; PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_ANGULAR_DAMP, angular_damp); } real_t RigidBody3D::get_angular_damp() const { return angular_damp; } void RigidBody3D::set_axis_velocity(const Vector3 &p_axis) { Vector3 axis = p_axis.normalized(); linear_velocity -= axis * axis.dot(linear_velocity); linear_velocity += p_axis; PhysicsServer3D::get_singleton()->body_set_state(get_rid(), PhysicsServer3D::BODY_STATE_LINEAR_VELOCITY, linear_velocity); } void RigidBody3D::set_linear_velocity(const Vector3 &p_velocity) { linear_velocity = p_velocity; PhysicsServer3D::get_singleton()->body_set_state(get_rid(), PhysicsServer3D::BODY_STATE_LINEAR_VELOCITY, linear_velocity); } Vector3 RigidBody3D::get_linear_velocity() const { return linear_velocity; } void RigidBody3D::set_angular_velocity(const Vector3 &p_velocity) { angular_velocity = p_velocity; PhysicsServer3D::get_singleton()->body_set_state(get_rid(), PhysicsServer3D::BODY_STATE_ANGULAR_VELOCITY, angular_velocity); } Vector3 RigidBody3D::get_angular_velocity() const { return angular_velocity; } Basis RigidBody3D::get_inverse_inertia_tensor() const { return inverse_inertia_tensor; } void RigidBody3D::set_use_custom_integrator(bool p_enable) { if (custom_integrator == p_enable) { return; } custom_integrator = p_enable; PhysicsServer3D::get_singleton()->body_set_omit_force_integration(get_rid(), p_enable); } bool RigidBody3D::is_using_custom_integrator() { return custom_integrator; } void RigidBody3D::set_sleeping(bool p_sleeping) { sleeping = p_sleeping; PhysicsServer3D::get_singleton()->body_set_state(get_rid(), PhysicsServer3D::BODY_STATE_SLEEPING, sleeping); } void RigidBody3D::set_can_sleep(bool p_active) { can_sleep = p_active; PhysicsServer3D::get_singleton()->body_set_state(get_rid(), PhysicsServer3D::BODY_STATE_CAN_SLEEP, p_active); } bool RigidBody3D::is_able_to_sleep() const { return can_sleep; } bool RigidBody3D::is_sleeping() const { return sleeping; } void RigidBody3D::set_max_contacts_reported(int p_amount) { max_contacts_reported = p_amount; PhysicsServer3D::get_singleton()->body_set_max_contacts_reported(get_rid(), p_amount); } int RigidBody3D::get_max_contacts_reported() const { return max_contacts_reported; } int RigidBody3D::get_contact_count() const { PhysicsDirectBodyState3D *bs = PhysicsServer3D::get_singleton()->body_get_direct_state(get_rid()); ERR_FAIL_NULL_V(bs, 0); return bs->get_contact_count(); } void RigidBody3D::apply_central_impulse(const Vector3 &p_impulse) { PhysicsServer3D::get_singleton()->body_apply_central_impulse(get_rid(), p_impulse); } void RigidBody3D::apply_impulse(const Vector3 &p_impulse, const Vector3 &p_position) { PhysicsServer3D *singleton = PhysicsServer3D::get_singleton(); singleton->body_apply_impulse(get_rid(), p_impulse, p_position); } void RigidBody3D::apply_torque_impulse(const Vector3 &p_impulse) { PhysicsServer3D::get_singleton()->body_apply_torque_impulse(get_rid(), p_impulse); } void RigidBody3D::apply_central_force(const Vector3 &p_force) { PhysicsServer3D::get_singleton()->body_apply_central_force(get_rid(), p_force); } void RigidBody3D::apply_force(const Vector3 &p_force, const Vector3 &p_position) { PhysicsServer3D *singleton = PhysicsServer3D::get_singleton(); singleton->body_apply_force(get_rid(), p_force, p_position); } void RigidBody3D::apply_torque(const Vector3 &p_torque) { PhysicsServer3D::get_singleton()->body_apply_torque(get_rid(), p_torque); } void RigidBody3D::add_constant_central_force(const Vector3 &p_force) { PhysicsServer3D::get_singleton()->body_add_constant_central_force(get_rid(), p_force); } void RigidBody3D::add_constant_force(const Vector3 &p_force, const Vector3 &p_position) { PhysicsServer3D *singleton = PhysicsServer3D::get_singleton(); singleton->body_add_constant_force(get_rid(), p_force, p_position); } void RigidBody3D::add_constant_torque(const Vector3 &p_torque) { PhysicsServer3D::get_singleton()->body_add_constant_torque(get_rid(), p_torque); } void RigidBody3D::set_constant_force(const Vector3 &p_force) { PhysicsServer3D::get_singleton()->body_set_constant_force(get_rid(), p_force); } Vector3 RigidBody3D::get_constant_force() const { return PhysicsServer3D::get_singleton()->body_get_constant_force(get_rid()); } void RigidBody3D::set_constant_torque(const Vector3 &p_torque) { PhysicsServer3D::get_singleton()->body_set_constant_torque(get_rid(), p_torque); } Vector3 RigidBody3D::get_constant_torque() const { return PhysicsServer3D::get_singleton()->body_get_constant_torque(get_rid()); } void RigidBody3D::set_use_continuous_collision_detection(bool p_enable) { ccd = p_enable; PhysicsServer3D::get_singleton()->body_set_enable_continuous_collision_detection(get_rid(), p_enable); } bool RigidBody3D::is_using_continuous_collision_detection() const { return ccd; } void RigidBody3D::set_contact_monitor(bool p_enabled) { if (p_enabled == is_contact_monitor_enabled()) { return; } if (!p_enabled) { ERR_FAIL_COND_MSG(contact_monitor->locked, "Can't disable contact monitoring during in/out callback. Use call_deferred(\"set_contact_monitor\", false) instead."); for (const KeyValue &E : contact_monitor->body_map) { //clean up mess Object *obj = ObjectDB::get_instance(E.key); Node *node = Object::cast_to(obj); if (node) { node->disconnect(SceneStringNames::get_singleton()->tree_entered, callable_mp(this, &RigidBody3D::_body_enter_tree)); node->disconnect(SceneStringNames::get_singleton()->tree_exiting, callable_mp(this, &RigidBody3D::_body_exit_tree)); } } memdelete(contact_monitor); contact_monitor = nullptr; } else { contact_monitor = memnew(ContactMonitor); contact_monitor->locked = false; } } bool RigidBody3D::is_contact_monitor_enabled() const { return contact_monitor != nullptr; } TypedArray RigidBody3D::get_colliding_bodies() const { ERR_FAIL_COND_V(!contact_monitor, TypedArray()); TypedArray ret; ret.resize(contact_monitor->body_map.size()); int idx = 0; for (const KeyValue &E : contact_monitor->body_map) { Object *obj = ObjectDB::get_instance(E.key); if (!obj) { ret.resize(ret.size() - 1); //ops } else { ret[idx++] = obj; } } return ret; } PackedStringArray RigidBody3D::get_configuration_warnings() const { PackedStringArray warnings = CollisionObject3D::get_configuration_warnings(); Vector3 scale = get_transform().get_basis().get_scale(); if (ABS(scale.x - 1.0) > 0.05 || ABS(scale.y - 1.0) > 0.05 || ABS(scale.z - 1.0) > 0.05) { warnings.push_back(RTR("Scale changes to RigidBody3D will be overridden by the physics engine when running.\nPlease change the size in children collision shapes instead.")); } return warnings; } void RigidBody3D::_bind_methods() { ClassDB::bind_method(D_METHOD("set_mass", "mass"), &RigidBody3D::set_mass); ClassDB::bind_method(D_METHOD("get_mass"), &RigidBody3D::get_mass); ClassDB::bind_method(D_METHOD("set_inertia", "inertia"), &RigidBody3D::set_inertia); ClassDB::bind_method(D_METHOD("get_inertia"), &RigidBody3D::get_inertia); ClassDB::bind_method(D_METHOD("set_center_of_mass_mode", "mode"), &RigidBody3D::set_center_of_mass_mode); ClassDB::bind_method(D_METHOD("get_center_of_mass_mode"), &RigidBody3D::get_center_of_mass_mode); ClassDB::bind_method(D_METHOD("set_center_of_mass", "center_of_mass"), &RigidBody3D::set_center_of_mass); ClassDB::bind_method(D_METHOD("get_center_of_mass"), &RigidBody3D::get_center_of_mass); ClassDB::bind_method(D_METHOD("set_physics_material_override", "physics_material_override"), &RigidBody3D::set_physics_material_override); ClassDB::bind_method(D_METHOD("get_physics_material_override"), &RigidBody3D::get_physics_material_override); ClassDB::bind_method(D_METHOD("set_linear_velocity", "linear_velocity"), &RigidBody3D::set_linear_velocity); ClassDB::bind_method(D_METHOD("get_linear_velocity"), &RigidBody3D::get_linear_velocity); ClassDB::bind_method(D_METHOD("set_angular_velocity", "angular_velocity"), &RigidBody3D::set_angular_velocity); ClassDB::bind_method(D_METHOD("get_angular_velocity"), &RigidBody3D::get_angular_velocity); ClassDB::bind_method(D_METHOD("get_inverse_inertia_tensor"), &RigidBody3D::get_inverse_inertia_tensor); ClassDB::bind_method(D_METHOD("set_gravity_scale", "gravity_scale"), &RigidBody3D::set_gravity_scale); ClassDB::bind_method(D_METHOD("get_gravity_scale"), &RigidBody3D::get_gravity_scale); ClassDB::bind_method(D_METHOD("set_linear_damp_mode", "linear_damp_mode"), &RigidBody3D::set_linear_damp_mode); ClassDB::bind_method(D_METHOD("get_linear_damp_mode"), &RigidBody3D::get_linear_damp_mode); ClassDB::bind_method(D_METHOD("set_angular_damp_mode", "angular_damp_mode"), &RigidBody3D::set_angular_damp_mode); ClassDB::bind_method(D_METHOD("get_angular_damp_mode"), &RigidBody3D::get_angular_damp_mode); ClassDB::bind_method(D_METHOD("set_linear_damp", "linear_damp"), &RigidBody3D::set_linear_damp); ClassDB::bind_method(D_METHOD("get_linear_damp"), &RigidBody3D::get_linear_damp); ClassDB::bind_method(D_METHOD("set_angular_damp", "angular_damp"), &RigidBody3D::set_angular_damp); ClassDB::bind_method(D_METHOD("get_angular_damp"), &RigidBody3D::get_angular_damp); ClassDB::bind_method(D_METHOD("set_max_contacts_reported", "amount"), &RigidBody3D::set_max_contacts_reported); ClassDB::bind_method(D_METHOD("get_max_contacts_reported"), &RigidBody3D::get_max_contacts_reported); ClassDB::bind_method(D_METHOD("get_contact_count"), &RigidBody3D::get_contact_count); ClassDB::bind_method(D_METHOD("set_use_custom_integrator", "enable"), &RigidBody3D::set_use_custom_integrator); ClassDB::bind_method(D_METHOD("is_using_custom_integrator"), &RigidBody3D::is_using_custom_integrator); ClassDB::bind_method(D_METHOD("set_contact_monitor", "enabled"), &RigidBody3D::set_contact_monitor); ClassDB::bind_method(D_METHOD("is_contact_monitor_enabled"), &RigidBody3D::is_contact_monitor_enabled); ClassDB::bind_method(D_METHOD("set_use_continuous_collision_detection", "enable"), &RigidBody3D::set_use_continuous_collision_detection); ClassDB::bind_method(D_METHOD("is_using_continuous_collision_detection"), &RigidBody3D::is_using_continuous_collision_detection); ClassDB::bind_method(D_METHOD("set_axis_velocity", "axis_velocity"), &RigidBody3D::set_axis_velocity); ClassDB::bind_method(D_METHOD("apply_central_impulse", "impulse"), &RigidBody3D::apply_central_impulse); ClassDB::bind_method(D_METHOD("apply_impulse", "impulse", "position"), &RigidBody3D::apply_impulse, Vector3()); ClassDB::bind_method(D_METHOD("apply_torque_impulse", "impulse"), &RigidBody3D::apply_torque_impulse); ClassDB::bind_method(D_METHOD("apply_central_force", "force"), &RigidBody3D::apply_central_force); ClassDB::bind_method(D_METHOD("apply_force", "force", "position"), &RigidBody3D::apply_force, Vector3()); ClassDB::bind_method(D_METHOD("apply_torque", "torque"), &RigidBody3D::apply_torque); ClassDB::bind_method(D_METHOD("add_constant_central_force", "force"), &RigidBody3D::add_constant_central_force); ClassDB::bind_method(D_METHOD("add_constant_force", "force", "position"), &RigidBody3D::add_constant_force, Vector3()); ClassDB::bind_method(D_METHOD("add_constant_torque", "torque"), &RigidBody3D::add_constant_torque); ClassDB::bind_method(D_METHOD("set_constant_force", "force"), &RigidBody3D::set_constant_force); ClassDB::bind_method(D_METHOD("get_constant_force"), &RigidBody3D::get_constant_force); ClassDB::bind_method(D_METHOD("set_constant_torque", "torque"), &RigidBody3D::set_constant_torque); ClassDB::bind_method(D_METHOD("get_constant_torque"), &RigidBody3D::get_constant_torque); ClassDB::bind_method(D_METHOD("set_sleeping", "sleeping"), &RigidBody3D::set_sleeping); ClassDB::bind_method(D_METHOD("is_sleeping"), &RigidBody3D::is_sleeping); ClassDB::bind_method(D_METHOD("set_can_sleep", "able_to_sleep"), &RigidBody3D::set_can_sleep); ClassDB::bind_method(D_METHOD("is_able_to_sleep"), &RigidBody3D::is_able_to_sleep); ClassDB::bind_method(D_METHOD("set_lock_rotation_enabled", "lock_rotation"), &RigidBody3D::set_lock_rotation_enabled); ClassDB::bind_method(D_METHOD("is_lock_rotation_enabled"), &RigidBody3D::is_lock_rotation_enabled); ClassDB::bind_method(D_METHOD("set_freeze_enabled", "freeze_mode"), &RigidBody3D::set_freeze_enabled); ClassDB::bind_method(D_METHOD("is_freeze_enabled"), &RigidBody3D::is_freeze_enabled); ClassDB::bind_method(D_METHOD("set_freeze_mode", "freeze_mode"), &RigidBody3D::set_freeze_mode); ClassDB::bind_method(D_METHOD("get_freeze_mode"), &RigidBody3D::get_freeze_mode); ClassDB::bind_method(D_METHOD("get_colliding_bodies"), &RigidBody3D::get_colliding_bodies); GDVIRTUAL_BIND(_integrate_forces, "state"); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "mass", PROPERTY_HINT_RANGE, "0.01,1000,0.01,or_greater,exp,suffix:kg"), "set_mass", "get_mass"); ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "inertia", PROPERTY_HINT_RANGE, U"0,1000,0.01,or_greater,exp,suffix:kg\u22C5m\u00B2"), "set_inertia", "get_inertia"); ADD_PROPERTY(PropertyInfo(Variant::INT, "center_of_mass_mode", PROPERTY_HINT_ENUM, "Auto,Custom", PROPERTY_USAGE_DEFAULT | PROPERTY_USAGE_UPDATE_ALL_IF_MODIFIED), "set_center_of_mass_mode", "get_center_of_mass_mode"); ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "center_of_mass", PROPERTY_HINT_RANGE, "-10,10,0.01,or_less,or_greater,suffix:m"), "set_center_of_mass", "get_center_of_mass"); ADD_LINKED_PROPERTY("center_of_mass_mode", "center_of_mass"); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "physics_material_override", PROPERTY_HINT_RESOURCE_TYPE, "PhysicsMaterial"), "set_physics_material_override", "get_physics_material_override"); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "gravity_scale", PROPERTY_HINT_RANGE, "-128,128,0.01"), "set_gravity_scale", "get_gravity_scale"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "custom_integrator"), "set_use_custom_integrator", "is_using_custom_integrator"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "continuous_cd"), "set_use_continuous_collision_detection", "is_using_continuous_collision_detection"); ADD_PROPERTY(PropertyInfo(Variant::INT, "max_contacts_reported", PROPERTY_HINT_RANGE, "0,64,1,or_greater"), "set_max_contacts_reported", "get_max_contacts_reported"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "contact_monitor"), "set_contact_monitor", "is_contact_monitor_enabled"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "sleeping"), "set_sleeping", "is_sleeping"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "can_sleep"), "set_can_sleep", "is_able_to_sleep"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "lock_rotation"), "set_lock_rotation_enabled", "is_lock_rotation_enabled"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "freeze"), "set_freeze_enabled", "is_freeze_enabled"); ADD_PROPERTY(PropertyInfo(Variant::INT, "freeze_mode", PROPERTY_HINT_ENUM, "Static,Kinematic"), "set_freeze_mode", "get_freeze_mode"); ADD_GROUP("Linear", "linear_"); ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "linear_velocity", PROPERTY_HINT_NONE, "suffix:m/s"), "set_linear_velocity", "get_linear_velocity"); ADD_PROPERTY(PropertyInfo(Variant::INT, "linear_damp_mode", PROPERTY_HINT_ENUM, "Combine,Replace"), "set_linear_damp_mode", "get_linear_damp_mode"); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "linear_damp", PROPERTY_HINT_RANGE, "0,100,0.001,or_greater"), "set_linear_damp", "get_linear_damp"); ADD_GROUP("Angular", "angular_"); ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "angular_velocity", PROPERTY_HINT_NONE, U"radians,suffix:\u00B0/s"), "set_angular_velocity", "get_angular_velocity"); ADD_PROPERTY(PropertyInfo(Variant::INT, "angular_damp_mode", PROPERTY_HINT_ENUM, "Combine,Replace"), "set_angular_damp_mode", "get_angular_damp_mode"); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "angular_damp", PROPERTY_HINT_RANGE, "0,100,0.001,or_greater"), "set_angular_damp", "get_angular_damp"); ADD_GROUP("Constant Forces", "constant_"); ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "constant_force"), "set_constant_force", "get_constant_force"); ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "constant_torque"), "set_constant_torque", "get_constant_torque"); ADD_SIGNAL(MethodInfo("body_shape_entered", PropertyInfo(Variant::RID, "body_rid"), PropertyInfo(Variant::OBJECT, "body", PROPERTY_HINT_RESOURCE_TYPE, "Node"), PropertyInfo(Variant::INT, "body_shape_index"), PropertyInfo(Variant::INT, "local_shape_index"))); ADD_SIGNAL(MethodInfo("body_shape_exited", PropertyInfo(Variant::RID, "body_rid"), PropertyInfo(Variant::OBJECT, "body", PROPERTY_HINT_RESOURCE_TYPE, "Node"), PropertyInfo(Variant::INT, "body_shape_index"), PropertyInfo(Variant::INT, "local_shape_index"))); ADD_SIGNAL(MethodInfo("body_entered", PropertyInfo(Variant::OBJECT, "body", PROPERTY_HINT_RESOURCE_TYPE, "Node"))); ADD_SIGNAL(MethodInfo("body_exited", PropertyInfo(Variant::OBJECT, "body", PROPERTY_HINT_RESOURCE_TYPE, "Node"))); ADD_SIGNAL(MethodInfo("sleeping_state_changed")); BIND_ENUM_CONSTANT(FREEZE_MODE_STATIC); BIND_ENUM_CONSTANT(FREEZE_MODE_KINEMATIC); BIND_ENUM_CONSTANT(CENTER_OF_MASS_MODE_AUTO); BIND_ENUM_CONSTANT(CENTER_OF_MASS_MODE_CUSTOM); BIND_ENUM_CONSTANT(DAMP_MODE_COMBINE); BIND_ENUM_CONSTANT(DAMP_MODE_REPLACE); } void RigidBody3D::_validate_property(PropertyInfo &p_property) const { if (center_of_mass_mode != CENTER_OF_MASS_MODE_CUSTOM) { if (p_property.name == "center_of_mass") { p_property.usage = PROPERTY_USAGE_NO_EDITOR; } } } RigidBody3D::RigidBody3D() : PhysicsBody3D(PhysicsServer3D::BODY_MODE_RIGID) { PhysicsServer3D::get_singleton()->body_set_state_sync_callback(get_rid(), callable_mp(this, &RigidBody3D::_body_state_changed)); } RigidBody3D::~RigidBody3D() { if (contact_monitor) { memdelete(contact_monitor); } } void RigidBody3D::_reload_physics_characteristics() { if (physics_material_override.is_null()) { PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_BOUNCE, 0); PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_FRICTION, 1); } else { PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_BOUNCE, physics_material_override->computed_bounce()); PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_FRICTION, physics_material_override->computed_friction()); } } /////////////////////////////////////// //so, if you pass 45 as limit, avoid numerical precision errors when angle is 45. #define FLOOR_ANGLE_THRESHOLD 0.01 bool CharacterBody3D::move_and_slide() { // Hack in order to work with calling from _process as well as from _physics_process; calling from thread is risky double delta = Engine::get_singleton()->is_in_physics_frame() ? get_physics_process_delta_time() : get_process_delta_time(); for (int i = 0; i < 3; i++) { if (locked_axis & (1 << i)) { velocity[i] = 0.0; } } Transform3D gt = get_global_transform(); previous_position = gt.origin; Vector3 current_platform_velocity = platform_velocity; if ((collision_state.floor || collision_state.wall) && platform_rid.is_valid()) { bool excluded = false; if (collision_state.floor) { excluded = (platform_floor_layers & platform_layer) == 0; } else if (collision_state.wall) { excluded = (platform_wall_layers & platform_layer) == 0; } if (!excluded) { //this approach makes sure there is less delay between the actual body velocity and the one we saved PhysicsDirectBodyState3D *bs = PhysicsServer3D::get_singleton()->body_get_direct_state(platform_rid); if (bs) { Vector3 local_position = gt.origin - bs->get_transform().origin; current_platform_velocity = bs->get_velocity_at_local_position(local_position); } else { // Body is removed or destroyed, invalidate floor. current_platform_velocity = Vector3(); platform_rid = RID(); } } else { current_platform_velocity = Vector3(); } } motion_results.clear(); bool was_on_floor = collision_state.floor; collision_state.state = 0; last_motion = Vector3(); if (!current_platform_velocity.is_zero_approx()) { PhysicsServer3D::MotionParameters parameters(get_global_transform(), current_platform_velocity * delta, margin); parameters.recovery_as_collision = true; // Also report collisions generated only from recovery. parameters.exclude_bodies.insert(platform_rid); if (platform_object_id.is_valid()) { parameters.exclude_objects.insert(platform_object_id); } PhysicsServer3D::MotionResult floor_result; if (move_and_collide(parameters, floor_result, false, false)) { motion_results.push_back(floor_result); CollisionState result_state; _set_collision_direction(floor_result, result_state); } } if (motion_mode == MOTION_MODE_GROUNDED) { _move_and_slide_grounded(delta, was_on_floor); } else { _move_and_slide_floating(delta); } // Compute real velocity. real_velocity = get_position_delta() / delta; if (platform_on_leave != PLATFORM_ON_LEAVE_DO_NOTHING) { // Add last platform velocity when just left a moving platform. if (!collision_state.floor && !collision_state.wall) { if (platform_on_leave == PLATFORM_ON_LEAVE_ADD_UPWARD_VELOCITY && current_platform_velocity.dot(up_direction) < 0) { current_platform_velocity = current_platform_velocity.slide(up_direction); } velocity += current_platform_velocity; } } return motion_results.size() > 0; } void CharacterBody3D::_move_and_slide_grounded(double p_delta, bool p_was_on_floor) { Vector3 motion = velocity * p_delta; Vector3 motion_slide_up = motion.slide(up_direction); Vector3 prev_floor_normal = floor_normal; platform_rid = RID(); platform_object_id = ObjectID(); platform_velocity = Vector3(); platform_ceiling_velocity = Vector3(); floor_normal = Vector3(); wall_normal = Vector3(); ceiling_normal = Vector3(); // No sliding on first attempt to keep floor motion stable when possible, // When stop on slope is enabled or when there is no up direction. bool sliding_enabled = !floor_stop_on_slope; // Constant speed can be applied only the first time sliding is enabled. bool can_apply_constant_speed = sliding_enabled; // If the platform's ceiling push down the body. bool apply_ceiling_velocity = false; bool first_slide = true; bool vel_dir_facing_up = velocity.dot(up_direction) > 0; Vector3 total_travel; for (int iteration = 0; iteration < max_slides; ++iteration) { PhysicsServer3D::MotionParameters parameters(get_global_transform(), motion, margin); parameters.max_collisions = 6; // There can be 4 collisions between 2 walls + 2 more for the floor. parameters.recovery_as_collision = true; // Also report collisions generated only from recovery. PhysicsServer3D::MotionResult result; bool collided = move_and_collide(parameters, result, false, !sliding_enabled); last_motion = result.travel; if (collided) { motion_results.push_back(result); CollisionState previous_state = collision_state; CollisionState result_state; _set_collision_direction(result, result_state); // If we hit a ceiling platform, we set the vertical velocity to at least the platform one. if (collision_state.ceiling && platform_ceiling_velocity != Vector3() && platform_ceiling_velocity.dot(up_direction) < 0) { // If ceiling sliding is on, only apply when the ceiling is flat or when the motion is upward. if (!slide_on_ceiling || motion.dot(up_direction) < 0 || (ceiling_normal + up_direction).length() < 0.01) { apply_ceiling_velocity = true; Vector3 ceiling_vertical_velocity = up_direction * up_direction.dot(platform_ceiling_velocity); Vector3 motion_vertical_velocity = up_direction * up_direction.dot(velocity); if (motion_vertical_velocity.dot(up_direction) > 0 || ceiling_vertical_velocity.length_squared() > motion_vertical_velocity.length_squared()) { velocity = ceiling_vertical_velocity + velocity.slide(up_direction); } } } if (collision_state.floor && floor_stop_on_slope && (velocity.normalized() + up_direction).length() < 0.01) { Transform3D gt = get_global_transform(); if (result.travel.length() <= margin + CMP_EPSILON) { gt.origin -= result.travel; } set_global_transform(gt); velocity = Vector3(); motion = Vector3(); last_motion = Vector3(); break; } if (result.remainder.is_zero_approx()) { motion = Vector3(); break; } // Apply regular sliding by default. bool apply_default_sliding = true; // Wall collision checks. if (result_state.wall && (motion_slide_up.dot(wall_normal) <= 0)) { // Move on floor only checks. if (floor_block_on_wall) { // Needs horizontal motion from current motion instead of motion_slide_up // to properly test the angle and avoid standing on slopes Vector3 horizontal_motion = motion.slide(up_direction); Vector3 horizontal_normal = wall_normal.slide(up_direction).normalized(); real_t motion_angle = Math::abs(Math::acos(-horizontal_normal.dot(horizontal_motion.normalized()))); // Avoid to move forward on a wall if floor_block_on_wall is true. // Applies only when the motion angle is under 90 degrees, // in order to avoid blocking lateral motion along a wall. if (motion_angle < .5 * Math_PI) { apply_default_sliding = false; if (p_was_on_floor && !vel_dir_facing_up) { // Cancel the motion. Transform3D gt = get_global_transform(); real_t travel_total = result.travel.length(); real_t cancel_dist_max = MIN(0.1, margin * 20); if (travel_total <= margin + CMP_EPSILON) { gt.origin -= result.travel; result.travel = Vector3(); // Cancel for constant speed computation. } else if (travel_total < cancel_dist_max) { // If the movement is large the body can be prevented from reaching the walls. gt.origin -= result.travel.slide(up_direction); // Keep remaining motion in sync with amount canceled. motion = motion.slide(up_direction); result.travel = Vector3(); } else { // Travel is too high to be safely cancelled, we take it into account. result.travel = result.travel.slide(up_direction); motion = motion.normalized() * result.travel.length(); } set_global_transform(gt); // Determines if you are on the ground, and limits the possibility of climbing on the walls because of the approximations. _snap_on_floor(true, false); } else { // If the movement is not cancelled we only keep the remaining. motion = result.remainder; } // Apply slide on forward in order to allow only lateral motion on next step. Vector3 forward = wall_normal.slide(up_direction).normalized(); motion = motion.slide(forward); // Scales the horizontal velocity according to the wall slope. if (vel_dir_facing_up) { Vector3 slide_motion = velocity.slide(result.collisions[0].normal); // Keeps the vertical motion from velocity and add the horizontal motion of the projection. velocity = up_direction * up_direction.dot(velocity) + slide_motion.slide(up_direction); } else { velocity = velocity.slide(forward); } // Allow only lateral motion along previous floor when already on floor. // Fixes slowing down when moving in diagonal against an inclined wall. if (p_was_on_floor && !vel_dir_facing_up && (motion.dot(up_direction) > 0.0)) { // Slide along the corner between the wall and previous floor. Vector3 floor_side = prev_floor_normal.cross(wall_normal); if (floor_side != Vector3()) { motion = floor_side * motion.dot(floor_side); } } // Stop all motion when a second wall is hit (unless sliding down or jumping), // in order to avoid jittering in corner cases. bool stop_all_motion = previous_state.wall && !vel_dir_facing_up; // Allow sliding when the body falls. if (!collision_state.floor && motion.dot(up_direction) < 0) { Vector3 slide_motion = motion.slide(wall_normal); // Test again to allow sliding only if the result goes downwards. // Fixes jittering issues at the bottom of inclined walls. if (slide_motion.dot(up_direction) < 0) { stop_all_motion = false; motion = slide_motion; } } if (stop_all_motion) { motion = Vector3(); velocity = Vector3(); } } } // Stop horizontal motion when under wall slide threshold. if (p_was_on_floor && (wall_min_slide_angle > 0.0) && result_state.wall) { Vector3 horizontal_normal = wall_normal.slide(up_direction).normalized(); real_t motion_angle = Math::abs(Math::acos(-horizontal_normal.dot(motion_slide_up.normalized()))); if (motion_angle < wall_min_slide_angle) { motion = up_direction * motion.dot(up_direction); velocity = up_direction * velocity.dot(up_direction); apply_default_sliding = false; } } } if (apply_default_sliding) { // Regular sliding, the last part of the test handle the case when you don't want to slide on the ceiling. if ((sliding_enabled || !collision_state.floor) && (!collision_state.ceiling || slide_on_ceiling || !vel_dir_facing_up) && !apply_ceiling_velocity) { const PhysicsServer3D::MotionCollision &collision = result.collisions[0]; Vector3 slide_motion = result.remainder.slide(collision.normal); if (collision_state.floor && !collision_state.wall && !motion_slide_up.is_zero_approx()) { // Slide using the intersection between the motion plane and the floor plane, // in order to keep the direction intact. real_t motion_length = slide_motion.length(); slide_motion = up_direction.cross(result.remainder).cross(floor_normal); // Keep the length from default slide to change speed in slopes by default, // when constant speed is not enabled. slide_motion.normalize(); slide_motion *= motion_length; } if (slide_motion.dot(velocity) > 0.0) { motion = slide_motion; } else { motion = Vector3(); } if (slide_on_ceiling && result_state.ceiling) { // Apply slide only in the direction of the input motion, otherwise just stop to avoid jittering when moving against a wall. if (vel_dir_facing_up) { velocity = velocity.slide(collision.normal); } else { // Avoid acceleration in slope when falling. velocity = up_direction * up_direction.dot(velocity); } } } // No sliding on first attempt to keep floor motion stable when possible. else { motion = result.remainder; if (result_state.ceiling && !slide_on_ceiling && vel_dir_facing_up) { velocity = velocity.slide(up_direction); motion = motion.slide(up_direction); } } } total_travel += result.travel; // Apply Constant Speed. if (p_was_on_floor && floor_constant_speed && can_apply_constant_speed && collision_state.floor && !motion.is_zero_approx()) { Vector3 travel_slide_up = total_travel.slide(up_direction); motion = motion.normalized() * MAX(0, (motion_slide_up.length() - travel_slide_up.length())); } } // When you move forward in a downward slope you don’t collide because you will be in the air. // This test ensures that constant speed is applied, only if the player is still on the ground after the snap is applied. else if (floor_constant_speed && first_slide && _on_floor_if_snapped(p_was_on_floor, vel_dir_facing_up)) { can_apply_constant_speed = false; sliding_enabled = true; Transform3D gt = get_global_transform(); gt.origin = gt.origin - result.travel; set_global_transform(gt); // Slide using the intersection between the motion plane and the floor plane, // in order to keep the direction intact. Vector3 motion_slide_norm = up_direction.cross(motion).cross(prev_floor_normal); motion_slide_norm.normalize(); motion = motion_slide_norm * (motion_slide_up.length()); collided = true; } if (!collided || motion.is_zero_approx()) { break; } can_apply_constant_speed = !can_apply_constant_speed && !sliding_enabled; sliding_enabled = true; first_slide = false; } _snap_on_floor(p_was_on_floor, vel_dir_facing_up); // Reset the gravity accumulation when touching the ground. if (collision_state.floor && !vel_dir_facing_up) { velocity = velocity.slide(up_direction); } } void CharacterBody3D::_move_and_slide_floating(double p_delta) { Vector3 motion = velocity * p_delta; platform_rid = RID(); platform_object_id = ObjectID(); floor_normal = Vector3(); platform_velocity = Vector3(); bool first_slide = true; for (int iteration = 0; iteration < max_slides; ++iteration) { PhysicsServer3D::MotionParameters parameters(get_global_transform(), motion, margin); parameters.recovery_as_collision = true; // Also report collisions generated only from recovery. PhysicsServer3D::MotionResult result; bool collided = move_and_collide(parameters, result, false, false); last_motion = result.travel; if (collided) { motion_results.push_back(result); CollisionState result_state; _set_collision_direction(result, result_state); if (result.remainder.is_zero_approx()) { motion = Vector3(); break; } if (wall_min_slide_angle != 0 && Math::acos(wall_normal.dot(-velocity.normalized())) < wall_min_slide_angle + FLOOR_ANGLE_THRESHOLD) { motion = Vector3(); if (result.travel.length() < margin + CMP_EPSILON) { Transform3D gt = get_global_transform(); gt.origin -= result.travel; set_global_transform(gt); } } else if (first_slide) { Vector3 motion_slide_norm = result.remainder.slide(wall_normal).normalized(); motion = motion_slide_norm * (motion.length() - result.travel.length()); } else { motion = result.remainder.slide(wall_normal); } if (motion.dot(velocity) <= 0.0) { motion = Vector3(); } } if (!collided || motion.is_zero_approx()) { break; } first_slide = false; } } void CharacterBody3D::_snap_on_floor(bool p_was_on_floor, bool p_vel_dir_facing_up) { if (collision_state.floor || !p_was_on_floor || p_vel_dir_facing_up) { return; } // Snap by at least collision margin to keep floor state consistent. real_t length = MAX(floor_snap_length, margin); PhysicsServer3D::MotionParameters parameters(get_global_transform(), -up_direction * length, margin); parameters.max_collisions = 4; parameters.recovery_as_collision = true; // Also report collisions generated only from recovery. parameters.collide_separation_ray = true; PhysicsServer3D::MotionResult result; if (move_and_collide(parameters, result, true, false)) { CollisionState result_state; // Apply direction for floor only. _set_collision_direction(result, result_state, CollisionState(true, false, false)); if (result_state.floor) { if (floor_stop_on_slope) { // move and collide may stray the object a bit because of pre un-stucking, // so only ensure that motion happens on floor direction in this case. if (result.travel.length() > margin) { result.travel = up_direction * up_direction.dot(result.travel); } else { result.travel = Vector3(); } } parameters.from.origin += result.travel; set_global_transform(parameters.from); } } } bool CharacterBody3D::_on_floor_if_snapped(bool p_was_on_floor, bool p_vel_dir_facing_up) { if (up_direction == Vector3() || collision_state.floor || !p_was_on_floor || p_vel_dir_facing_up) { return false; } // Snap by at least collision margin to keep floor state consistent. real_t length = MAX(floor_snap_length, margin); PhysicsServer3D::MotionParameters parameters(get_global_transform(), -up_direction * length, margin); parameters.max_collisions = 4; parameters.recovery_as_collision = true; // Also report collisions generated only from recovery. parameters.collide_separation_ray = true; PhysicsServer3D::MotionResult result; if (move_and_collide(parameters, result, true, false)) { CollisionState result_state; // Don't apply direction for any type. _set_collision_direction(result, result_state, CollisionState()); return result_state.floor; } return false; } void CharacterBody3D::_set_collision_direction(const PhysicsServer3D::MotionResult &p_result, CollisionState &r_state, CollisionState p_apply_state) { r_state.state = 0; real_t wall_depth = -1.0; real_t floor_depth = -1.0; bool was_on_wall = collision_state.wall; Vector3 prev_wall_normal = wall_normal; int wall_collision_count = 0; Vector3 combined_wall_normal; Vector3 tmp_wall_col; // Avoid duplicate on average calculation. for (int i = p_result.collision_count - 1; i >= 0; i--) { const PhysicsServer3D::MotionCollision &collision = p_result.collisions[i]; if (motion_mode == MOTION_MODE_GROUNDED) { // Check if any collision is floor. real_t floor_angle = collision.get_angle(up_direction); if (floor_angle <= floor_max_angle + FLOOR_ANGLE_THRESHOLD) { r_state.floor = true; if (p_apply_state.floor && collision.depth > floor_depth) { collision_state.floor = true; floor_normal = collision.normal; floor_depth = collision.depth; _set_platform_data(collision); } continue; } // Check if any collision is ceiling. real_t ceiling_angle = collision.get_angle(-up_direction); if (ceiling_angle <= floor_max_angle + FLOOR_ANGLE_THRESHOLD) { r_state.ceiling = true; if (p_apply_state.ceiling) { platform_ceiling_velocity = collision.collider_velocity; ceiling_normal = collision.normal; collision_state.ceiling = true; } continue; } } // Collision is wall by default. r_state.wall = true; if (p_apply_state.wall && collision.depth > wall_depth) { collision_state.wall = true; wall_depth = collision.depth; wall_normal = collision.normal; // Don't apply wall velocity when the collider is a CharacterBody3D. if (Object::cast_to(ObjectDB::get_instance(collision.collider_id)) == nullptr) { _set_platform_data(collision); } } // Collect normal for calculating average. if (!collision.normal.is_equal_approx(tmp_wall_col)) { tmp_wall_col = collision.normal; combined_wall_normal += collision.normal; wall_collision_count++; } } if (r_state.wall) { if (wall_collision_count > 1 && !r_state.floor) { // Check if wall normals cancel out to floor support. if (!r_state.floor && motion_mode == MOTION_MODE_GROUNDED) { combined_wall_normal.normalize(); real_t floor_angle = Math::acos(combined_wall_normal.dot(up_direction)); if (floor_angle <= floor_max_angle + FLOOR_ANGLE_THRESHOLD) { r_state.floor = true; r_state.wall = false; if (p_apply_state.floor) { collision_state.floor = true; floor_normal = combined_wall_normal; } if (p_apply_state.wall) { collision_state.wall = was_on_wall; wall_normal = prev_wall_normal; } return; } } } } } void CharacterBody3D::_set_platform_data(const PhysicsServer3D::MotionCollision &p_collision) { platform_rid = p_collision.collider; platform_object_id = p_collision.collider_id; platform_velocity = p_collision.collider_velocity; platform_layer = PhysicsServer3D::get_singleton()->body_get_collision_layer(platform_rid); } void CharacterBody3D::set_safe_margin(real_t p_margin) { margin = p_margin; } real_t CharacterBody3D::get_safe_margin() const { return margin; } const Vector3 &CharacterBody3D::get_velocity() const { return velocity; } void CharacterBody3D::set_velocity(const Vector3 &p_velocity) { velocity = p_velocity; } bool CharacterBody3D::is_on_floor() const { return collision_state.floor; } bool CharacterBody3D::is_on_floor_only() const { return collision_state.floor && !collision_state.wall && !collision_state.ceiling; } bool CharacterBody3D::is_on_wall() const { return collision_state.wall; } bool CharacterBody3D::is_on_wall_only() const { return collision_state.wall && !collision_state.floor && !collision_state.ceiling; } bool CharacterBody3D::is_on_ceiling() const { return collision_state.ceiling; } bool CharacterBody3D::is_on_ceiling_only() const { return collision_state.ceiling && !collision_state.floor && !collision_state.wall; } const Vector3 &CharacterBody3D::get_floor_normal() const { return floor_normal; } const Vector3 &CharacterBody3D::get_wall_normal() const { return wall_normal; } const Vector3 &CharacterBody3D::get_last_motion() const { return last_motion; } Vector3 CharacterBody3D::get_position_delta() const { return get_transform().origin - previous_position; } const Vector3 &CharacterBody3D::get_real_velocity() const { return real_velocity; } real_t CharacterBody3D::get_floor_angle(const Vector3 &p_up_direction) const { ERR_FAIL_COND_V(p_up_direction == Vector3(), 0); return Math::acos(floor_normal.dot(p_up_direction)); } const Vector3 &CharacterBody3D::get_platform_velocity() const { return platform_velocity; } Vector3 CharacterBody3D::get_linear_velocity() const { return get_real_velocity(); } int CharacterBody3D::get_slide_collision_count() const { return motion_results.size(); } PhysicsServer3D::MotionResult CharacterBody3D::get_slide_collision(int p_bounce) const { ERR_FAIL_INDEX_V(p_bounce, motion_results.size(), PhysicsServer3D::MotionResult()); return motion_results[p_bounce]; } Ref CharacterBody3D::_get_slide_collision(int p_bounce) { ERR_FAIL_INDEX_V(p_bounce, motion_results.size(), Ref()); if (p_bounce >= slide_colliders.size()) { slide_colliders.resize(p_bounce + 1); } // Create a new instance when the cached reference is invalid or still in use in script. if (slide_colliders[p_bounce].is_null() || slide_colliders[p_bounce]->get_reference_count() > 1) { slide_colliders.write[p_bounce].instantiate(); slide_colliders.write[p_bounce]->owner = this; } slide_colliders.write[p_bounce]->result = motion_results[p_bounce]; return slide_colliders[p_bounce]; } Ref CharacterBody3D::_get_last_slide_collision() { if (motion_results.size() == 0) { return Ref(); } return _get_slide_collision(motion_results.size() - 1); } bool CharacterBody3D::is_floor_stop_on_slope_enabled() const { return floor_stop_on_slope; } void CharacterBody3D::set_floor_stop_on_slope_enabled(bool p_enabled) { floor_stop_on_slope = p_enabled; } bool CharacterBody3D::is_floor_constant_speed_enabled() const { return floor_constant_speed; } void CharacterBody3D::set_floor_constant_speed_enabled(bool p_enabled) { floor_constant_speed = p_enabled; } bool CharacterBody3D::is_floor_block_on_wall_enabled() const { return floor_block_on_wall; } void CharacterBody3D::set_floor_block_on_wall_enabled(bool p_enabled) { floor_block_on_wall = p_enabled; } bool CharacterBody3D::is_slide_on_ceiling_enabled() const { return slide_on_ceiling; } void CharacterBody3D::set_slide_on_ceiling_enabled(bool p_enabled) { slide_on_ceiling = p_enabled; } uint32_t CharacterBody3D::get_platform_floor_layers() const { return platform_floor_layers; } void CharacterBody3D::set_platform_floor_layers(uint32_t p_exclude_layers) { platform_floor_layers = p_exclude_layers; } uint32_t CharacterBody3D::get_platform_wall_layers() const { return platform_wall_layers; } void CharacterBody3D::set_platform_wall_layers(uint32_t p_exclude_layers) { platform_wall_layers = p_exclude_layers; } void CharacterBody3D::set_motion_mode(MotionMode p_mode) { motion_mode = p_mode; } CharacterBody3D::MotionMode CharacterBody3D::get_motion_mode() const { return motion_mode; } void CharacterBody3D::set_platform_on_leave(PlatformOnLeave p_on_leave_apply_velocity) { platform_on_leave = p_on_leave_apply_velocity; } CharacterBody3D::PlatformOnLeave CharacterBody3D::get_platform_on_leave() const { return platform_on_leave; } int CharacterBody3D::get_max_slides() const { return max_slides; } void CharacterBody3D::set_max_slides(int p_max_slides) { ERR_FAIL_COND(p_max_slides < 1); max_slides = p_max_slides; } real_t CharacterBody3D::get_floor_max_angle() const { return floor_max_angle; } void CharacterBody3D::set_floor_max_angle(real_t p_radians) { floor_max_angle = p_radians; } real_t CharacterBody3D::get_floor_snap_length() { return floor_snap_length; } void CharacterBody3D::set_floor_snap_length(real_t p_floor_snap_length) { ERR_FAIL_COND(p_floor_snap_length < 0); floor_snap_length = p_floor_snap_length; } real_t CharacterBody3D::get_wall_min_slide_angle() const { return wall_min_slide_angle; } void CharacterBody3D::set_wall_min_slide_angle(real_t p_radians) { wall_min_slide_angle = p_radians; } const Vector3 &CharacterBody3D::get_up_direction() const { return up_direction; } void CharacterBody3D::set_up_direction(const Vector3 &p_up_direction) { ERR_FAIL_COND_MSG(p_up_direction == Vector3(), "up_direction can't be equal to Vector3.ZERO, consider using Floating motion mode instead."); up_direction = p_up_direction.normalized(); } void CharacterBody3D::_notification(int p_what) { switch (p_what) { case NOTIFICATION_ENTER_TREE: { // Reset move_and_slide() data. collision_state.state = 0; platform_rid = RID(); platform_object_id = ObjectID(); motion_results.clear(); platform_velocity = Vector3(); } break; } } void CharacterBody3D::_bind_methods() { ClassDB::bind_method(D_METHOD("move_and_slide"), &CharacterBody3D::move_and_slide); ClassDB::bind_method(D_METHOD("set_velocity", "velocity"), &CharacterBody3D::set_velocity); ClassDB::bind_method(D_METHOD("get_velocity"), &CharacterBody3D::get_velocity); ClassDB::bind_method(D_METHOD("set_safe_margin", "margin"), &CharacterBody3D::set_safe_margin); ClassDB::bind_method(D_METHOD("get_safe_margin"), &CharacterBody3D::get_safe_margin); ClassDB::bind_method(D_METHOD("is_floor_stop_on_slope_enabled"), &CharacterBody3D::is_floor_stop_on_slope_enabled); ClassDB::bind_method(D_METHOD("set_floor_stop_on_slope_enabled", "enabled"), &CharacterBody3D::set_floor_stop_on_slope_enabled); ClassDB::bind_method(D_METHOD("set_floor_constant_speed_enabled", "enabled"), &CharacterBody3D::set_floor_constant_speed_enabled); ClassDB::bind_method(D_METHOD("is_floor_constant_speed_enabled"), &CharacterBody3D::is_floor_constant_speed_enabled); ClassDB::bind_method(D_METHOD("set_floor_block_on_wall_enabled", "enabled"), &CharacterBody3D::set_floor_block_on_wall_enabled); ClassDB::bind_method(D_METHOD("is_floor_block_on_wall_enabled"), &CharacterBody3D::is_floor_block_on_wall_enabled); ClassDB::bind_method(D_METHOD("set_slide_on_ceiling_enabled", "enabled"), &CharacterBody3D::set_slide_on_ceiling_enabled); ClassDB::bind_method(D_METHOD("is_slide_on_ceiling_enabled"), &CharacterBody3D::is_slide_on_ceiling_enabled); ClassDB::bind_method(D_METHOD("set_platform_floor_layers", "exclude_layer"), &CharacterBody3D::set_platform_floor_layers); ClassDB::bind_method(D_METHOD("get_platform_floor_layers"), &CharacterBody3D::get_platform_floor_layers); ClassDB::bind_method(D_METHOD("set_platform_wall_layers", "exclude_layer"), &CharacterBody3D::set_platform_wall_layers); ClassDB::bind_method(D_METHOD("get_platform_wall_layers"), &CharacterBody3D::get_platform_wall_layers); ClassDB::bind_method(D_METHOD("get_max_slides"), &CharacterBody3D::get_max_slides); ClassDB::bind_method(D_METHOD("set_max_slides", "max_slides"), &CharacterBody3D::set_max_slides); ClassDB::bind_method(D_METHOD("get_floor_max_angle"), &CharacterBody3D::get_floor_max_angle); ClassDB::bind_method(D_METHOD("set_floor_max_angle", "radians"), &CharacterBody3D::set_floor_max_angle); ClassDB::bind_method(D_METHOD("get_floor_snap_length"), &CharacterBody3D::get_floor_snap_length); ClassDB::bind_method(D_METHOD("set_floor_snap_length", "floor_snap_length"), &CharacterBody3D::set_floor_snap_length); ClassDB::bind_method(D_METHOD("get_wall_min_slide_angle"), &CharacterBody3D::get_wall_min_slide_angle); ClassDB::bind_method(D_METHOD("set_wall_min_slide_angle", "radians"), &CharacterBody3D::set_wall_min_slide_angle); ClassDB::bind_method(D_METHOD("get_up_direction"), &CharacterBody3D::get_up_direction); ClassDB::bind_method(D_METHOD("set_up_direction", "up_direction"), &CharacterBody3D::set_up_direction); ClassDB::bind_method(D_METHOD("set_motion_mode", "mode"), &CharacterBody3D::set_motion_mode); ClassDB::bind_method(D_METHOD("get_motion_mode"), &CharacterBody3D::get_motion_mode); ClassDB::bind_method(D_METHOD("set_platform_on_leave", "on_leave_apply_velocity"), &CharacterBody3D::set_platform_on_leave); ClassDB::bind_method(D_METHOD("get_platform_on_leave"), &CharacterBody3D::get_platform_on_leave); ClassDB::bind_method(D_METHOD("is_on_floor"), &CharacterBody3D::is_on_floor); ClassDB::bind_method(D_METHOD("is_on_floor_only"), &CharacterBody3D::is_on_floor_only); ClassDB::bind_method(D_METHOD("is_on_ceiling"), &CharacterBody3D::is_on_ceiling); ClassDB::bind_method(D_METHOD("is_on_ceiling_only"), &CharacterBody3D::is_on_ceiling_only); ClassDB::bind_method(D_METHOD("is_on_wall"), &CharacterBody3D::is_on_wall); ClassDB::bind_method(D_METHOD("is_on_wall_only"), &CharacterBody3D::is_on_wall_only); ClassDB::bind_method(D_METHOD("get_floor_normal"), &CharacterBody3D::get_floor_normal); ClassDB::bind_method(D_METHOD("get_wall_normal"), &CharacterBody3D::get_wall_normal); ClassDB::bind_method(D_METHOD("get_last_motion"), &CharacterBody3D::get_last_motion); ClassDB::bind_method(D_METHOD("get_position_delta"), &CharacterBody3D::get_position_delta); ClassDB::bind_method(D_METHOD("get_real_velocity"), &CharacterBody3D::get_real_velocity); ClassDB::bind_method(D_METHOD("get_floor_angle", "up_direction"), &CharacterBody3D::get_floor_angle, DEFVAL(Vector3(0.0, 1.0, 0.0))); ClassDB::bind_method(D_METHOD("get_platform_velocity"), &CharacterBody3D::get_platform_velocity); ClassDB::bind_method(D_METHOD("get_slide_collision_count"), &CharacterBody3D::get_slide_collision_count); ClassDB::bind_method(D_METHOD("get_slide_collision", "slide_idx"), &CharacterBody3D::_get_slide_collision); ClassDB::bind_method(D_METHOD("get_last_slide_collision"), &CharacterBody3D::_get_last_slide_collision); ADD_PROPERTY(PropertyInfo(Variant::INT, "motion_mode", PROPERTY_HINT_ENUM, "Grounded,Floating", PROPERTY_USAGE_DEFAULT | PROPERTY_USAGE_UPDATE_ALL_IF_MODIFIED), "set_motion_mode", "get_motion_mode"); ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "up_direction"), "set_up_direction", "get_up_direction"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "slide_on_ceiling"), "set_slide_on_ceiling_enabled", "is_slide_on_ceiling_enabled"); ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "velocity", PROPERTY_HINT_NONE, "suffix:m/s", PROPERTY_USAGE_NO_EDITOR), "set_velocity", "get_velocity"); ADD_PROPERTY(PropertyInfo(Variant::INT, "max_slides", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NO_EDITOR), "set_max_slides", "get_max_slides"); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "wall_min_slide_angle", PROPERTY_HINT_RANGE, "0,180,0.1,radians", PROPERTY_USAGE_DEFAULT), "set_wall_min_slide_angle", "get_wall_min_slide_angle"); ADD_GROUP("Floor", "floor_"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "floor_stop_on_slope"), "set_floor_stop_on_slope_enabled", "is_floor_stop_on_slope_enabled"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "floor_constant_speed"), "set_floor_constant_speed_enabled", "is_floor_constant_speed_enabled"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "floor_block_on_wall"), "set_floor_block_on_wall_enabled", "is_floor_block_on_wall_enabled"); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "floor_max_angle", PROPERTY_HINT_RANGE, "0,180,0.1,radians"), "set_floor_max_angle", "get_floor_max_angle"); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "floor_snap_length", PROPERTY_HINT_RANGE, "0,1,0.01,or_greater,suffix:m"), "set_floor_snap_length", "get_floor_snap_length"); ADD_GROUP("Moving Platform", "platform_"); ADD_PROPERTY(PropertyInfo(Variant::INT, "platform_on_leave", PROPERTY_HINT_ENUM, "Add Velocity,Add Upward Velocity,Do Nothing", PROPERTY_USAGE_DEFAULT), "set_platform_on_leave", "get_platform_on_leave"); ADD_PROPERTY(PropertyInfo(Variant::INT, "platform_floor_layers", PROPERTY_HINT_LAYERS_2D_PHYSICS), "set_platform_floor_layers", "get_platform_floor_layers"); ADD_PROPERTY(PropertyInfo(Variant::INT, "platform_wall_layers", PROPERTY_HINT_LAYERS_2D_PHYSICS), "set_platform_wall_layers", "get_platform_wall_layers"); ADD_GROUP("Collision", ""); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "safe_margin", PROPERTY_HINT_RANGE, "0.001,256,0.001,suffix:m"), "set_safe_margin", "get_safe_margin"); BIND_ENUM_CONSTANT(MOTION_MODE_GROUNDED); BIND_ENUM_CONSTANT(MOTION_MODE_FLOATING); BIND_ENUM_CONSTANT(PLATFORM_ON_LEAVE_ADD_VELOCITY); BIND_ENUM_CONSTANT(PLATFORM_ON_LEAVE_ADD_UPWARD_VELOCITY); BIND_ENUM_CONSTANT(PLATFORM_ON_LEAVE_DO_NOTHING); } void CharacterBody3D::_validate_property(PropertyInfo &p_property) const { if (motion_mode == MOTION_MODE_FLOATING) { if (p_property.name.begins_with("floor_") || p_property.name == "up_direction" || p_property.name == "slide_on_ceiling") { p_property.usage = PROPERTY_USAGE_NO_EDITOR; } } } CharacterBody3D::CharacterBody3D() : PhysicsBody3D(PhysicsServer3D::BODY_MODE_KINEMATIC) { } CharacterBody3D::~CharacterBody3D() { for (int i = 0; i < slide_colliders.size(); i++) { if (slide_colliders[i].is_valid()) { slide_colliders.write[i]->owner = nullptr; } } } /////////////////////////////////////// Vector3 KinematicCollision3D::get_travel() const { return result.travel; } Vector3 KinematicCollision3D::get_remainder() const { return result.remainder; } int KinematicCollision3D::get_collision_count() const { return result.collision_count; } real_t KinematicCollision3D::get_depth() const { return result.collision_depth; } Vector3 KinematicCollision3D::get_position(int p_collision_index) const { ERR_FAIL_INDEX_V(p_collision_index, result.collision_count, Vector3()); return result.collisions[p_collision_index].position; } Vector3 KinematicCollision3D::get_normal(int p_collision_index) const { ERR_FAIL_INDEX_V(p_collision_index, result.collision_count, Vector3()); return result.collisions[p_collision_index].normal; } real_t KinematicCollision3D::get_angle(int p_collision_index, const Vector3 &p_up_direction) const { ERR_FAIL_INDEX_V(p_collision_index, result.collision_count, 0.0); ERR_FAIL_COND_V(p_up_direction == Vector3(), 0); return result.collisions[p_collision_index].get_angle(p_up_direction); } Object *KinematicCollision3D::get_local_shape(int p_collision_index) const { ERR_FAIL_INDEX_V(p_collision_index, result.collision_count, nullptr); if (!owner) { return nullptr; } uint32_t ownerid = owner->shape_find_owner(result.collisions[p_collision_index].local_shape); return owner->shape_owner_get_owner(ownerid); } Object *KinematicCollision3D::get_collider(int p_collision_index) const { ERR_FAIL_INDEX_V(p_collision_index, result.collision_count, nullptr); if (result.collisions[p_collision_index].collider_id.is_valid()) { return ObjectDB::get_instance(result.collisions[p_collision_index].collider_id); } return nullptr; } ObjectID KinematicCollision3D::get_collider_id(int p_collision_index) const { ERR_FAIL_INDEX_V(p_collision_index, result.collision_count, ObjectID()); return result.collisions[p_collision_index].collider_id; } RID KinematicCollision3D::get_collider_rid(int p_collision_index) const { ERR_FAIL_INDEX_V(p_collision_index, result.collision_count, RID()); return result.collisions[p_collision_index].collider; } Object *KinematicCollision3D::get_collider_shape(int p_collision_index) const { Object *collider = get_collider(p_collision_index); if (collider) { CollisionObject3D *obj2d = Object::cast_to(collider); if (obj2d) { uint32_t ownerid = obj2d->shape_find_owner(result.collisions[p_collision_index].collider_shape); return obj2d->shape_owner_get_owner(ownerid); } } return nullptr; } int KinematicCollision3D::get_collider_shape_index(int p_collision_index) const { ERR_FAIL_INDEX_V(p_collision_index, result.collision_count, 0); return result.collisions[p_collision_index].collider_shape; } Vector3 KinematicCollision3D::get_collider_velocity(int p_collision_index) const { ERR_FAIL_INDEX_V(p_collision_index, result.collision_count, Vector3()); return result.collisions[p_collision_index].collider_velocity; } void KinematicCollision3D::_bind_methods() { ClassDB::bind_method(D_METHOD("get_travel"), &KinematicCollision3D::get_travel); ClassDB::bind_method(D_METHOD("get_remainder"), &KinematicCollision3D::get_remainder); ClassDB::bind_method(D_METHOD("get_depth"), &KinematicCollision3D::get_depth); ClassDB::bind_method(D_METHOD("get_collision_count"), &KinematicCollision3D::get_collision_count); ClassDB::bind_method(D_METHOD("get_position", "collision_index"), &KinematicCollision3D::get_position, DEFVAL(0)); ClassDB::bind_method(D_METHOD("get_normal", "collision_index"), &KinematicCollision3D::get_normal, DEFVAL(0)); ClassDB::bind_method(D_METHOD("get_angle", "collision_index", "up_direction"), &KinematicCollision3D::get_angle, DEFVAL(0), DEFVAL(Vector3(0.0, 1.0, 0.0))); ClassDB::bind_method(D_METHOD("get_local_shape", "collision_index"), &KinematicCollision3D::get_local_shape, DEFVAL(0)); ClassDB::bind_method(D_METHOD("get_collider", "collision_index"), &KinematicCollision3D::get_collider, DEFVAL(0)); ClassDB::bind_method(D_METHOD("get_collider_id", "collision_index"), &KinematicCollision3D::get_collider_id, DEFVAL(0)); ClassDB::bind_method(D_METHOD("get_collider_rid", "collision_index"), &KinematicCollision3D::get_collider_rid, DEFVAL(0)); ClassDB::bind_method(D_METHOD("get_collider_shape", "collision_index"), &KinematicCollision3D::get_collider_shape, DEFVAL(0)); ClassDB::bind_method(D_METHOD("get_collider_shape_index", "collision_index"), &KinematicCollision3D::get_collider_shape_index, DEFVAL(0)); ClassDB::bind_method(D_METHOD("get_collider_velocity", "collision_index"), &KinematicCollision3D::get_collider_velocity, DEFVAL(0)); } /////////////////////////////////////// bool PhysicalBone3D::JointData::_set(const StringName &p_name, const Variant &p_value, RID j) { return false; } bool PhysicalBone3D::JointData::_get(const StringName &p_name, Variant &r_ret) const { return false; } void PhysicalBone3D::JointData::_get_property_list(List *p_list) const { } void PhysicalBone3D::apply_central_impulse(const Vector3 &p_impulse) { PhysicsServer3D::get_singleton()->body_apply_central_impulse(get_rid(), p_impulse); } void PhysicalBone3D::apply_impulse(const Vector3 &p_impulse, const Vector3 &p_position) { PhysicsServer3D::get_singleton()->body_apply_impulse(get_rid(), p_impulse, p_position); } void PhysicalBone3D::set_linear_velocity(const Vector3 &p_velocity) { linear_velocity = p_velocity; PhysicsServer3D::get_singleton()->body_set_state(get_rid(), PhysicsServer3D::BODY_STATE_LINEAR_VELOCITY, linear_velocity); } Vector3 PhysicalBone3D::get_linear_velocity() const { return linear_velocity; } void PhysicalBone3D::set_angular_velocity(const Vector3 &p_velocity) { angular_velocity = p_velocity; PhysicsServer3D::get_singleton()->body_set_state(get_rid(), PhysicsServer3D::BODY_STATE_ANGULAR_VELOCITY, angular_velocity); } Vector3 PhysicalBone3D::get_angular_velocity() const { return angular_velocity; } void PhysicalBone3D::set_use_custom_integrator(bool p_enable) { if (custom_integrator == p_enable) { return; } custom_integrator = p_enable; PhysicsServer3D::get_singleton()->body_set_omit_force_integration(get_rid(), p_enable); } bool PhysicalBone3D::is_using_custom_integrator() { return custom_integrator; } void PhysicalBone3D::reset_physics_simulation_state() { if (simulate_physics) { _start_physics_simulation(); } else { _stop_physics_simulation(); } } void PhysicalBone3D::reset_to_rest_position() { if (parent_skeleton) { if (-1 == bone_id) { set_global_transform(parent_skeleton->get_global_transform() * body_offset); } else { set_global_transform(parent_skeleton->get_global_transform() * parent_skeleton->get_bone_global_pose(bone_id) * body_offset); } } } bool PhysicalBone3D::PinJointData::_set(const StringName &p_name, const Variant &p_value, RID j) { if (JointData::_set(p_name, p_value, j)) { return true; } if ("joint_constraints/bias" == p_name) { bias = p_value; if (j.is_valid()) { PhysicsServer3D::get_singleton()->pin_joint_set_param(j, PhysicsServer3D::PIN_JOINT_BIAS, bias); } } else if ("joint_constraints/damping" == p_name) { damping = p_value; if (j.is_valid()) { PhysicsServer3D::get_singleton()->pin_joint_set_param(j, PhysicsServer3D::PIN_JOINT_DAMPING, damping); } } else if ("joint_constraints/impulse_clamp" == p_name) { impulse_clamp = p_value; if (j.is_valid()) { PhysicsServer3D::get_singleton()->pin_joint_set_param(j, PhysicsServer3D::PIN_JOINT_IMPULSE_CLAMP, impulse_clamp); } } else { return false; } return true; } bool PhysicalBone3D::PinJointData::_get(const StringName &p_name, Variant &r_ret) const { if (JointData::_get(p_name, r_ret)) { return true; } if ("joint_constraints/bias" == p_name) { r_ret = bias; } else if ("joint_constraints/damping" == p_name) { r_ret = damping; } else if ("joint_constraints/impulse_clamp" == p_name) { r_ret = impulse_clamp; } else { return false; } return true; } void PhysicalBone3D::PinJointData::_get_property_list(List *p_list) const { JointData::_get_property_list(p_list); p_list->push_back(PropertyInfo(Variant::FLOAT, PNAME("joint_constraints/bias"), PROPERTY_HINT_RANGE, "0.01,0.99,0.01")); p_list->push_back(PropertyInfo(Variant::FLOAT, PNAME("joint_constraints/damping"), PROPERTY_HINT_RANGE, "0.01,8.0,0.01")); p_list->push_back(PropertyInfo(Variant::FLOAT, PNAME("joint_constraints/impulse_clamp"), PROPERTY_HINT_RANGE, "0.0,64.0,0.01")); } bool PhysicalBone3D::ConeJointData::_set(const StringName &p_name, const Variant &p_value, RID j) { if (JointData::_set(p_name, p_value, j)) { return true; } if ("joint_constraints/swing_span" == p_name) { swing_span = Math::deg_to_rad(real_t(p_value)); if (j.is_valid()) { PhysicsServer3D::get_singleton()->cone_twist_joint_set_param(j, PhysicsServer3D::CONE_TWIST_JOINT_SWING_SPAN, swing_span); } } else if ("joint_constraints/twist_span" == p_name) { twist_span = Math::deg_to_rad(real_t(p_value)); if (j.is_valid()) { PhysicsServer3D::get_singleton()->cone_twist_joint_set_param(j, PhysicsServer3D::CONE_TWIST_JOINT_TWIST_SPAN, twist_span); } } else if ("joint_constraints/bias" == p_name) { bias = p_value; if (j.is_valid()) { PhysicsServer3D::get_singleton()->cone_twist_joint_set_param(j, PhysicsServer3D::CONE_TWIST_JOINT_BIAS, bias); } } else if ("joint_constraints/softness" == p_name) { softness = p_value; if (j.is_valid()) { PhysicsServer3D::get_singleton()->cone_twist_joint_set_param(j, PhysicsServer3D::CONE_TWIST_JOINT_SOFTNESS, softness); } } else if ("joint_constraints/relaxation" == p_name) { relaxation = p_value; if (j.is_valid()) { PhysicsServer3D::get_singleton()->cone_twist_joint_set_param(j, PhysicsServer3D::CONE_TWIST_JOINT_RELAXATION, relaxation); } } else { return false; } return true; } bool PhysicalBone3D::ConeJointData::_get(const StringName &p_name, Variant &r_ret) const { if (JointData::_get(p_name, r_ret)) { return true; } if ("joint_constraints/swing_span" == p_name) { r_ret = Math::rad_to_deg(swing_span); } else if ("joint_constraints/twist_span" == p_name) { r_ret = Math::rad_to_deg(twist_span); } else if ("joint_constraints/bias" == p_name) { r_ret = bias; } else if ("joint_constraints/softness" == p_name) { r_ret = softness; } else if ("joint_constraints/relaxation" == p_name) { r_ret = relaxation; } else { return false; } return true; } void PhysicalBone3D::ConeJointData::_get_property_list(List *p_list) const { JointData::_get_property_list(p_list); p_list->push_back(PropertyInfo(Variant::FLOAT, PNAME("joint_constraints/swing_span"), PROPERTY_HINT_RANGE, "-180,180,0.01")); p_list->push_back(PropertyInfo(Variant::FLOAT, PNAME("joint_constraints/twist_span"), PROPERTY_HINT_RANGE, "-40000,40000,0.1,or_less,or_greater")); p_list->push_back(PropertyInfo(Variant::FLOAT, PNAME("joint_constraints/bias"), PROPERTY_HINT_RANGE, "0.01,16.0,0.01")); p_list->push_back(PropertyInfo(Variant::FLOAT, PNAME("joint_constraints/softness"), PROPERTY_HINT_RANGE, "0.01,16.0,0.01")); p_list->push_back(PropertyInfo(Variant::FLOAT, PNAME("joint_constraints/relaxation"), PROPERTY_HINT_RANGE, "0.01,16.0,0.01")); } bool PhysicalBone3D::HingeJointData::_set(const StringName &p_name, const Variant &p_value, RID j) { if (JointData::_set(p_name, p_value, j)) { return true; } if ("joint_constraints/angular_limit_enabled" == p_name) { angular_limit_enabled = p_value; if (j.is_valid()) { PhysicsServer3D::get_singleton()->hinge_joint_set_flag(j, PhysicsServer3D::HINGE_JOINT_FLAG_USE_LIMIT, angular_limit_enabled); } } else if ("joint_constraints/angular_limit_upper" == p_name) { angular_limit_upper = Math::deg_to_rad(real_t(p_value)); if (j.is_valid()) { PhysicsServer3D::get_singleton()->hinge_joint_set_param(j, PhysicsServer3D::HINGE_JOINT_LIMIT_UPPER, angular_limit_upper); } } else if ("joint_constraints/angular_limit_lower" == p_name) { angular_limit_lower = Math::deg_to_rad(real_t(p_value)); if (j.is_valid()) { PhysicsServer3D::get_singleton()->hinge_joint_set_param(j, PhysicsServer3D::HINGE_JOINT_LIMIT_LOWER, angular_limit_lower); } } else if ("joint_constraints/angular_limit_bias" == p_name) { angular_limit_bias = p_value; if (j.is_valid()) { PhysicsServer3D::get_singleton()->hinge_joint_set_param(j, PhysicsServer3D::HINGE_JOINT_LIMIT_BIAS, angular_limit_bias); } } else if ("joint_constraints/angular_limit_softness" == p_name) { angular_limit_softness = p_value; if (j.is_valid()) { PhysicsServer3D::get_singleton()->hinge_joint_set_param(j, PhysicsServer3D::HINGE_JOINT_LIMIT_SOFTNESS, angular_limit_softness); } } else if ("joint_constraints/angular_limit_relaxation" == p_name) { angular_limit_relaxation = p_value; if (j.is_valid()) { PhysicsServer3D::get_singleton()->hinge_joint_set_param(j, PhysicsServer3D::HINGE_JOINT_LIMIT_RELAXATION, angular_limit_relaxation); } } else { return false; } return true; } bool PhysicalBone3D::HingeJointData::_get(const StringName &p_name, Variant &r_ret) const { if (JointData::_get(p_name, r_ret)) { return true; } if ("joint_constraints/angular_limit_enabled" == p_name) { r_ret = angular_limit_enabled; } else if ("joint_constraints/angular_limit_upper" == p_name) { r_ret = Math::rad_to_deg(angular_limit_upper); } else if ("joint_constraints/angular_limit_lower" == p_name) { r_ret = Math::rad_to_deg(angular_limit_lower); } else if ("joint_constraints/angular_limit_bias" == p_name) { r_ret = angular_limit_bias; } else if ("joint_constraints/angular_limit_softness" == p_name) { r_ret = angular_limit_softness; } else if ("joint_constraints/angular_limit_relaxation" == p_name) { r_ret = angular_limit_relaxation; } else { return false; } return true; } void PhysicalBone3D::HingeJointData::_get_property_list(List *p_list) const { JointData::_get_property_list(p_list); p_list->push_back(PropertyInfo(Variant::BOOL, PNAME("joint_constraints/angular_limit_enabled"))); p_list->push_back(PropertyInfo(Variant::FLOAT, PNAME("joint_constraints/angular_limit_upper"), PROPERTY_HINT_RANGE, "-180,180,0.01")); p_list->push_back(PropertyInfo(Variant::FLOAT, PNAME("joint_constraints/angular_limit_lower"), PROPERTY_HINT_RANGE, "-180,180,0.01")); p_list->push_back(PropertyInfo(Variant::FLOAT, PNAME("joint_constraints/angular_limit_bias"), PROPERTY_HINT_RANGE, "0.01,0.99,0.01")); p_list->push_back(PropertyInfo(Variant::FLOAT, PNAME("joint_constraints/angular_limit_softness"), PROPERTY_HINT_RANGE, "0.01,16,0.01")); p_list->push_back(PropertyInfo(Variant::FLOAT, PNAME("joint_constraints/angular_limit_relaxation"), PROPERTY_HINT_RANGE, "0.01,16,0.01")); } bool PhysicalBone3D::SliderJointData::_set(const StringName &p_name, const Variant &p_value, RID j) { if (JointData::_set(p_name, p_value, j)) { return true; } if ("joint_constraints/linear_limit_upper" == p_name) { linear_limit_upper = p_value; if (j.is_valid()) { PhysicsServer3D::get_singleton()->slider_joint_set_param(j, PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_UPPER, linear_limit_upper); } } else if ("joint_constraints/linear_limit_lower" == p_name) { linear_limit_lower = p_value; if (j.is_valid()) { PhysicsServer3D::get_singleton()->slider_joint_set_param(j, PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_LOWER, linear_limit_lower); } } else if ("joint_constraints/linear_limit_softness" == p_name) { linear_limit_softness = p_value; if (j.is_valid()) { PhysicsServer3D::get_singleton()->slider_joint_set_param(j, PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_SOFTNESS, linear_limit_softness); } } else if ("joint_constraints/linear_limit_restitution" == p_name) { linear_limit_restitution = p_value; if (j.is_valid()) { PhysicsServer3D::get_singleton()->slider_joint_set_param(j, PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_RESTITUTION, linear_limit_restitution); } } else if ("joint_constraints/linear_limit_damping" == p_name) { linear_limit_damping = p_value; if (j.is_valid()) { PhysicsServer3D::get_singleton()->slider_joint_set_param(j, PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_DAMPING, linear_limit_restitution); } } else if ("joint_constraints/angular_limit_upper" == p_name) { angular_limit_upper = Math::deg_to_rad(real_t(p_value)); if (j.is_valid()) { PhysicsServer3D::get_singleton()->slider_joint_set_param(j, PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_UPPER, angular_limit_upper); } } else if ("joint_constraints/angular_limit_lower" == p_name) { angular_limit_lower = Math::deg_to_rad(real_t(p_value)); if (j.is_valid()) { PhysicsServer3D::get_singleton()->slider_joint_set_param(j, PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_LOWER, angular_limit_lower); } } else if ("joint_constraints/angular_limit_softness" == p_name) { angular_limit_softness = p_value; if (j.is_valid()) { PhysicsServer3D::get_singleton()->slider_joint_set_param(j, PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_SOFTNESS, angular_limit_softness); } } else if ("joint_constraints/angular_limit_restitution" == p_name) { angular_limit_restitution = p_value; if (j.is_valid()) { PhysicsServer3D::get_singleton()->slider_joint_set_param(j, PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_SOFTNESS, angular_limit_softness); } } else if ("joint_constraints/angular_limit_damping" == p_name) { angular_limit_damping = p_value; if (j.is_valid()) { PhysicsServer3D::get_singleton()->slider_joint_set_param(j, PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_DAMPING, angular_limit_damping); } } else { return false; } return true; } bool PhysicalBone3D::SliderJointData::_get(const StringName &p_name, Variant &r_ret) const { if (JointData::_get(p_name, r_ret)) { return true; } if ("joint_constraints/linear_limit_upper" == p_name) { r_ret = linear_limit_upper; } else if ("joint_constraints/linear_limit_lower" == p_name) { r_ret = linear_limit_lower; } else if ("joint_constraints/linear_limit_softness" == p_name) { r_ret = linear_limit_softness; } else if ("joint_constraints/linear_limit_restitution" == p_name) { r_ret = linear_limit_restitution; } else if ("joint_constraints/linear_limit_damping" == p_name) { r_ret = linear_limit_damping; } else if ("joint_constraints/angular_limit_upper" == p_name) { r_ret = Math::rad_to_deg(angular_limit_upper); } else if ("joint_constraints/angular_limit_lower" == p_name) { r_ret = Math::rad_to_deg(angular_limit_lower); } else if ("joint_constraints/angular_limit_softness" == p_name) { r_ret = angular_limit_softness; } else if ("joint_constraints/angular_limit_restitution" == p_name) { r_ret = angular_limit_restitution; } else if ("joint_constraints/angular_limit_damping" == p_name) { r_ret = angular_limit_damping; } else { return false; } return true; } void PhysicalBone3D::SliderJointData::_get_property_list(List *p_list) const { JointData::_get_property_list(p_list); p_list->push_back(PropertyInfo(Variant::FLOAT, PNAME("joint_constraints/linear_limit_upper"))); p_list->push_back(PropertyInfo(Variant::FLOAT, PNAME("joint_constraints/linear_limit_lower"))); p_list->push_back(PropertyInfo(Variant::FLOAT, PNAME("joint_constraints/linear_limit_softness"), PROPERTY_HINT_RANGE, "0.01,16.0,0.01")); p_list->push_back(PropertyInfo(Variant::FLOAT, PNAME("joint_constraints/linear_limit_restitution"), PROPERTY_HINT_RANGE, "0.01,16.0,0.01")); p_list->push_back(PropertyInfo(Variant::FLOAT, PNAME("joint_constraints/linear_limit_damping"), PROPERTY_HINT_RANGE, "0,16.0,0.01")); p_list->push_back(PropertyInfo(Variant::FLOAT, PNAME("joint_constraints/angular_limit_upper"), PROPERTY_HINT_RANGE, "-180,180,0.01")); p_list->push_back(PropertyInfo(Variant::FLOAT, PNAME("joint_constraints/angular_limit_lower"), PROPERTY_HINT_RANGE, "-180,180,0.01")); p_list->push_back(PropertyInfo(Variant::FLOAT, PNAME("joint_constraints/angular_limit_softness"), PROPERTY_HINT_RANGE, "0.01,16.0,0.01")); p_list->push_back(PropertyInfo(Variant::FLOAT, PNAME("joint_constraints/angular_limit_restitution"), PROPERTY_HINT_RANGE, "0.01,16.0,0.01")); p_list->push_back(PropertyInfo(Variant::FLOAT, PNAME("joint_constraints/angular_limit_damping"), PROPERTY_HINT_RANGE, "0,16.0,0.01")); } bool PhysicalBone3D::SixDOFJointData::_set(const StringName &p_name, const Variant &p_value, RID j) { if (JointData::_set(p_name, p_value, j)) { return true; } String path = p_name; if (!path.begins_with("joint_constraints/")) { return false; } Vector3::Axis axis; { const String axis_s = path.get_slicec('/', 1); if ("x" == axis_s) { axis = Vector3::AXIS_X; } else if ("y" == axis_s) { axis = Vector3::AXIS_Y; } else if ("z" == axis_s) { axis = Vector3::AXIS_Z; } else { return false; } } String var_name = path.get_slicec('/', 2); if ("linear_limit_enabled" == var_name) { axis_data[axis].linear_limit_enabled = p_value; if (j.is_valid()) { PhysicsServer3D::get_singleton()->generic_6dof_joint_set_flag(j, axis, PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_LINEAR_LIMIT, axis_data[axis].linear_limit_enabled); } } else if ("linear_limit_upper" == var_name) { axis_data[axis].linear_limit_upper = p_value; if (j.is_valid()) { PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer3D::G6DOF_JOINT_LINEAR_UPPER_LIMIT, axis_data[axis].linear_limit_upper); } } else if ("linear_limit_lower" == var_name) { axis_data[axis].linear_limit_lower = p_value; if (j.is_valid()) { PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer3D::G6DOF_JOINT_LINEAR_LOWER_LIMIT, axis_data[axis].linear_limit_lower); } } else if ("linear_limit_softness" == var_name) { axis_data[axis].linear_limit_softness = p_value; if (j.is_valid()) { PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer3D::G6DOF_JOINT_LINEAR_LIMIT_SOFTNESS, axis_data[axis].linear_limit_softness); } } else if ("linear_spring_enabled" == var_name) { axis_data[axis].linear_spring_enabled = p_value; if (j.is_valid()) { PhysicsServer3D::get_singleton()->generic_6dof_joint_set_flag(j, axis, PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_LINEAR_SPRING, axis_data[axis].linear_spring_enabled); } } else if ("linear_spring_stiffness" == var_name) { axis_data[axis].linear_spring_stiffness = p_value; if (j.is_valid()) { PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer3D::G6DOF_JOINT_LINEAR_SPRING_STIFFNESS, axis_data[axis].linear_spring_stiffness); } } else if ("linear_spring_damping" == var_name) { axis_data[axis].linear_spring_damping = p_value; if (j.is_valid()) { PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer3D::G6DOF_JOINT_LINEAR_SPRING_DAMPING, axis_data[axis].linear_spring_damping); } } else if ("linear_equilibrium_point" == var_name) { axis_data[axis].linear_equilibrium_point = p_value; if (j.is_valid()) { PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer3D::G6DOF_JOINT_LINEAR_SPRING_EQUILIBRIUM_POINT, axis_data[axis].linear_equilibrium_point); } } else if ("linear_restitution" == var_name) { axis_data[axis].linear_restitution = p_value; if (j.is_valid()) { PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer3D::G6DOF_JOINT_LINEAR_RESTITUTION, axis_data[axis].linear_restitution); } } else if ("linear_damping" == var_name) { axis_data[axis].linear_damping = p_value; if (j.is_valid()) { PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer3D::G6DOF_JOINT_LINEAR_DAMPING, axis_data[axis].linear_damping); } } else if ("angular_limit_enabled" == var_name) { axis_data[axis].angular_limit_enabled = p_value; if (j.is_valid()) { PhysicsServer3D::get_singleton()->generic_6dof_joint_set_flag(j, axis, PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_ANGULAR_LIMIT, axis_data[axis].angular_limit_enabled); } } else if ("angular_limit_upper" == var_name) { axis_data[axis].angular_limit_upper = Math::deg_to_rad(real_t(p_value)); if (j.is_valid()) { PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer3D::G6DOF_JOINT_ANGULAR_UPPER_LIMIT, axis_data[axis].angular_limit_upper); } } else if ("angular_limit_lower" == var_name) { axis_data[axis].angular_limit_lower = Math::deg_to_rad(real_t(p_value)); if (j.is_valid()) { PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer3D::G6DOF_JOINT_ANGULAR_LOWER_LIMIT, axis_data[axis].angular_limit_lower); } } else if ("angular_limit_softness" == var_name) { axis_data[axis].angular_limit_softness = p_value; if (j.is_valid()) { PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer3D::G6DOF_JOINT_ANGULAR_LIMIT_SOFTNESS, axis_data[axis].angular_limit_softness); } } else if ("angular_restitution" == var_name) { axis_data[axis].angular_restitution = p_value; if (j.is_valid()) { PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer3D::G6DOF_JOINT_ANGULAR_RESTITUTION, axis_data[axis].angular_restitution); } } else if ("angular_damping" == var_name) { axis_data[axis].angular_damping = p_value; if (j.is_valid()) { PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer3D::G6DOF_JOINT_ANGULAR_DAMPING, axis_data[axis].angular_damping); } } else if ("erp" == var_name) { axis_data[axis].erp = p_value; if (j.is_valid()) { PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer3D::G6DOF_JOINT_ANGULAR_ERP, axis_data[axis].erp); } } else if ("angular_spring_enabled" == var_name) { axis_data[axis].angular_spring_enabled = p_value; if (j.is_valid()) { PhysicsServer3D::get_singleton()->generic_6dof_joint_set_flag(j, axis, PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_ANGULAR_SPRING, axis_data[axis].angular_spring_enabled); } } else if ("angular_spring_stiffness" == var_name) { axis_data[axis].angular_spring_stiffness = p_value; if (j.is_valid()) { PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer3D::G6DOF_JOINT_ANGULAR_SPRING_STIFFNESS, axis_data[axis].angular_spring_stiffness); } } else if ("angular_spring_damping" == var_name) { axis_data[axis].angular_spring_damping = p_value; if (j.is_valid()) { PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer3D::G6DOF_JOINT_ANGULAR_SPRING_DAMPING, axis_data[axis].angular_spring_damping); } } else if ("angular_equilibrium_point" == var_name) { axis_data[axis].angular_equilibrium_point = p_value; if (j.is_valid()) { PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer3D::G6DOF_JOINT_ANGULAR_SPRING_EQUILIBRIUM_POINT, axis_data[axis].angular_equilibrium_point); } } else { return false; } return true; } bool PhysicalBone3D::SixDOFJointData::_get(const StringName &p_name, Variant &r_ret) const { if (JointData::_get(p_name, r_ret)) { return true; } String path = p_name; if (!path.begins_with("joint_constraints/")) { return false; } int axis; { const String axis_s = path.get_slicec('/', 1); if ("x" == axis_s) { axis = 0; } else if ("y" == axis_s) { axis = 1; } else if ("z" == axis_s) { axis = 2; } else { return false; } } String var_name = path.get_slicec('/', 2); if ("linear_limit_enabled" == var_name) { r_ret = axis_data[axis].linear_limit_enabled; } else if ("linear_limit_upper" == var_name) { r_ret = axis_data[axis].linear_limit_upper; } else if ("linear_limit_lower" == var_name) { r_ret = axis_data[axis].linear_limit_lower; } else if ("linear_limit_softness" == var_name) { r_ret = axis_data[axis].linear_limit_softness; } else if ("linear_spring_enabled" == var_name) { r_ret = axis_data[axis].linear_spring_enabled; } else if ("linear_spring_stiffness" == var_name) { r_ret = axis_data[axis].linear_spring_stiffness; } else if ("linear_spring_damping" == var_name) { r_ret = axis_data[axis].linear_spring_damping; } else if ("linear_equilibrium_point" == var_name) { r_ret = axis_data[axis].linear_equilibrium_point; } else if ("linear_restitution" == var_name) { r_ret = axis_data[axis].linear_restitution; } else if ("linear_damping" == var_name) { r_ret = axis_data[axis].linear_damping; } else if ("angular_limit_enabled" == var_name) { r_ret = axis_data[axis].angular_limit_enabled; } else if ("angular_limit_upper" == var_name) { r_ret = Math::rad_to_deg(axis_data[axis].angular_limit_upper); } else if ("angular_limit_lower" == var_name) { r_ret = Math::rad_to_deg(axis_data[axis].angular_limit_lower); } else if ("angular_limit_softness" == var_name) { r_ret = axis_data[axis].angular_limit_softness; } else if ("angular_restitution" == var_name) { r_ret = axis_data[axis].angular_restitution; } else if ("angular_damping" == var_name) { r_ret = axis_data[axis].angular_damping; } else if ("erp" == var_name) { r_ret = axis_data[axis].erp; } else if ("angular_spring_enabled" == var_name) { r_ret = axis_data[axis].angular_spring_enabled; } else if ("angular_spring_stiffness" == var_name) { r_ret = axis_data[axis].angular_spring_stiffness; } else if ("angular_spring_damping" == var_name) { r_ret = axis_data[axis].angular_spring_damping; } else if ("angular_equilibrium_point" == var_name) { r_ret = axis_data[axis].angular_equilibrium_point; } else { return false; } return true; } void PhysicalBone3D::SixDOFJointData::_get_property_list(List *p_list) const { const StringName axis_names[] = { PNAME("x"), PNAME("y"), PNAME("z") }; for (int i = 0; i < 3; ++i) { const String prefix = vformat("%s/%s/", PNAME("joint_constraints"), axis_names[i]); p_list->push_back(PropertyInfo(Variant::BOOL, prefix + PNAME("linear_limit_enabled"))); p_list->push_back(PropertyInfo(Variant::FLOAT, prefix + PNAME("linear_limit_upper"))); p_list->push_back(PropertyInfo(Variant::FLOAT, prefix + PNAME("linear_limit_lower"))); p_list->push_back(PropertyInfo(Variant::FLOAT, prefix + PNAME("linear_limit_softness"), PROPERTY_HINT_RANGE, "0.01,16,0.01")); p_list->push_back(PropertyInfo(Variant::BOOL, prefix + PNAME("linear_spring_enabled"))); p_list->push_back(PropertyInfo(Variant::FLOAT, prefix + PNAME("linear_spring_stiffness"))); p_list->push_back(PropertyInfo(Variant::FLOAT, prefix + PNAME("linear_spring_damping"))); p_list->push_back(PropertyInfo(Variant::FLOAT, prefix + PNAME("linear_equilibrium_point"))); p_list->push_back(PropertyInfo(Variant::FLOAT, prefix + PNAME("linear_restitution"), PROPERTY_HINT_RANGE, "0.01,16,0.01")); p_list->push_back(PropertyInfo(Variant::FLOAT, prefix + PNAME("linear_damping"), PROPERTY_HINT_RANGE, "0.01,16,0.01")); p_list->push_back(PropertyInfo(Variant::BOOL, prefix + PNAME("angular_limit_enabled"))); p_list->push_back(PropertyInfo(Variant::FLOAT, prefix + PNAME("angular_limit_upper"), PROPERTY_HINT_RANGE, "-180,180,0.01")); p_list->push_back(PropertyInfo(Variant::FLOAT, prefix + PNAME("angular_limit_lower"), PROPERTY_HINT_RANGE, "-180,180,0.01")); p_list->push_back(PropertyInfo(Variant::FLOAT, prefix + PNAME("angular_limit_softness"), PROPERTY_HINT_RANGE, "0.01,16,0.01")); p_list->push_back(PropertyInfo(Variant::FLOAT, prefix + PNAME("angular_restitution"), PROPERTY_HINT_RANGE, "0.01,16,0.01")); p_list->push_back(PropertyInfo(Variant::FLOAT, prefix + PNAME("angular_damping"), PROPERTY_HINT_RANGE, "0.01,16,0.01")); p_list->push_back(PropertyInfo(Variant::FLOAT, prefix + PNAME("erp"))); p_list->push_back(PropertyInfo(Variant::BOOL, prefix + PNAME("angular_spring_enabled"))); p_list->push_back(PropertyInfo(Variant::FLOAT, prefix + PNAME("angular_spring_stiffness"))); p_list->push_back(PropertyInfo(Variant::FLOAT, prefix + PNAME("angular_spring_damping"))); p_list->push_back(PropertyInfo(Variant::FLOAT, prefix + PNAME("angular_equilibrium_point"))); } } bool PhysicalBone3D::_set(const StringName &p_name, const Variant &p_value) { if (p_name == "bone_name") { set_bone_name(p_value); return true; } if (joint_data) { if (joint_data->_set(p_name, p_value, joint)) { #ifdef TOOLS_ENABLED update_gizmos(); #endif return true; } } return false; } bool PhysicalBone3D::_get(const StringName &p_name, Variant &r_ret) const { if (p_name == "bone_name") { r_ret = get_bone_name(); return true; } if (joint_data) { return joint_data->_get(p_name, r_ret); } return false; } void PhysicalBone3D::_get_property_list(List *p_list) const { Skeleton3D *parent = find_skeleton_parent(get_parent()); if (parent) { String names; for (int i = 0; i < parent->get_bone_count(); i++) { if (i > 0) { names += ","; } names += parent->get_bone_name(i); } p_list->push_back(PropertyInfo(Variant::STRING_NAME, PNAME("bone_name"), PROPERTY_HINT_ENUM, names)); } else { p_list->push_back(PropertyInfo(Variant::STRING_NAME, PNAME("bone_name"))); } if (joint_data) { joint_data->_get_property_list(p_list); } } void PhysicalBone3D::_notification(int p_what) { switch (p_what) { case NOTIFICATION_ENTER_TREE: parent_skeleton = find_skeleton_parent(get_parent()); update_bone_id(); reset_to_rest_position(); reset_physics_simulation_state(); if (joint_data) { _reload_joint(); } break; case NOTIFICATION_EXIT_TREE: { if (parent_skeleton) { if (-1 != bone_id) { parent_skeleton->unbind_physical_bone_from_bone(bone_id); bone_id = -1; } } parent_skeleton = nullptr; PhysicsServer3D::get_singleton()->joint_clear(joint); } break; case NOTIFICATION_TRANSFORM_CHANGED: { if (Engine::get_singleton()->is_editor_hint()) { update_offset(); } } break; } } void PhysicalBone3D::_body_state_changed(PhysicsDirectBodyState3D *p_state) { if (!simulate_physics || !_internal_simulate_physics) { return; } linear_velocity = p_state->get_linear_velocity(); angular_velocity = p_state->get_angular_velocity(); GDVIRTUAL_CALL(_integrate_forces, p_state); /// Update bone transform. Transform3D global_transform(p_state->get_transform()); set_ignore_transform_notification(true); set_global_transform(global_transform); set_ignore_transform_notification(false); _on_transform_changed(); // Update skeleton if (parent_skeleton) { if (-1 != bone_id) { parent_skeleton->set_bone_global_pose_override(bone_id, parent_skeleton->get_global_transform().affine_inverse() * (global_transform * body_offset_inverse), 1.0, true); } } } void PhysicalBone3D::_bind_methods() { ClassDB::bind_method(D_METHOD("apply_central_impulse", "impulse"), &PhysicalBone3D::apply_central_impulse); ClassDB::bind_method(D_METHOD("apply_impulse", "impulse", "position"), &PhysicalBone3D::apply_impulse, Vector3()); ClassDB::bind_method(D_METHOD("set_joint_type", "joint_type"), &PhysicalBone3D::set_joint_type); ClassDB::bind_method(D_METHOD("get_joint_type"), &PhysicalBone3D::get_joint_type); ClassDB::bind_method(D_METHOD("set_joint_offset", "offset"), &PhysicalBone3D::set_joint_offset); ClassDB::bind_method(D_METHOD("get_joint_offset"), &PhysicalBone3D::get_joint_offset); ClassDB::bind_method(D_METHOD("set_joint_rotation", "euler"), &PhysicalBone3D::set_joint_rotation); ClassDB::bind_method(D_METHOD("get_joint_rotation"), &PhysicalBone3D::get_joint_rotation); ClassDB::bind_method(D_METHOD("set_body_offset", "offset"), &PhysicalBone3D::set_body_offset); ClassDB::bind_method(D_METHOD("get_body_offset"), &PhysicalBone3D::get_body_offset); ClassDB::bind_method(D_METHOD("get_simulate_physics"), &PhysicalBone3D::get_simulate_physics); ClassDB::bind_method(D_METHOD("is_simulating_physics"), &PhysicalBone3D::is_simulating_physics); ClassDB::bind_method(D_METHOD("get_bone_id"), &PhysicalBone3D::get_bone_id); ClassDB::bind_method(D_METHOD("set_mass", "mass"), &PhysicalBone3D::set_mass); ClassDB::bind_method(D_METHOD("get_mass"), &PhysicalBone3D::get_mass); ClassDB::bind_method(D_METHOD("set_friction", "friction"), &PhysicalBone3D::set_friction); ClassDB::bind_method(D_METHOD("get_friction"), &PhysicalBone3D::get_friction); ClassDB::bind_method(D_METHOD("set_bounce", "bounce"), &PhysicalBone3D::set_bounce); ClassDB::bind_method(D_METHOD("get_bounce"), &PhysicalBone3D::get_bounce); ClassDB::bind_method(D_METHOD("set_gravity_scale", "gravity_scale"), &PhysicalBone3D::set_gravity_scale); ClassDB::bind_method(D_METHOD("get_gravity_scale"), &PhysicalBone3D::get_gravity_scale); ClassDB::bind_method(D_METHOD("set_linear_damp_mode", "linear_damp_mode"), &PhysicalBone3D::set_linear_damp_mode); ClassDB::bind_method(D_METHOD("get_linear_damp_mode"), &PhysicalBone3D::get_linear_damp_mode); ClassDB::bind_method(D_METHOD("set_angular_damp_mode", "angular_damp_mode"), &PhysicalBone3D::set_angular_damp_mode); ClassDB::bind_method(D_METHOD("get_angular_damp_mode"), &PhysicalBone3D::get_angular_damp_mode); ClassDB::bind_method(D_METHOD("set_linear_damp", "linear_damp"), &PhysicalBone3D::set_linear_damp); ClassDB::bind_method(D_METHOD("get_linear_damp"), &PhysicalBone3D::get_linear_damp); ClassDB::bind_method(D_METHOD("set_angular_damp", "angular_damp"), &PhysicalBone3D::set_angular_damp); ClassDB::bind_method(D_METHOD("get_angular_damp"), &PhysicalBone3D::get_angular_damp); ClassDB::bind_method(D_METHOD("set_linear_velocity", "linear_velocity"), &PhysicalBone3D::set_linear_velocity); ClassDB::bind_method(D_METHOD("get_linear_velocity"), &PhysicalBone3D::get_linear_velocity); ClassDB::bind_method(D_METHOD("set_angular_velocity", "angular_velocity"), &PhysicalBone3D::set_angular_velocity); ClassDB::bind_method(D_METHOD("get_angular_velocity"), &PhysicalBone3D::get_angular_velocity); ClassDB::bind_method(D_METHOD("set_use_custom_integrator", "enable"), &PhysicalBone3D::set_use_custom_integrator); ClassDB::bind_method(D_METHOD("is_using_custom_integrator"), &PhysicalBone3D::is_using_custom_integrator); ClassDB::bind_method(D_METHOD("set_can_sleep", "able_to_sleep"), &PhysicalBone3D::set_can_sleep); ClassDB::bind_method(D_METHOD("is_able_to_sleep"), &PhysicalBone3D::is_able_to_sleep); GDVIRTUAL_BIND(_integrate_forces, "state"); ADD_GROUP("Joint", "joint_"); ADD_PROPERTY(PropertyInfo(Variant::INT, "joint_type", PROPERTY_HINT_ENUM, "None,PinJoint,ConeJoint,HingeJoint,SliderJoint,6DOFJoint"), "set_joint_type", "get_joint_type"); ADD_PROPERTY(PropertyInfo(Variant::TRANSFORM3D, "joint_offset", PROPERTY_HINT_NONE, "suffix:m"), "set_joint_offset", "get_joint_offset"); ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "joint_rotation", PROPERTY_HINT_RANGE, "-360,360,0.01,or_less,or_greater,radians"), "set_joint_rotation", "get_joint_rotation"); ADD_PROPERTY(PropertyInfo(Variant::TRANSFORM3D, "body_offset", PROPERTY_HINT_NONE, "suffix:m"), "set_body_offset", "get_body_offset"); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "mass", PROPERTY_HINT_RANGE, "0.01,1000,0.01,or_greater,exp,suffix:kg"), "set_mass", "get_mass"); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "friction", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_friction", "get_friction"); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "bounce", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_bounce", "get_bounce"); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "gravity_scale", PROPERTY_HINT_RANGE, "-10,10,0.01"), "set_gravity_scale", "get_gravity_scale"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "custom_integrator"), "set_use_custom_integrator", "is_using_custom_integrator"); ADD_PROPERTY(PropertyInfo(Variant::INT, "linear_damp_mode", PROPERTY_HINT_ENUM, "Combine,Replace"), "set_linear_damp_mode", "get_linear_damp_mode"); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "linear_damp", PROPERTY_HINT_RANGE, "0,100,0.001,or_greater"), "set_linear_damp", "get_linear_damp"); ADD_PROPERTY(PropertyInfo(Variant::INT, "angular_damp_mode", PROPERTY_HINT_ENUM, "Combine,Replace"), "set_angular_damp_mode", "get_angular_damp_mode"); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "angular_damp", PROPERTY_HINT_RANGE, "0,100,0.001,or_greater"), "set_angular_damp", "get_angular_damp"); ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "linear_velocity", PROPERTY_HINT_NONE, "suffix:m/s"), "set_linear_velocity", "get_linear_velocity"); ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "angular_velocity", PROPERTY_HINT_NONE, U"radians,suffix:\u00B0/s"), "set_angular_velocity", "get_angular_velocity"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "can_sleep"), "set_can_sleep", "is_able_to_sleep"); BIND_ENUM_CONSTANT(DAMP_MODE_COMBINE); BIND_ENUM_CONSTANT(DAMP_MODE_REPLACE); BIND_ENUM_CONSTANT(JOINT_TYPE_NONE); BIND_ENUM_CONSTANT(JOINT_TYPE_PIN); BIND_ENUM_CONSTANT(JOINT_TYPE_CONE); BIND_ENUM_CONSTANT(JOINT_TYPE_HINGE); BIND_ENUM_CONSTANT(JOINT_TYPE_SLIDER); BIND_ENUM_CONSTANT(JOINT_TYPE_6DOF); } Skeleton3D *PhysicalBone3D::find_skeleton_parent(Node *p_parent) { if (!p_parent) { return nullptr; } Skeleton3D *s = Object::cast_to(p_parent); return s ? s : find_skeleton_parent(p_parent->get_parent()); } void PhysicalBone3D::_update_joint_offset() { _fix_joint_offset(); set_ignore_transform_notification(true); reset_to_rest_position(); set_ignore_transform_notification(false); #ifdef TOOLS_ENABLED update_gizmos(); #endif } void PhysicalBone3D::_fix_joint_offset() { // Clamp joint origin to bone origin if (parent_skeleton) { joint_offset.origin = body_offset.affine_inverse().origin; } } void PhysicalBone3D::_reload_joint() { if (!parent_skeleton) { PhysicsServer3D::get_singleton()->joint_clear(joint); return; } PhysicalBone3D *body_a = parent_skeleton->get_physical_bone_parent(bone_id); if (!body_a) { PhysicsServer3D::get_singleton()->joint_clear(joint); return; } Transform3D joint_transf = get_global_transform() * joint_offset; Transform3D local_a = body_a->get_global_transform().affine_inverse() * joint_transf; local_a.orthonormalize(); switch (get_joint_type()) { case JOINT_TYPE_PIN: { PhysicsServer3D::get_singleton()->joint_make_pin(joint, body_a->get_rid(), local_a.origin, get_rid(), joint_offset.origin); const PinJointData *pjd(static_cast(joint_data)); PhysicsServer3D::get_singleton()->pin_joint_set_param(joint, PhysicsServer3D::PIN_JOINT_BIAS, pjd->bias); PhysicsServer3D::get_singleton()->pin_joint_set_param(joint, PhysicsServer3D::PIN_JOINT_DAMPING, pjd->damping); PhysicsServer3D::get_singleton()->pin_joint_set_param(joint, PhysicsServer3D::PIN_JOINT_IMPULSE_CLAMP, pjd->impulse_clamp); } break; case JOINT_TYPE_CONE: { PhysicsServer3D::get_singleton()->joint_make_cone_twist(joint, body_a->get_rid(), local_a, get_rid(), joint_offset); const ConeJointData *cjd(static_cast(joint_data)); PhysicsServer3D::get_singleton()->cone_twist_joint_set_param(joint, PhysicsServer3D::CONE_TWIST_JOINT_SWING_SPAN, cjd->swing_span); PhysicsServer3D::get_singleton()->cone_twist_joint_set_param(joint, PhysicsServer3D::CONE_TWIST_JOINT_TWIST_SPAN, cjd->twist_span); PhysicsServer3D::get_singleton()->cone_twist_joint_set_param(joint, PhysicsServer3D::CONE_TWIST_JOINT_BIAS, cjd->bias); PhysicsServer3D::get_singleton()->cone_twist_joint_set_param(joint, PhysicsServer3D::CONE_TWIST_JOINT_SOFTNESS, cjd->softness); PhysicsServer3D::get_singleton()->cone_twist_joint_set_param(joint, PhysicsServer3D::CONE_TWIST_JOINT_RELAXATION, cjd->relaxation); } break; case JOINT_TYPE_HINGE: { PhysicsServer3D::get_singleton()->joint_make_hinge(joint, body_a->get_rid(), local_a, get_rid(), joint_offset); const HingeJointData *hjd(static_cast(joint_data)); PhysicsServer3D::get_singleton()->hinge_joint_set_flag(joint, PhysicsServer3D::HINGE_JOINT_FLAG_USE_LIMIT, hjd->angular_limit_enabled); PhysicsServer3D::get_singleton()->hinge_joint_set_param(joint, PhysicsServer3D::HINGE_JOINT_LIMIT_UPPER, hjd->angular_limit_upper); PhysicsServer3D::get_singleton()->hinge_joint_set_param(joint, PhysicsServer3D::HINGE_JOINT_LIMIT_LOWER, hjd->angular_limit_lower); PhysicsServer3D::get_singleton()->hinge_joint_set_param(joint, PhysicsServer3D::HINGE_JOINT_LIMIT_BIAS, hjd->angular_limit_bias); PhysicsServer3D::get_singleton()->hinge_joint_set_param(joint, PhysicsServer3D::HINGE_JOINT_LIMIT_SOFTNESS, hjd->angular_limit_softness); PhysicsServer3D::get_singleton()->hinge_joint_set_param(joint, PhysicsServer3D::HINGE_JOINT_LIMIT_RELAXATION, hjd->angular_limit_relaxation); } break; case JOINT_TYPE_SLIDER: { PhysicsServer3D::get_singleton()->joint_make_slider(joint, body_a->get_rid(), local_a, get_rid(), joint_offset); const SliderJointData *sjd(static_cast(joint_data)); PhysicsServer3D::get_singleton()->slider_joint_set_param(joint, PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_UPPER, sjd->linear_limit_upper); PhysicsServer3D::get_singleton()->slider_joint_set_param(joint, PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_LOWER, sjd->linear_limit_lower); PhysicsServer3D::get_singleton()->slider_joint_set_param(joint, PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_SOFTNESS, sjd->linear_limit_softness); PhysicsServer3D::get_singleton()->slider_joint_set_param(joint, PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_RESTITUTION, sjd->linear_limit_restitution); PhysicsServer3D::get_singleton()->slider_joint_set_param(joint, PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_DAMPING, sjd->linear_limit_restitution); PhysicsServer3D::get_singleton()->slider_joint_set_param(joint, PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_UPPER, sjd->angular_limit_upper); PhysicsServer3D::get_singleton()->slider_joint_set_param(joint, PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_LOWER, sjd->angular_limit_lower); PhysicsServer3D::get_singleton()->slider_joint_set_param(joint, PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_SOFTNESS, sjd->angular_limit_softness); PhysicsServer3D::get_singleton()->slider_joint_set_param(joint, PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_SOFTNESS, sjd->angular_limit_softness); PhysicsServer3D::get_singleton()->slider_joint_set_param(joint, PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_DAMPING, sjd->angular_limit_damping); } break; case JOINT_TYPE_6DOF: { PhysicsServer3D::get_singleton()->joint_make_generic_6dof(joint, body_a->get_rid(), local_a, get_rid(), joint_offset); const SixDOFJointData *g6dofjd(static_cast(joint_data)); for (int axis = 0; axis < 3; ++axis) { PhysicsServer3D::get_singleton()->generic_6dof_joint_set_flag(joint, static_cast(axis), PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_LINEAR_LIMIT, g6dofjd->axis_data[axis].linear_limit_enabled); PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(joint, static_cast(axis), PhysicsServer3D::G6DOF_JOINT_LINEAR_UPPER_LIMIT, g6dofjd->axis_data[axis].linear_limit_upper); PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(joint, static_cast(axis), PhysicsServer3D::G6DOF_JOINT_LINEAR_LOWER_LIMIT, g6dofjd->axis_data[axis].linear_limit_lower); PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(joint, static_cast(axis), PhysicsServer3D::G6DOF_JOINT_LINEAR_LIMIT_SOFTNESS, g6dofjd->axis_data[axis].linear_limit_softness); PhysicsServer3D::get_singleton()->generic_6dof_joint_set_flag(joint, static_cast(axis), PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_LINEAR_SPRING, g6dofjd->axis_data[axis].linear_spring_enabled); PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(joint, static_cast(axis), PhysicsServer3D::G6DOF_JOINT_LINEAR_SPRING_STIFFNESS, g6dofjd->axis_data[axis].linear_spring_stiffness); PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(joint, static_cast(axis), PhysicsServer3D::G6DOF_JOINT_LINEAR_SPRING_DAMPING, g6dofjd->axis_data[axis].linear_spring_damping); PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(joint, static_cast(axis), PhysicsServer3D::G6DOF_JOINT_LINEAR_SPRING_EQUILIBRIUM_POINT, g6dofjd->axis_data[axis].linear_equilibrium_point); PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(joint, static_cast(axis), PhysicsServer3D::G6DOF_JOINT_LINEAR_RESTITUTION, g6dofjd->axis_data[axis].linear_restitution); PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(joint, static_cast(axis), PhysicsServer3D::G6DOF_JOINT_LINEAR_DAMPING, g6dofjd->axis_data[axis].linear_damping); PhysicsServer3D::get_singleton()->generic_6dof_joint_set_flag(joint, static_cast(axis), PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_ANGULAR_LIMIT, g6dofjd->axis_data[axis].angular_limit_enabled); PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(joint, static_cast(axis), PhysicsServer3D::G6DOF_JOINT_ANGULAR_UPPER_LIMIT, g6dofjd->axis_data[axis].angular_limit_upper); PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(joint, static_cast(axis), PhysicsServer3D::G6DOF_JOINT_ANGULAR_LOWER_LIMIT, g6dofjd->axis_data[axis].angular_limit_lower); PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(joint, static_cast(axis), PhysicsServer3D::G6DOF_JOINT_ANGULAR_LIMIT_SOFTNESS, g6dofjd->axis_data[axis].angular_limit_softness); PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(joint, static_cast(axis), PhysicsServer3D::G6DOF_JOINT_ANGULAR_RESTITUTION, g6dofjd->axis_data[axis].angular_restitution); PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(joint, static_cast(axis), PhysicsServer3D::G6DOF_JOINT_ANGULAR_DAMPING, g6dofjd->axis_data[axis].angular_damping); PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(joint, static_cast(axis), PhysicsServer3D::G6DOF_JOINT_ANGULAR_ERP, g6dofjd->axis_data[axis].erp); PhysicsServer3D::get_singleton()->generic_6dof_joint_set_flag(joint, static_cast(axis), PhysicsServer3D::G6DOF_JOINT_FLAG_ENABLE_ANGULAR_SPRING, g6dofjd->axis_data[axis].angular_spring_enabled); PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(joint, static_cast(axis), PhysicsServer3D::G6DOF_JOINT_ANGULAR_SPRING_STIFFNESS, g6dofjd->axis_data[axis].angular_spring_stiffness); PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(joint, static_cast(axis), PhysicsServer3D::G6DOF_JOINT_ANGULAR_SPRING_DAMPING, g6dofjd->axis_data[axis].angular_spring_damping); PhysicsServer3D::get_singleton()->generic_6dof_joint_set_param(joint, static_cast(axis), PhysicsServer3D::G6DOF_JOINT_ANGULAR_SPRING_EQUILIBRIUM_POINT, g6dofjd->axis_data[axis].angular_equilibrium_point); } } break; case JOINT_TYPE_NONE: { } break; } } void PhysicalBone3D::_on_bone_parent_changed() { _reload_joint(); } #ifdef TOOLS_ENABLED void PhysicalBone3D::_set_gizmo_move_joint(bool p_move_joint) { gizmo_move_joint = p_move_joint; } Transform3D PhysicalBone3D::get_global_gizmo_transform() const { return gizmo_move_joint ? get_global_transform() * joint_offset : get_global_transform(); } Transform3D PhysicalBone3D::get_local_gizmo_transform() const { return gizmo_move_joint ? get_transform() * joint_offset : get_transform(); } #endif const PhysicalBone3D::JointData *PhysicalBone3D::get_joint_data() const { return joint_data; } Skeleton3D *PhysicalBone3D::find_skeleton_parent() { return find_skeleton_parent(this); } void PhysicalBone3D::set_joint_type(JointType p_joint_type) { if (p_joint_type == get_joint_type()) { return; } if (joint_data) { memdelete(joint_data); } joint_data = nullptr; switch (p_joint_type) { case JOINT_TYPE_PIN: joint_data = memnew(PinJointData); break; case JOINT_TYPE_CONE: joint_data = memnew(ConeJointData); break; case JOINT_TYPE_HINGE: joint_data = memnew(HingeJointData); break; case JOINT_TYPE_SLIDER: joint_data = memnew(SliderJointData); break; case JOINT_TYPE_6DOF: joint_data = memnew(SixDOFJointData); break; case JOINT_TYPE_NONE: break; } _reload_joint(); #ifdef TOOLS_ENABLED notify_property_list_changed(); update_gizmos(); #endif } PhysicalBone3D::JointType PhysicalBone3D::get_joint_type() const { return joint_data ? joint_data->get_joint_type() : JOINT_TYPE_NONE; } void PhysicalBone3D::set_joint_offset(const Transform3D &p_offset) { joint_offset = p_offset; _update_joint_offset(); } const Transform3D &PhysicalBone3D::get_joint_offset() const { return joint_offset; } void PhysicalBone3D::set_joint_rotation(const Vector3 &p_euler_rad) { joint_offset.basis.set_euler_scale(p_euler_rad, joint_offset.basis.get_scale()); _update_joint_offset(); } Vector3 PhysicalBone3D::get_joint_rotation() const { return joint_offset.basis.get_euler_normalized(); } const Transform3D &PhysicalBone3D::get_body_offset() const { return body_offset; } void PhysicalBone3D::set_body_offset(const Transform3D &p_offset) { body_offset = p_offset; body_offset_inverse = body_offset.affine_inverse(); _update_joint_offset(); } void PhysicalBone3D::set_simulate_physics(bool p_simulate) { if (simulate_physics == p_simulate) { return; } simulate_physics = p_simulate; reset_physics_simulation_state(); } bool PhysicalBone3D::get_simulate_physics() { return simulate_physics; } bool PhysicalBone3D::is_simulating_physics() { return _internal_simulate_physics; } void PhysicalBone3D::set_bone_name(const String &p_name) { bone_name = p_name; bone_id = -1; update_bone_id(); reset_to_rest_position(); } const String &PhysicalBone3D::get_bone_name() const { return bone_name; } void PhysicalBone3D::set_mass(real_t p_mass) { ERR_FAIL_COND(p_mass <= 0); mass = p_mass; PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_MASS, mass); } real_t PhysicalBone3D::get_mass() const { return mass; } void PhysicalBone3D::set_friction(real_t p_friction) { ERR_FAIL_COND(p_friction < 0 || p_friction > 1); friction = p_friction; PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_FRICTION, friction); } real_t PhysicalBone3D::get_friction() const { return friction; } void PhysicalBone3D::set_bounce(real_t p_bounce) { ERR_FAIL_COND(p_bounce < 0 || p_bounce > 1); bounce = p_bounce; PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_BOUNCE, bounce); } real_t PhysicalBone3D::get_bounce() const { return bounce; } void PhysicalBone3D::set_gravity_scale(real_t p_gravity_scale) { gravity_scale = p_gravity_scale; PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_GRAVITY_SCALE, gravity_scale); } real_t PhysicalBone3D::get_gravity_scale() const { return gravity_scale; } void PhysicalBone3D::set_linear_damp_mode(DampMode p_mode) { linear_damp_mode = p_mode; PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_LINEAR_DAMP_MODE, linear_damp_mode); } PhysicalBone3D::DampMode PhysicalBone3D::get_linear_damp_mode() const { return linear_damp_mode; } void PhysicalBone3D::set_angular_damp_mode(DampMode p_mode) { angular_damp_mode = p_mode; PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_ANGULAR_DAMP_MODE, angular_damp_mode); } PhysicalBone3D::DampMode PhysicalBone3D::get_angular_damp_mode() const { return angular_damp_mode; } void PhysicalBone3D::set_linear_damp(real_t p_linear_damp) { ERR_FAIL_COND(p_linear_damp < 0); linear_damp = p_linear_damp; PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_LINEAR_DAMP, linear_damp); } real_t PhysicalBone3D::get_linear_damp() const { return linear_damp; } void PhysicalBone3D::set_angular_damp(real_t p_angular_damp) { ERR_FAIL_COND(p_angular_damp < 0); angular_damp = p_angular_damp; PhysicsServer3D::get_singleton()->body_set_param(get_rid(), PhysicsServer3D::BODY_PARAM_ANGULAR_DAMP, angular_damp); } real_t PhysicalBone3D::get_angular_damp() const { return angular_damp; } void PhysicalBone3D::set_can_sleep(bool p_active) { can_sleep = p_active; PhysicsServer3D::get_singleton()->body_set_state(get_rid(), PhysicsServer3D::BODY_STATE_CAN_SLEEP, p_active); } bool PhysicalBone3D::is_able_to_sleep() const { return can_sleep; } PhysicalBone3D::PhysicalBone3D() : PhysicsBody3D(PhysicsServer3D::BODY_MODE_STATIC) { joint = PhysicsServer3D::get_singleton()->joint_create(); reset_physics_simulation_state(); } PhysicalBone3D::~PhysicalBone3D() { if (joint_data) { memdelete(joint_data); } PhysicsServer3D::get_singleton()->free(joint); } void PhysicalBone3D::update_bone_id() { if (!parent_skeleton) { return; } const int new_bone_id = parent_skeleton->find_bone(bone_name); if (new_bone_id != bone_id) { if (-1 != bone_id) { // Assert the unbind from old node parent_skeleton->unbind_physical_bone_from_bone(bone_id); } bone_id = new_bone_id; parent_skeleton->bind_physical_bone_to_bone(bone_id, this); _fix_joint_offset(); reset_physics_simulation_state(); } } void PhysicalBone3D::update_offset() { #ifdef TOOLS_ENABLED if (parent_skeleton) { Transform3D bone_transform(parent_skeleton->get_global_transform()); if (-1 != bone_id) { bone_transform *= parent_skeleton->get_bone_global_pose(bone_id); } if (gizmo_move_joint) { bone_transform *= body_offset; set_joint_offset(bone_transform.affine_inverse() * get_global_transform()); } else { set_body_offset(bone_transform.affine_inverse() * get_global_transform()); } } #endif } void PhysicalBone3D::_start_physics_simulation() { if (_internal_simulate_physics || !parent_skeleton) { return; } reset_to_rest_position(); set_body_mode(PhysicsServer3D::BODY_MODE_RIGID); PhysicsServer3D::get_singleton()->body_set_collision_layer(get_rid(), get_collision_layer()); PhysicsServer3D::get_singleton()->body_set_collision_mask(get_rid(), get_collision_mask()); PhysicsServer3D::get_singleton()->body_set_collision_priority(get_rid(), get_collision_priority()); PhysicsServer3D::get_singleton()->body_set_state_sync_callback(get_rid(), callable_mp(this, &PhysicalBone3D::_body_state_changed)); set_as_top_level(true); _internal_simulate_physics = true; } void PhysicalBone3D::_stop_physics_simulation() { if (!parent_skeleton) { return; } if (parent_skeleton->get_animate_physical_bones()) { set_body_mode(PhysicsServer3D::BODY_MODE_KINEMATIC); PhysicsServer3D::get_singleton()->body_set_collision_layer(get_rid(), get_collision_layer()); PhysicsServer3D::get_singleton()->body_set_collision_mask(get_rid(), get_collision_mask()); PhysicsServer3D::get_singleton()->body_set_collision_priority(get_rid(), get_collision_priority()); } else { set_body_mode(PhysicsServer3D::BODY_MODE_STATIC); PhysicsServer3D::get_singleton()->body_set_collision_layer(get_rid(), 0); PhysicsServer3D::get_singleton()->body_set_collision_mask(get_rid(), 0); PhysicsServer3D::get_singleton()->body_set_collision_priority(get_rid(), 1.0); } if (_internal_simulate_physics) { PhysicsServer3D::get_singleton()->body_set_state_sync_callback(get_rid(), Callable()); parent_skeleton->set_bone_global_pose_override(bone_id, Transform3D(), 0.0, false); set_as_top_level(false); _internal_simulate_physics = false; } }