/*************************************************************************/ /* lightmap_gi.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "lightmap_gi.h" #include "core/io/config_file.h" #include "core/math/delaunay_3d.h" #include "lightmap_probe.h" #include "scene/3d/mesh_instance_3d.h" void LightmapGIData::add_user(const NodePath &p_path, const Rect2 &p_uv_scale, int p_slice_index, int32_t p_sub_instance) { User user; user.path = p_path; user.uv_scale = p_uv_scale; user.slice_index = p_slice_index; user.sub_instance = p_sub_instance; users.push_back(user); } int LightmapGIData::get_user_count() const { return users.size(); } NodePath LightmapGIData::get_user_path(int p_user) const { ERR_FAIL_INDEX_V(p_user, users.size(), NodePath()); return users[p_user].path; } int32_t LightmapGIData::get_user_sub_instance(int p_user) const { ERR_FAIL_INDEX_V(p_user, users.size(), -1); return users[p_user].sub_instance; } Rect2 LightmapGIData::get_user_lightmap_uv_scale(int p_user) const { ERR_FAIL_INDEX_V(p_user, users.size(), Rect2()); return users[p_user].uv_scale; } int LightmapGIData::get_user_lightmap_slice_index(int p_user) const { ERR_FAIL_INDEX_V(p_user, users.size(), -1); return users[p_user].slice_index; } void LightmapGIData::clear_users() { users.clear(); } void LightmapGIData::_set_user_data(const Array &p_data) { ERR_FAIL_COND(p_data.size() <= 0); ERR_FAIL_COND((p_data.size() % 4) != 0); for (int i = 0; i < p_data.size(); i += 4) { add_user(p_data[i + 0], p_data[i + 1], p_data[i + 2], p_data[i + 3]); } } Array LightmapGIData::_get_user_data() const { Array ret; for (int i = 0; i < users.size(); i++) { ret.push_back(users[i].path); ret.push_back(users[i].uv_scale); ret.push_back(users[i].slice_index); ret.push_back(users[i].sub_instance); } return ret; } RID LightmapGIData::get_rid() const { return lightmap; } void LightmapGIData::clear() { users.clear(); } void LightmapGIData::set_light_texture(const Ref<TextureLayered> &p_light_texture) { light_texture = p_light_texture; RS::get_singleton()->lightmap_set_textures(lightmap, light_texture.is_valid() ? light_texture->get_rid() : RID(), uses_spherical_harmonics); } Ref<TextureLayered> LightmapGIData::get_light_texture() const { return light_texture; } void LightmapGIData::set_uses_spherical_harmonics(bool p_enable) { uses_spherical_harmonics = p_enable; RS::get_singleton()->lightmap_set_textures(lightmap, light_texture.is_valid() ? light_texture->get_rid() : RID(), uses_spherical_harmonics); } bool LightmapGIData::is_using_spherical_harmonics() const { return uses_spherical_harmonics; } void LightmapGIData::set_capture_data(const AABB &p_bounds, bool p_interior, const PackedVector3Array &p_points, const PackedColorArray &p_point_sh, const PackedInt32Array &p_tetrahedra, const PackedInt32Array &p_bsp_tree) { if (p_points.size()) { int pc = p_points.size(); ERR_FAIL_COND(pc * 9 != p_point_sh.size()); ERR_FAIL_COND((p_tetrahedra.size() % 4) != 0); ERR_FAIL_COND((p_bsp_tree.size() % 6) != 0); RS::get_singleton()->lightmap_set_probe_capture_data(lightmap, p_points, p_point_sh, p_tetrahedra, p_bsp_tree); RS::get_singleton()->lightmap_set_probe_bounds(lightmap, p_bounds); RS::get_singleton()->lightmap_set_probe_interior(lightmap, p_interior); } else { RS::get_singleton()->lightmap_set_probe_capture_data(lightmap, PackedVector3Array(), PackedColorArray(), PackedInt32Array(), PackedInt32Array()); RS::get_singleton()->lightmap_set_probe_bounds(lightmap, AABB()); RS::get_singleton()->lightmap_set_probe_interior(lightmap, false); } interior = p_interior; bounds = p_bounds; } PackedVector3Array LightmapGIData::get_capture_points() const { return RS::get_singleton()->lightmap_get_probe_capture_points(lightmap); } PackedColorArray LightmapGIData::get_capture_sh() const { return RS::get_singleton()->lightmap_get_probe_capture_sh(lightmap); } PackedInt32Array LightmapGIData::get_capture_tetrahedra() const { return RS::get_singleton()->lightmap_get_probe_capture_tetrahedra(lightmap); } PackedInt32Array LightmapGIData::get_capture_bsp_tree() const { return RS::get_singleton()->lightmap_get_probe_capture_bsp_tree(lightmap); } AABB LightmapGIData::get_capture_bounds() const { return bounds; } bool LightmapGIData::is_interior() const { return interior; } void LightmapGIData::_set_probe_data(const Dictionary &p_data) { ERR_FAIL_COND(!p_data.has("bounds")); ERR_FAIL_COND(!p_data.has("points")); ERR_FAIL_COND(!p_data.has("tetrahedra")); ERR_FAIL_COND(!p_data.has("bsp")); ERR_FAIL_COND(!p_data.has("sh")); ERR_FAIL_COND(!p_data.has("interior")); set_capture_data(p_data["bounds"], p_data["interior"], p_data["points"], p_data["sh"], p_data["tetrahedra"], p_data["bsp"]); } Dictionary LightmapGIData::_get_probe_data() const { Dictionary d; d["bounds"] = get_capture_bounds(); d["points"] = get_capture_points(); d["tetrahedra"] = get_capture_tetrahedra(); d["bsp"] = get_capture_bsp_tree(); d["sh"] = get_capture_sh(); d["interior"] = is_interior(); return d; } void LightmapGIData::_bind_methods() { ClassDB::bind_method(D_METHOD("_set_user_data", "data"), &LightmapGIData::_set_user_data); ClassDB::bind_method(D_METHOD("_get_user_data"), &LightmapGIData::_get_user_data); ClassDB::bind_method(D_METHOD("set_light_texture", "light_texture"), &LightmapGIData::set_light_texture); ClassDB::bind_method(D_METHOD("get_light_texture"), &LightmapGIData::get_light_texture); ClassDB::bind_method(D_METHOD("set_uses_spherical_harmonics", "uses_spherical_harmonics"), &LightmapGIData::set_uses_spherical_harmonics); ClassDB::bind_method(D_METHOD("is_using_spherical_harmonics"), &LightmapGIData::is_using_spherical_harmonics); ClassDB::bind_method(D_METHOD("add_user", "path", "uv_scale", "slice_index", "sub_instance"), &LightmapGIData::add_user); ClassDB::bind_method(D_METHOD("get_user_count"), &LightmapGIData::get_user_count); ClassDB::bind_method(D_METHOD("get_user_path", "user_idx"), &LightmapGIData::get_user_path); ClassDB::bind_method(D_METHOD("clear_users"), &LightmapGIData::clear_users); ClassDB::bind_method(D_METHOD("_set_probe_data", "data"), &LightmapGIData::_set_probe_data); ClassDB::bind_method(D_METHOD("_get_probe_data"), &LightmapGIData::_get_probe_data); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "light_texture", PROPERTY_HINT_RESOURCE_TYPE, "TextureLayered"), "set_light_texture", "get_light_texture"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "uses_spherical_harmonics", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NO_EDITOR | PROPERTY_USAGE_INTERNAL), "set_uses_spherical_harmonics", "is_using_spherical_harmonics"); ADD_PROPERTY(PropertyInfo(Variant::ARRAY, "user_data", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NO_EDITOR | PROPERTY_USAGE_INTERNAL), "_set_user_data", "_get_user_data"); ADD_PROPERTY(PropertyInfo(Variant::DICTIONARY, "probe_data", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NO_EDITOR | PROPERTY_USAGE_INTERNAL), "_set_probe_data", "_get_probe_data"); } LightmapGIData::LightmapGIData() { lightmap = RS::get_singleton()->lightmap_create(); } LightmapGIData::~LightmapGIData() { RS::get_singleton()->free(lightmap); } /////////////////////////// void LightmapGI::_find_meshes_and_lights(Node *p_at_node, Vector<MeshesFound> &meshes, Vector<LightsFound> &lights, Vector<Vector3> &probes) { MeshInstance3D *mi = Object::cast_to<MeshInstance3D>(p_at_node); if (mi && mi->get_gi_mode() == GeometryInstance3D::GI_MODE_BAKED && mi->is_visible_in_tree()) { Ref<Mesh> mesh = mi->get_mesh(); if (mesh.is_valid()) { bool all_have_uv2_and_normal = true; bool surfaces_found = false; for (int i = 0; i < mesh->get_surface_count(); i++) { if (mesh->surface_get_primitive_type(i) != Mesh::PRIMITIVE_TRIANGLES) { continue; } if (!(mesh->surface_get_format(i) & Mesh::ARRAY_FORMAT_TEX_UV2)) { all_have_uv2_and_normal = false; break; } if (!(mesh->surface_get_format(i) & Mesh::ARRAY_FORMAT_NORMAL)) { all_have_uv2_and_normal = false; break; } surfaces_found = true; } if (surfaces_found && all_have_uv2_and_normal) { //READY TO BAKE! size hint could be computed if not found, actually.. MeshesFound mf; mf.xform = get_global_transform().affine_inverse() * mi->get_global_transform(); mf.node_path = get_path_to(mi); mf.subindex = -1; mf.mesh = mesh; static const int lightmap_scale[GeometryInstance3D::LIGHTMAP_SCALE_MAX] = { 1, 2, 4, 8 }; mf.lightmap_scale = lightmap_scale[mi->get_lightmap_scale()]; Ref<Material> all_override = mi->get_material_override(); for (int i = 0; i < mesh->get_surface_count(); i++) { if (all_override.is_valid()) { mf.overrides.push_back(all_override); } else { mf.overrides.push_back(mi->get_surface_override_material(i)); } } meshes.push_back(mf); } } } Node3D *s = Object::cast_to<Node3D>(p_at_node); if (!mi && s) { Array bmeshes = p_at_node->call("get_bake_bmeshes"); if (bmeshes.size() && (bmeshes.size() & 1) == 0) { Transform3D xf = get_global_transform().affine_inverse() * s->get_global_transform(); for (int i = 0; i < bmeshes.size(); i += 2) { Ref<Mesh> mesh = bmeshes[i]; if (!mesh.is_valid()) { continue; } MeshesFound mf; Transform3D mesh_xf = bmeshes[i + 1]; mf.xform = xf * mesh_xf; mf.node_path = get_path_to(s); mf.subindex = i / 2; mf.lightmap_scale = 1; mf.mesh = mesh; meshes.push_back(mf); } } } Light3D *light = Object::cast_to<Light3D>(p_at_node); if (light && light->get_bake_mode() != Light3D::BAKE_DISABLED) { LightsFound lf; lf.xform = get_global_transform().affine_inverse() * light->get_global_transform(); lf.light = light; lights.push_back(lf); } LightmapProbe *probe = Object::cast_to<LightmapProbe>(p_at_node); if (probe) { Transform3D xf = get_global_transform().affine_inverse() * probe->get_global_transform(); probes.push_back(xf.origin); } for (int i = 0; i < p_at_node->get_child_count(); i++) { Node *child = p_at_node->get_child(i); if (!child->get_owner()) { continue; //maybe a helper } _find_meshes_and_lights(child, meshes, lights, probes); } } int LightmapGI::_bsp_get_simplex_side(const Vector<Vector3> &p_points, const LocalVector<BSPSimplex> &p_simplices, const Plane &p_plane, uint32_t p_simplex) const { int over = 0; int under = 0; int coplanar = 0; const BSPSimplex &s = p_simplices[p_simplex]; for (int i = 0; i < 4; i++) { const Vector3 v = p_points[s.vertices[i]]; if (p_plane.has_point(v)) { //coplanar coplanar++; } else if (p_plane.is_point_over(v)) { over++; } else { under++; } } ERR_FAIL_COND_V(under == 0 && over == 0, -2); //should never happen, we discarded flat simplices before, but in any case drop it from the bsp tree and throw an error if (under == 0) { return 1; // all over } else if (over == 0) { return -1; // all under } else { return 0; // crossing } } //#define DEBUG_BSP int32_t LightmapGI::_compute_bsp_tree(const Vector<Vector3> &p_points, const LocalVector<Plane> &p_planes, LocalVector<int32_t> &planes_tested, const LocalVector<BSPSimplex> &p_simplices, const LocalVector<int32_t> &p_simplex_indices, LocalVector<BSPNode> &bsp_nodes) { //if we reach here, it means there is more than one simplex int32_t node_index = (int32_t)bsp_nodes.size(); bsp_nodes.push_back(BSPNode()); //test with all the simplex planes Plane best_plane; float best_plane_score = -1.0; for (uint32_t i = 0; i < p_simplex_indices.size(); i++) { const BSPSimplex &s = p_simplices[p_simplex_indices[i]]; for (int j = 0; j < 4; j++) { uint32_t plane_index = s.planes[j]; if (planes_tested[plane_index] == node_index) { continue; //tested this plane already } planes_tested[plane_index] = node_index; static const int face_order[4][3] = { { 0, 1, 2 }, { 0, 2, 3 }, { 0, 1, 3 }, { 1, 2, 3 } }; // despite getting rid of plane duplicates, we should still use here the actual plane to avoid numerical error // from thinking this same simplex is intersecting rather than on a side Vector3 v0 = p_points[s.vertices[face_order[j][0]]]; Vector3 v1 = p_points[s.vertices[face_order[j][1]]]; Vector3 v2 = p_points[s.vertices[face_order[j][2]]]; Plane plane(v0, v1, v2); //test with all the simplices int over_count = 0; int under_count = 0; for (uint32_t k = 0; k < p_simplex_indices.size(); k++) { int side = _bsp_get_simplex_side(p_points, p_simplices, plane, p_simplex_indices[k]); if (side == -2) { continue; //this simplex is invalid, skip for now } else if (side < 0) { under_count++; } else if (side > 0) { over_count++; } } if (under_count == 0 && over_count == 0) { continue; //most likely precision issue with a flat simplex, do not try this plane } if (under_count > over_count) { //make sure under is always less than over, so we can compute the same ratio SWAP(under_count, over_count); } float score = 0; //by default, score is 0 (worst) if (over_count > 0) { //give score mainly based on ratio (under / over), this means that this plane is splitting simplices a lot, but its balanced score = float(under_count) / over_count; } //adjusting priority over least splits, probably not a great idea //score *= Math::sqrt(float(over_count + under_count) / p_simplex_indices.size()); //also multiply score if (score > best_plane_score) { best_plane = plane; best_plane_score = score; } } } LocalVector<int32_t> indices_over; LocalVector<int32_t> indices_under; //split again, but add to list for (uint32_t i = 0; i < p_simplex_indices.size(); i++) { uint32_t index = p_simplex_indices[i]; int side = _bsp_get_simplex_side(p_points, p_simplices, best_plane, index); if (side == -2) { continue; //simplex sits on the plane, does not make sense to use it } if (side <= 0) { indices_under.push_back(index); } if (side >= 0) { indices_over.push_back(index); } } #ifdef DEBUG_BSP print_line("node " + itos(node_index) + " found plane: " + best_plane + " score:" + rtos(best_plane_score) + " - over " + itos(indices_over.size()) + " under " + itos(indices_under.size()) + " intersecting " + itos(intersecting)); #endif if (best_plane_score < 0.0 || indices_over.size() == p_simplex_indices.size() || indices_under.size() == p_simplex_indices.size()) { ERR_FAIL_COND_V(p_simplex_indices.size() <= 1, 0); //should not happen, this is a bug // Failed to separate the tetrahedrons using planes // this means Delaunay broke at some point. // Luckily, because we are using tetrahedrons, we can resort to // less precise but still working ways to generate the separating plane // this will most likely look bad when interpolating, but at least it will not crash. // and the arctifact will most likely also be very small, so too difficult to notice. //find the longest axis WARN_PRINT("Inconsistency found in triangulation while building BSP, probe interpolation quality may degrade a bit."); LocalVector<Vector3> centers; AABB bounds_all; for (uint32_t i = 0; i < p_simplex_indices.size(); i++) { AABB bounds; for (uint32_t j = 0; j < 4; j++) { Vector3 p = p_points[p_simplices[p_simplex_indices[i]].vertices[j]]; if (j == 0) { bounds.position = p; } else { bounds.expand_to(p); } } if (i == 0) { centers.push_back(bounds.get_center()); } else { bounds_all.merge_with(bounds); } } Vector3::Axis longest_axis = Vector3::Axis(bounds_all.get_longest_axis_index()); //find the simplex that will go under uint32_t min_d_idx = 0xFFFFFFFF; float min_d_dist = 1e20; for (uint32_t i = 0; i < centers.size(); i++) { if (centers[i][longest_axis] < min_d_dist) { min_d_idx = i; min_d_dist = centers[i][longest_axis]; } } //rebuild best_plane and over/under arrays best_plane = Plane(); best_plane.normal[longest_axis] = 1.0; best_plane.d = min_d_dist; indices_under.clear(); indices_under.push_back(min_d_idx); indices_over.clear(); for (uint32_t i = 0; i < p_simplex_indices.size(); i++) { if (i == min_d_idx) { continue; } indices_over.push_back(p_simplex_indices[i]); } } BSPNode node; node.plane = best_plane; if (indices_under.size() == 0) { //nothing to do here node.under = BSPNode::EMPTY_LEAF; } else if (indices_under.size() == 1) { node.under = -(indices_under[0] + 1); } else { node.under = _compute_bsp_tree(p_points, p_planes, planes_tested, p_simplices, indices_under, bsp_nodes); } if (indices_over.size() == 0) { //nothing to do here node.over = BSPNode::EMPTY_LEAF; } else if (indices_over.size() == 1) { node.over = -(indices_over[0] + 1); } else { node.over = _compute_bsp_tree(p_points, p_planes, planes_tested, p_simplices, indices_over, bsp_nodes); } bsp_nodes[node_index] = node; return node_index; } bool LightmapGI::_lightmap_bake_step_function(float p_completion, const String &p_text, void *ud, bool p_refresh) { BakeStepUD *bsud = (BakeStepUD *)ud; bool ret = false; if (bsud->func) { ret = bsud->func(bsud->from_percent + p_completion * (bsud->to_percent - bsud->from_percent), p_text, bsud->ud, p_refresh); } return ret; } void LightmapGI::_plot_triangle_into_octree(GenProbesOctree *p_cell, float p_cell_size, const Vector3 *p_triangle) { for (int i = 0; i < 8; i++) { Vector3i pos = p_cell->offset; uint32_t half_size = p_cell->size / 2; if (i & 1) { pos.x += half_size; } if (i & 2) { pos.y += half_size; } if (i & 4) { pos.z += half_size; } AABB subcell; subcell.position = Vector3(pos) * p_cell_size; subcell.size = Vector3(half_size, half_size, half_size) * p_cell_size; if (!Geometry3D::triangle_box_overlap(subcell.get_center(), subcell.size * 0.5, p_triangle)) { continue; } if (p_cell->children[i] == nullptr) { GenProbesOctree *child = memnew(GenProbesOctree); child->offset = pos; child->size = half_size; p_cell->children[i] = child; } if (half_size > 1) { //still levels missing _plot_triangle_into_octree(p_cell->children[i], p_cell_size, p_triangle); } } } void LightmapGI::_gen_new_positions_from_octree(const GenProbesOctree *p_cell, float p_cell_size, const Vector<Vector3> &probe_positions, LocalVector<Vector3> &new_probe_positions, HashMap<Vector3i, bool, Vector3iHash> &positions_used, const AABB &p_bounds) { for (int i = 0; i < 8; i++) { Vector3i pos = p_cell->offset; if (i & 1) { pos.x += p_cell->size; } if (i & 2) { pos.y += p_cell->size; } if (i & 4) { pos.z += p_cell->size; } if (p_cell->size == 1 && !positions_used.has(pos)) { //new position to insert! Vector3 real_pos = p_bounds.position + Vector3(pos) * p_cell_size; //see if a user submitted probe is too close int ppcount = probe_positions.size(); const Vector3 *pp = probe_positions.ptr(); bool exists = false; for (int j = 0; j < ppcount; j++) { if (pp[j].is_equal_approx(real_pos)) { exists = true; break; } } if (!exists) { new_probe_positions.push_back(real_pos); } positions_used[pos] = true; } if (p_cell->children[i] != nullptr) { _gen_new_positions_from_octree(p_cell->children[i], p_cell_size, probe_positions, new_probe_positions, positions_used, p_bounds); } } } LightmapGI::BakeError LightmapGI::bake(Node *p_from_node, String p_image_data_path, Lightmapper::BakeStepFunc p_bake_step, void *p_bake_userdata) { if (p_image_data_path == "") { if (get_light_data().is_null()) { return BAKE_ERROR_NO_SAVE_PATH; } p_image_data_path = get_light_data()->get_path(); if (!p_image_data_path.is_resource_file()) { return BAKE_ERROR_NO_SAVE_PATH; } } Ref<Lightmapper> lightmapper = Lightmapper::create(); ERR_FAIL_COND_V(lightmapper.is_null(), BAKE_ERROR_NO_LIGHTMAPPER); BakeStepUD bsud; bsud.func = p_bake_step; bsud.ud = p_bake_userdata; bsud.from_percent = 0.2; bsud.to_percent = 0.8; if (p_bake_step) { p_bake_step(0.0, TTR("Finding meshes, lights and probes"), p_bake_userdata, true); } /* STEP 1, FIND MESHES, LIGHTS AND PROBES */ Vector<Lightmapper::MeshData> mesh_data; Vector<LightsFound> lights_found; Vector<Vector3> probes_found; AABB bounds; { Vector<MeshesFound> meshes_found; _find_meshes_and_lights(p_from_node ? p_from_node : get_parent(), meshes_found, lights_found, probes_found); if (meshes_found.size() == 0) { return BAKE_ERROR_NO_MESHES; } // create mesh data for insert //get the base material textures, help compute atlas size and bounds for (int m_i = 0; m_i < meshes_found.size(); m_i++) { if (p_bake_step) { float p = (float)(m_i) / meshes_found.size(); p_bake_step(p * 0.1, vformat(TTR("Preparing geometry %d/%d"), m_i, meshes_found.size()), p_bake_userdata, false); } MeshesFound &mf = meshes_found.write[m_i]; Size2i lightmap_size = mf.mesh->get_lightmap_size_hint() * mf.lightmap_scale; Vector<RID> overrides; overrides.resize(mf.overrides.size()); for (int i = 0; i < mf.overrides.size(); i++) { if (mf.overrides[i].is_valid()) { overrides.write[i] = mf.overrides[i]->get_rid(); } } TypedArray<Image> images = RS::get_singleton()->bake_render_uv2(mf.mesh->get_rid(), overrides, lightmap_size); ERR_FAIL_COND_V(images.is_empty(), BAKE_ERROR_CANT_CREATE_IMAGE); Ref<Image> albedo = images[RS::BAKE_CHANNEL_ALBEDO_ALPHA]; Ref<Image> orm = images[RS::BAKE_CHANNEL_ORM]; //multiply albedo by metal Lightmapper::MeshData md; { Dictionary d; d["path"] = mf.node_path; if (mf.subindex >= 0) { d["subindex"] = mf.subindex; } md.userdata = d; } { if (albedo->get_format() != Image::FORMAT_RGBA8) { albedo->convert(Image::FORMAT_RGBA8); } if (orm->get_format() != Image::FORMAT_RGBA8) { orm->convert(Image::FORMAT_RGBA8); } Vector<uint8_t> albedo_alpha = albedo->get_data(); Vector<uint8_t> orm_data = orm->get_data(); Vector<uint8_t> albedom; uint32_t len = albedo_alpha.size(); albedom.resize(len); const uint8_t *r_aa = albedo_alpha.ptr(); const uint8_t *r_orm = orm_data.ptr(); uint8_t *w_albedo = albedom.ptrw(); for (uint32_t i = 0; i < len; i += 4) { w_albedo[i + 0] = uint8_t(CLAMP(float(r_aa[i + 0]) * (1.0 - float(r_orm[i + 2] / 255.0)), 0, 255)); w_albedo[i + 1] = uint8_t(CLAMP(float(r_aa[i + 1]) * (1.0 - float(r_orm[i + 2] / 255.0)), 0, 255)); w_albedo[i + 2] = uint8_t(CLAMP(float(r_aa[i + 2]) * (1.0 - float(r_orm[i + 2] / 255.0)), 0, 255)); w_albedo[i + 3] = 255; } md.albedo_on_uv2.instantiate(); md.albedo_on_uv2->create(lightmap_size.width, lightmap_size.height, false, Image::FORMAT_RGBA8, albedom); } md.emission_on_uv2 = images[RS::BAKE_CHANNEL_EMISSION]; if (md.emission_on_uv2->get_format() != Image::FORMAT_RGBAH) { md.emission_on_uv2->convert(Image::FORMAT_RGBAH); } //get geometry Basis normal_xform = mf.xform.basis.inverse().transposed(); for (int i = 0; i < mf.mesh->get_surface_count(); i++) { if (mf.mesh->surface_get_primitive_type(i) != Mesh::PRIMITIVE_TRIANGLES) { continue; } Array a = mf.mesh->surface_get_arrays(i); Vector<Vector3> vertices = a[Mesh::ARRAY_VERTEX]; const Vector3 *vr = vertices.ptr(); Vector<Vector2> uv = a[Mesh::ARRAY_TEX_UV2]; const Vector2 *uvr = nullptr; Vector<Vector3> normals = a[Mesh::ARRAY_NORMAL]; const Vector3 *nr = nullptr; Vector<int> index = a[Mesh::ARRAY_INDEX]; ERR_CONTINUE(uv.size() == 0); ERR_CONTINUE(normals.size() == 0); uvr = uv.ptr(); nr = normals.ptr(); int facecount; const int *ir = nullptr; if (index.size()) { facecount = index.size() / 3; ir = index.ptr(); } else { facecount = vertices.size() / 3; } for (int j = 0; j < facecount; j++) { uint32_t vidx[3]; if (ir) { for (int k = 0; k < 3; k++) { vidx[k] = ir[j * 3 + k]; } } else { for (int k = 0; k < 3; k++) { vidx[k] = j * 3 + k; } } for (int k = 0; k < 3; k++) { Vector3 v = mf.xform.xform(vr[vidx[k]]); if (bounds == AABB()) { bounds.position = v; } else { bounds.expand_to(v); } md.points.push_back(v); md.uv2.push_back(uvr[vidx[k]]); md.normal.push_back(normal_xform.xform(nr[vidx[k]]).normalized()); } } } mesh_data.push_back(md); } } /* STEP 2, CREATE PROBES */ if (p_bake_step) { p_bake_step(0.3, TTR("Creating probes"), p_bake_userdata, true); } //bounds need to include the user probes for (int i = 0; i < probes_found.size(); i++) { bounds.expand_to(probes_found[i]); } bounds.grow_by(bounds.size.length() * 0.001); if (gen_probes == GENERATE_PROBES_DISABLED) { // generate 8 probes on bound endpoints for (int i = 0; i < 8; i++) { probes_found.push_back(bounds.get_endpoint(i)); } } else { // detect probes from geometry static const int subdiv_values[6] = { 0, 4, 8, 16, 32 }; int subdiv = subdiv_values[gen_probes]; float subdiv_cell_size; Vector3i bound_limit; { int longest_axis = bounds.get_longest_axis_index(); subdiv_cell_size = bounds.size[longest_axis] / subdiv; int axis_n1 = (longest_axis + 1) % 3; int axis_n2 = (longest_axis + 2) % 3; bound_limit[longest_axis] = subdiv; bound_limit[axis_n1] = int(Math::ceil(bounds.size[axis_n1] / subdiv_cell_size)); bound_limit[axis_n2] = int(Math::ceil(bounds.size[axis_n2] / subdiv_cell_size)); //compensate bounds bounds.size[axis_n1] = bound_limit[axis_n1] * subdiv_cell_size; bounds.size[axis_n2] = bound_limit[axis_n2] * subdiv_cell_size; } GenProbesOctree octree; octree.size = subdiv; for (int i = 0; i < mesh_data.size(); i++) { if (p_bake_step) { float p = (float)(i) / mesh_data.size(); p_bake_step(0.3 + p * 0.1, vformat(TTR("Creating probes from mesh %d/%d"), i, mesh_data.size()), p_bake_userdata, false); } for (int j = 0; j < mesh_data[i].points.size(); j += 3) { Vector3 points[3] = { mesh_data[i].points[j + 0] - bounds.position, mesh_data[i].points[j + 1] - bounds.position, mesh_data[i].points[j + 2] - bounds.position }; _plot_triangle_into_octree(&octree, subdiv_cell_size, points); } } LocalVector<Vector3> new_probe_positions; HashMap<Vector3i, bool, Vector3iHash> positions_used; for (uint32_t i = 0; i < 8; i++) { //insert bounding endpoints Vector3i pos; if (i & 1) { pos.x += bound_limit.x; } if (i & 2) { pos.y += bound_limit.y; } if (i & 4) { pos.z += bound_limit.z; } positions_used[pos] = true; Vector3 real_pos = bounds.position + Vector3(pos) * subdiv_cell_size; //use same formula for numerical stability new_probe_positions.push_back(real_pos); } //skip first level, since probes are always added at bounds endpoints anyway (code above this) for (int i = 0; i < 8; i++) { if (octree.children[i]) { _gen_new_positions_from_octree(octree.children[i], subdiv_cell_size, probes_found, new_probe_positions, positions_used, bounds); } } for (uint32_t i = 0; i < new_probe_positions.size(); i++) { probes_found.push_back(new_probe_positions[i]); } } // Add everything to lightmapper if (p_bake_step) { p_bake_step(0.4, TTR("Preparing Lightmapper"), p_bake_userdata, true); } { for (int i = 0; i < mesh_data.size(); i++) { lightmapper->add_mesh(mesh_data[i]); } for (int i = 0; i < lights_found.size(); i++) { Light3D *light = lights_found[i].light; Transform3D xf = lights_found[i].xform; if (Object::cast_to<DirectionalLight3D>(light)) { DirectionalLight3D *l = Object::cast_to<DirectionalLight3D>(light); lightmapper->add_directional_light(light->get_bake_mode() == Light3D::BAKE_STATIC, -xf.basis.get_axis(Vector3::AXIS_Z).normalized(), l->get_color(), l->get_param(Light3D::PARAM_ENERGY), l->get_param(Light3D::PARAM_SIZE)); } else if (Object::cast_to<OmniLight3D>(light)) { OmniLight3D *l = Object::cast_to<OmniLight3D>(light); lightmapper->add_omni_light(light->get_bake_mode() == Light3D::BAKE_STATIC, xf.origin, l->get_color(), l->get_param(Light3D::PARAM_ENERGY), l->get_param(Light3D::PARAM_RANGE), l->get_param(Light3D::PARAM_ATTENUATION), l->get_param(Light3D::PARAM_SIZE)); } else if (Object::cast_to<SpotLight3D>(light)) { SpotLight3D *l = Object::cast_to<SpotLight3D>(light); lightmapper->add_spot_light(light->get_bake_mode() == Light3D::BAKE_STATIC, xf.origin, -xf.basis.get_axis(Vector3::AXIS_Z).normalized(), l->get_color(), l->get_param(Light3D::PARAM_ENERGY), l->get_param(Light3D::PARAM_RANGE), l->get_param(Light3D::PARAM_ATTENUATION), l->get_param(Light3D::PARAM_SPOT_ANGLE), l->get_param(Light3D::PARAM_SPOT_ATTENUATION), l->get_param(Light3D::PARAM_SIZE)); } } for (int i = 0; i < probes_found.size(); i++) { lightmapper->add_probe(probes_found[i]); } } Ref<Image> environment_image; Basis environment_transform; // Add everything to lightmapper if (environment_mode != ENVIRONMENT_MODE_DISABLED) { if (p_bake_step) { p_bake_step(4.1, TTR("Preparing Environment"), p_bake_userdata, true); } environment_transform = get_global_transform().basis; switch (environment_mode) { case ENVIRONMENT_MODE_DISABLED: { //nothing } break; case ENVIRONMENT_MODE_SCENE: { Ref<World3D> world = get_world_3d(); if (world.is_valid()) { Ref<Environment> env = world->get_environment(); if (env.is_null()) { env = world->get_fallback_environment(); } if (env.is_valid()) { environment_image = RS::get_singleton()->environment_bake_panorama(env->get_rid(), true, Size2i(128, 64)); } } } break; case ENVIRONMENT_MODE_CUSTOM_SKY: { if (environment_custom_sky.is_valid()) { environment_image = RS::get_singleton()->sky_bake_panorama(environment_custom_sky->get_rid(), environment_custom_energy, true, Size2i(128, 64)); } } break; case ENVIRONMENT_MODE_CUSTOM_COLOR: { environment_image.instantiate(); environment_image->create(128, 64, false, Image::FORMAT_RGBAF); Color c = environment_custom_color; c.r *= environment_custom_energy; c.g *= environment_custom_energy; c.b *= environment_custom_energy; for (int i = 0; i < 128; i++) { for (int j = 0; j < 64; j++) { environment_image->set_pixel(i, j, c); } } } break; } } Lightmapper::BakeError bake_err = lightmapper->bake(Lightmapper::BakeQuality(bake_quality), use_denoiser, bounces, bias, max_texture_size, directional, Lightmapper::GenerateProbes(gen_probes), environment_image, environment_transform, _lightmap_bake_step_function, &bsud); if (bake_err == Lightmapper::BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES) { return BAKE_ERROR_MESHES_INVALID; } /* POSTBAKE: Save Textures */ Ref<TextureLayered> texture; { Vector<Ref<Image>> images; for (int i = 0; i < lightmapper->get_bake_texture_count(); i++) { images.push_back(lightmapper->get_bake_texture(i)); } //we assume they are all the same, so let's create a large one for saving Ref<Image> large_image; large_image.instantiate(); large_image->create(images[0]->get_width(), images[0]->get_height() * images.size(), false, images[0]->get_format()); for (int i = 0; i < lightmapper->get_bake_texture_count(); i++) { large_image->blit_rect(images[i], Rect2(0, 0, images[i]->get_width(), images[i]->get_height()), Point2(0, images[i]->get_height() * i)); } String base_path = p_image_data_path.get_basename() + ".exr"; Ref<ConfigFile> config; config.instantiate(); if (FileAccess::exists(base_path + ".import")) { config->load(base_path + ".import"); } config->set_value("remap", "importer", "2d_array_texture"); config->set_value("remap", "type", "StreamTexture2DArray"); if (!config->has_section_key("params", "compress/mode")) { config->set_value("params", "compress/mode", 2); //user may want another compression, so leave it be } config->set_value("params", "compress/channel_pack", 1); config->set_value("params", "mipmaps/generate", false); config->set_value("params", "slices/horizontal", 1); config->set_value("params", "slices/vertical", images.size()); config->save(base_path + ".import"); Error err = large_image->save_exr(base_path, false); ERR_FAIL_COND_V(err, BAKE_ERROR_CANT_CREATE_IMAGE); ResourceLoader::import(base_path); Ref<Texture> t = ResourceLoader::load(base_path); //if already loaded, it will be updated on refocus? ERR_FAIL_COND_V(t.is_null(), BAKE_ERROR_CANT_CREATE_IMAGE); texture = t; } /* POSTBAKE: Save Light Data */ Ref<LightmapGIData> data; if (get_light_data().is_valid()) { data = get_light_data(); set_light_data(Ref<LightmapGIData>()); //clear data->clear(); } else { data.instantiate(); } data->set_light_texture(texture); data->set_uses_spherical_harmonics(directional); for (int i = 0; i < lightmapper->get_bake_mesh_count(); i++) { Dictionary d = lightmapper->get_bake_mesh_userdata(i); NodePath np = d["path"]; int32_t subindex = -1; if (d.has("subindex")) { subindex = d["subindex"]; } Rect2 uv_scale = lightmapper->get_bake_mesh_uv_scale(i); int slice_index = lightmapper->get_bake_mesh_texture_slice(i); data->add_user(np, uv_scale, slice_index, subindex); } { // create tetrahedrons Vector<Vector3> points; Vector<Color> sh; points.resize(lightmapper->get_bake_probe_count()); sh.resize(lightmapper->get_bake_probe_count() * 9); for (int i = 0; i < lightmapper->get_bake_probe_count(); i++) { points.write[i] = lightmapper->get_bake_probe_point(i); Vector<Color> colors = lightmapper->get_bake_probe_sh(i); ERR_CONTINUE(colors.size() != 9); for (int j = 0; j < 9; j++) { sh.write[i * 9 + j] = colors[j]; } } //Obtain solved simplices if (p_bake_step) { p_bake_step(0.8, TTR("Generating Probe Volumes"), p_bake_userdata, true); } Vector<Delaunay3D::OutputSimplex> solved_simplices = Delaunay3D::tetrahedralize(points); LocalVector<BSPSimplex> bsp_simplices; LocalVector<Plane> bsp_planes; LocalVector<int32_t> bsp_simplex_indices; PackedInt32Array tetrahedrons; for (int i = 0; i < solved_simplices.size(); i++) { //Prepare a special representation of the simplex, which uses a BSP Tree BSPSimplex bsp_simplex; for (int j = 0; j < 4; j++) { bsp_simplex.vertices[j] = solved_simplices[i].points[j]; } for (int j = 0; j < 4; j++) { static const int face_order[4][3] = { { 0, 1, 2 }, { 0, 2, 3 }, { 0, 1, 3 }, { 1, 2, 3 } }; Vector3 a = points[solved_simplices[i].points[face_order[j][0]]]; Vector3 b = points[solved_simplices[i].points[face_order[j][1]]]; Vector3 c = points[solved_simplices[i].points[face_order[j][2]]]; //store planes in an array, but ensure they are reused, to speed up processing Plane p(a, b, c); int plane_index = -1; for (uint32_t k = 0; k < bsp_planes.size(); k++) { if (bsp_planes[k].is_equal_approx_any_side(p)) { plane_index = k; break; } } if (plane_index == -1) { plane_index = bsp_planes.size(); bsp_planes.push_back(p); } bsp_simplex.planes[j] = plane_index; //also fill simplex array tetrahedrons.push_back(solved_simplices[i].points[j]); } bsp_simplex_indices.push_back(bsp_simplices.size()); bsp_simplices.push_back(bsp_simplex); } //#define DEBUG_SIMPLICES_AS_OBJ_FILE #ifdef DEBUG_SIMPLICES_AS_OBJ_FILE { FileAccessRef f = FileAccess::open("res://bsp.obj", FileAccess::WRITE); for (uint32_t i = 0; i < bsp_simplices.size(); i++) { f->store_line("o Simplex" + itos(i)); for (int j = 0; j < 4; j++) { f->store_line(vformat("v %f %f %f", points[bsp_simplices[i].vertices[j]].x, points[bsp_simplices[i].vertices[j]].y, points[bsp_simplices[i].vertices[j]].z)); } static const int face_order[4][3] = { { 1, 2, 3 }, { 1, 3, 4 }, { 1, 2, 4 }, { 2, 3, 4 } }; for (int j = 0; j < 4; j++) { f->store_line(vformat("f %d %d %d", 4 * i + face_order[j][0], 4 * i + face_order[j][1], 4 * i + face_order[j][2])); } } f->close(); } #endif LocalVector<BSPNode> bsp_nodes; LocalVector<int32_t> planes_tested; planes_tested.resize(bsp_planes.size()); for (uint32_t i = 0; i < planes_tested.size(); i++) { planes_tested[i] = 0x7FFFFFFF; } if (p_bake_step) { p_bake_step(0.9, TTR("Generating Probe Acceleration Structures"), p_bake_userdata, true); } _compute_bsp_tree(points, bsp_planes, planes_tested, bsp_simplices, bsp_simplex_indices, bsp_nodes); PackedInt32Array bsp_array; bsp_array.resize(bsp_nodes.size() * 6); // six 32 bits values used for each BSP node { float *fptr = (float *)bsp_array.ptrw(); int32_t *iptr = (int32_t *)bsp_array.ptrw(); for (uint32_t i = 0; i < bsp_nodes.size(); i++) { fptr[i * 6 + 0] = bsp_nodes[i].plane.normal.x; fptr[i * 6 + 1] = bsp_nodes[i].plane.normal.y; fptr[i * 6 + 2] = bsp_nodes[i].plane.normal.z; fptr[i * 6 + 3] = bsp_nodes[i].plane.d; iptr[i * 6 + 4] = bsp_nodes[i].over; iptr[i * 6 + 5] = bsp_nodes[i].under; } //#define DEBUG_BSP_TREE #ifdef DEBUG_BSP_TREE FileAccessRef f = FileAccess::open("res://bsp.txt", FileAccess::WRITE); for (uint32_t i = 0; i < bsp_nodes.size(); i++) { f->store_line(itos(i) + " - plane: " + bsp_nodes[i].plane + " over: " + itos(bsp_nodes[i].over) + " under: " + itos(bsp_nodes[i].under)); } #endif } /* Obtain the colors from the images, they will be re-created as cubemaps on the server, depending on the driver */ data->set_capture_data(bounds, interior, points, sh, tetrahedrons, bsp_array); /* Compute a BSP tree of the simplices, so it's easy to find the exact one */ } Error err = ResourceSaver::save(p_image_data_path, data); data->set_path(p_image_data_path); if (err != OK) { return BAKE_ERROR_CANT_CREATE_IMAGE; } set_light_data(data); return BAKE_ERROR_OK; } void LightmapGI::_notification(int p_what) { if (p_what == NOTIFICATION_POST_ENTER_TREE) { if (light_data.is_valid()) { _assign_lightmaps(); } } if (p_what == NOTIFICATION_EXIT_TREE) { if (light_data.is_valid()) { _clear_lightmaps(); } } } void LightmapGI::_assign_lightmaps() { ERR_FAIL_COND(!light_data.is_valid()); for (int i = 0; i < light_data->get_user_count(); i++) { Node *node = get_node(light_data->get_user_path(i)); int instance_idx = light_data->get_user_sub_instance(i); if (instance_idx >= 0) { RID instance = node->call("get_bake_mesh_instance", instance_idx); if (instance.is_valid()) { RS::get_singleton()->instance_geometry_set_lightmap(instance, get_instance(), light_data->get_user_lightmap_uv_scale(i), light_data->get_user_lightmap_slice_index(i)); } } else { VisualInstance3D *vi = Object::cast_to<VisualInstance3D>(node); ERR_CONTINUE(!vi); RS::get_singleton()->instance_geometry_set_lightmap(vi->get_instance(), get_instance(), light_data->get_user_lightmap_uv_scale(i), light_data->get_user_lightmap_slice_index(i)); } } } void LightmapGI::_clear_lightmaps() { ERR_FAIL_COND(!light_data.is_valid()); for (int i = 0; i < light_data->get_user_count(); i++) { Node *node = get_node(light_data->get_user_path(i)); int instance_idx = light_data->get_user_sub_instance(i); if (instance_idx >= 0) { RID instance = node->call("get_bake_mesh_instance", instance_idx); if (instance.is_valid()) { RS::get_singleton()->instance_geometry_set_lightmap(instance, RID(), Rect2(), 0); } } else { VisualInstance3D *vi = Object::cast_to<VisualInstance3D>(node); ERR_CONTINUE(!vi); RS::get_singleton()->instance_geometry_set_lightmap(vi->get_instance(), RID(), Rect2(), 0); } } } void LightmapGI::set_light_data(const Ref<LightmapGIData> &p_data) { if (light_data.is_valid()) { if (is_inside_tree()) { _clear_lightmaps(); } set_base(RID()); } light_data = p_data; if (light_data.is_valid()) { set_base(light_data->get_rid()); if (is_inside_tree()) { _assign_lightmaps(); } } update_gizmos(); } Ref<LightmapGIData> LightmapGI::get_light_data() const { return light_data; } void LightmapGI::set_bake_quality(BakeQuality p_quality) { bake_quality = p_quality; } LightmapGI::BakeQuality LightmapGI::get_bake_quality() const { return bake_quality; } AABB LightmapGI::get_aabb() const { return AABB(); } Vector<Face3> LightmapGI::get_faces(uint32_t p_usage_flags) const { return Vector<Face3>(); } void LightmapGI::set_use_denoiser(bool p_enable) { use_denoiser = p_enable; } bool LightmapGI::is_using_denoiser() const { return use_denoiser; } void LightmapGI::set_directional(bool p_enable) { directional = p_enable; } bool LightmapGI::is_directional() const { return directional; } void LightmapGI::set_interior(bool p_enable) { interior = p_enable; } bool LightmapGI::is_interior() const { return interior; } void LightmapGI::set_environment_mode(EnvironmentMode p_mode) { environment_mode = p_mode; notify_property_list_changed(); } LightmapGI::EnvironmentMode LightmapGI::get_environment_mode() const { return environment_mode; } void LightmapGI::set_environment_custom_sky(const Ref<Sky> &p_sky) { environment_custom_sky = p_sky; } Ref<Sky> LightmapGI::get_environment_custom_sky() const { return environment_custom_sky; } void LightmapGI::set_environment_custom_color(const Color &p_color) { environment_custom_color = p_color; } Color LightmapGI::get_environment_custom_color() const { return environment_custom_color; } void LightmapGI::set_environment_custom_energy(float p_energy) { environment_custom_energy = p_energy; } float LightmapGI::get_environment_custom_energy() const { return environment_custom_energy; } void LightmapGI::set_bounces(int p_bounces) { ERR_FAIL_COND(p_bounces < 0 || p_bounces > 16); bounces = p_bounces; } int LightmapGI::get_bounces() const { return bounces; } void LightmapGI::set_bias(float p_bias) { ERR_FAIL_COND(p_bias < 0.00001); bias = p_bias; } float LightmapGI::get_bias() const { return bias; } void LightmapGI::set_max_texture_size(int p_size) { ERR_FAIL_COND(p_size < 2048); max_texture_size = p_size; } int LightmapGI::get_max_texture_size() const { return max_texture_size; } void LightmapGI::set_generate_probes(GenerateProbes p_generate_probes) { gen_probes = p_generate_probes; } LightmapGI::GenerateProbes LightmapGI::get_generate_probes() const { return gen_probes; } void LightmapGI::_validate_property(PropertyInfo &property) const { if (property.name == "environment_custom_sky" && environment_mode != ENVIRONMENT_MODE_CUSTOM_SKY) { property.usage = PROPERTY_USAGE_NONE; } if (property.name == "environment_custom_color" && environment_mode != ENVIRONMENT_MODE_CUSTOM_COLOR) { property.usage = PROPERTY_USAGE_NONE; } if (property.name == "environment_custom_energy" && environment_mode != ENVIRONMENT_MODE_CUSTOM_COLOR && environment_mode != ENVIRONMENT_MODE_CUSTOM_SKY) { property.usage = PROPERTY_USAGE_NONE; } VisualInstance3D::_validate_property(property); } void LightmapGI::_bind_methods() { ClassDB::bind_method(D_METHOD("set_light_data", "data"), &LightmapGI::set_light_data); ClassDB::bind_method(D_METHOD("get_light_data"), &LightmapGI::get_light_data); ClassDB::bind_method(D_METHOD("set_bake_quality", "bake_quality"), &LightmapGI::set_bake_quality); ClassDB::bind_method(D_METHOD("get_bake_quality"), &LightmapGI::get_bake_quality); ClassDB::bind_method(D_METHOD("set_bounces", "bounces"), &LightmapGI::set_bounces); ClassDB::bind_method(D_METHOD("get_bounces"), &LightmapGI::get_bounces); ClassDB::bind_method(D_METHOD("set_generate_probes", "subdivision"), &LightmapGI::set_generate_probes); ClassDB::bind_method(D_METHOD("get_generate_probes"), &LightmapGI::get_generate_probes); ClassDB::bind_method(D_METHOD("set_bias", "bias"), &LightmapGI::set_bias); ClassDB::bind_method(D_METHOD("get_bias"), &LightmapGI::get_bias); ClassDB::bind_method(D_METHOD("set_environment_mode", "mode"), &LightmapGI::set_environment_mode); ClassDB::bind_method(D_METHOD("get_environment_mode"), &LightmapGI::get_environment_mode); ClassDB::bind_method(D_METHOD("set_environment_custom_sky", "sky"), &LightmapGI::set_environment_custom_sky); ClassDB::bind_method(D_METHOD("get_environment_custom_sky"), &LightmapGI::get_environment_custom_sky); ClassDB::bind_method(D_METHOD("set_environment_custom_color", "color"), &LightmapGI::set_environment_custom_color); ClassDB::bind_method(D_METHOD("get_environment_custom_color"), &LightmapGI::get_environment_custom_color); ClassDB::bind_method(D_METHOD("set_environment_custom_energy", "energy"), &LightmapGI::set_environment_custom_energy); ClassDB::bind_method(D_METHOD("get_environment_custom_energy"), &LightmapGI::get_environment_custom_energy); ClassDB::bind_method(D_METHOD("set_max_texture_size", "max_texture_size"), &LightmapGI::set_max_texture_size); ClassDB::bind_method(D_METHOD("get_max_texture_size"), &LightmapGI::get_max_texture_size); ClassDB::bind_method(D_METHOD("set_use_denoiser", "use_denoiser"), &LightmapGI::set_use_denoiser); ClassDB::bind_method(D_METHOD("is_using_denoiser"), &LightmapGI::is_using_denoiser); ClassDB::bind_method(D_METHOD("set_interior", "enable"), &LightmapGI::set_interior); ClassDB::bind_method(D_METHOD("is_interior"), &LightmapGI::is_interior); ClassDB::bind_method(D_METHOD("set_directional", "directional"), &LightmapGI::set_directional); ClassDB::bind_method(D_METHOD("is_directional"), &LightmapGI::is_directional); // ClassDB::bind_method(D_METHOD("bake", "from_node"), &LightmapGI::bake, DEFVAL(Variant())); ADD_GROUP("Tweaks", ""); ADD_PROPERTY(PropertyInfo(Variant::INT, "quality", PROPERTY_HINT_ENUM, "Low,Medium,High,Ultra"), "set_bake_quality", "get_bake_quality"); ADD_PROPERTY(PropertyInfo(Variant::INT, "bounces", PROPERTY_HINT_RANGE, "0,16,1"), "set_bounces", "get_bounces"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "directional"), "set_directional", "is_directional"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "interior"), "set_interior", "is_interior"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "use_denoiser"), "set_use_denoiser", "is_using_denoiser"); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "bias", PROPERTY_HINT_RANGE, "0.00001,0.1,0.00001,or_greater"), "set_bias", "get_bias"); ADD_PROPERTY(PropertyInfo(Variant::INT, "max_texture_size"), "set_max_texture_size", "get_max_texture_size"); ADD_GROUP("Environment", "environment_"); ADD_PROPERTY(PropertyInfo(Variant::INT, "environment_mode", PROPERTY_HINT_ENUM, "Disabled,Scene,Custom Sky,Custom Color"), "set_environment_mode", "get_environment_mode"); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "environment_custom_sky", PROPERTY_HINT_RESOURCE_TYPE, "Sky"), "set_environment_custom_sky", "get_environment_custom_sky"); ADD_PROPERTY(PropertyInfo(Variant::COLOR, "environment_custom_color", PROPERTY_HINT_COLOR_NO_ALPHA), "set_environment_custom_color", "get_environment_custom_color"); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "environment_custom_energy", PROPERTY_HINT_RANGE, "0,64,0.01"), "set_environment_custom_energy", "get_environment_custom_energy"); ADD_GROUP("Gen Probes", "generate_probes_"); ADD_PROPERTY(PropertyInfo(Variant::INT, "generate_probes_subdiv", PROPERTY_HINT_ENUM, "Disabled,4,8,16,32"), "set_generate_probes", "get_generate_probes"); ADD_GROUP("Data", ""); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "light_data", PROPERTY_HINT_RESOURCE_TYPE, "LightmapGIData"), "set_light_data", "get_light_data"); BIND_ENUM_CONSTANT(BAKE_QUALITY_LOW); BIND_ENUM_CONSTANT(BAKE_QUALITY_MEDIUM); BIND_ENUM_CONSTANT(BAKE_QUALITY_HIGH); BIND_ENUM_CONSTANT(BAKE_QUALITY_ULTRA); BIND_ENUM_CONSTANT(GENERATE_PROBES_DISABLED); BIND_ENUM_CONSTANT(GENERATE_PROBES_SUBDIV_4); BIND_ENUM_CONSTANT(GENERATE_PROBES_SUBDIV_8); BIND_ENUM_CONSTANT(GENERATE_PROBES_SUBDIV_16); BIND_ENUM_CONSTANT(GENERATE_PROBES_SUBDIV_32); BIND_ENUM_CONSTANT(BAKE_ERROR_OK); BIND_ENUM_CONSTANT(BAKE_ERROR_NO_LIGHTMAPPER); BIND_ENUM_CONSTANT(BAKE_ERROR_NO_SAVE_PATH); BIND_ENUM_CONSTANT(BAKE_ERROR_NO_MESHES); BIND_ENUM_CONSTANT(BAKE_ERROR_MESHES_INVALID); BIND_ENUM_CONSTANT(BAKE_ERROR_CANT_CREATE_IMAGE); BIND_ENUM_CONSTANT(BAKE_ERROR_USER_ABORTED); BIND_ENUM_CONSTANT(ENVIRONMENT_MODE_DISABLED); BIND_ENUM_CONSTANT(ENVIRONMENT_MODE_SCENE); BIND_ENUM_CONSTANT(ENVIRONMENT_MODE_CUSTOM_SKY); BIND_ENUM_CONSTANT(ENVIRONMENT_MODE_CUSTOM_COLOR); } LightmapGI::LightmapGI() { }