/*************************************************************************/ /* gi_probe.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* http://www.godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2017 Godot Engine contributors (cf. AUTHORS.md) */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "gi_probe.h" #include "mesh_instance.h" void GIProbeData::set_bounds(const Rect3 &p_bounds) { VS::get_singleton()->gi_probe_set_bounds(probe, p_bounds); } Rect3 GIProbeData::get_bounds() const { return VS::get_singleton()->gi_probe_get_bounds(probe); } void GIProbeData::set_cell_size(float p_size) { VS::get_singleton()->gi_probe_set_cell_size(probe, p_size); } float GIProbeData::get_cell_size() const { return VS::get_singleton()->gi_probe_get_cell_size(probe); } void GIProbeData::set_to_cell_xform(const Transform &p_xform) { VS::get_singleton()->gi_probe_set_to_cell_xform(probe, p_xform); } Transform GIProbeData::get_to_cell_xform() const { return VS::get_singleton()->gi_probe_get_to_cell_xform(probe); } void GIProbeData::set_dynamic_data(const PoolVector &p_data) { VS::get_singleton()->gi_probe_set_dynamic_data(probe, p_data); } PoolVector GIProbeData::get_dynamic_data() const { return VS::get_singleton()->gi_probe_get_dynamic_data(probe); } void GIProbeData::set_dynamic_range(int p_range) { VS::get_singleton()->gi_probe_set_dynamic_range(probe, p_range); } void GIProbeData::set_energy(float p_range) { VS::get_singleton()->gi_probe_set_energy(probe, p_range); } float GIProbeData::get_energy() const { return VS::get_singleton()->gi_probe_get_energy(probe); } void GIProbeData::set_bias(float p_range) { VS::get_singleton()->gi_probe_set_bias(probe, p_range); } float GIProbeData::get_bias() const { return VS::get_singleton()->gi_probe_get_bias(probe); } void GIProbeData::set_propagation(float p_range) { VS::get_singleton()->gi_probe_set_propagation(probe, p_range); } float GIProbeData::get_propagation() const { return VS::get_singleton()->gi_probe_get_propagation(probe); } void GIProbeData::set_interior(bool p_enable) { VS::get_singleton()->gi_probe_set_interior(probe, p_enable); } bool GIProbeData::is_interior() const { return VS::get_singleton()->gi_probe_is_interior(probe); } bool GIProbeData::is_compressed() const { return VS::get_singleton()->gi_probe_is_compressed(probe); } void GIProbeData::set_compress(bool p_enable) { VS::get_singleton()->gi_probe_set_compress(probe, p_enable); } int GIProbeData::get_dynamic_range() const { return VS::get_singleton()->gi_probe_get_dynamic_range(probe); } RID GIProbeData::get_rid() const { return probe; } void GIProbeData::_bind_methods() { ClassDB::bind_method(D_METHOD("set_bounds", "bounds"), &GIProbeData::set_bounds); ClassDB::bind_method(D_METHOD("get_bounds"), &GIProbeData::get_bounds); ClassDB::bind_method(D_METHOD("set_cell_size", "cell_size"), &GIProbeData::set_cell_size); ClassDB::bind_method(D_METHOD("get_cell_size"), &GIProbeData::get_cell_size); ClassDB::bind_method(D_METHOD("set_to_cell_xform", "to_cell_xform"), &GIProbeData::set_to_cell_xform); ClassDB::bind_method(D_METHOD("get_to_cell_xform"), &GIProbeData::get_to_cell_xform); ClassDB::bind_method(D_METHOD("set_dynamic_data", "dynamic_data"), &GIProbeData::set_dynamic_data); ClassDB::bind_method(D_METHOD("get_dynamic_data"), &GIProbeData::get_dynamic_data); ClassDB::bind_method(D_METHOD("set_dynamic_range", "dynamic_range"), &GIProbeData::set_dynamic_range); ClassDB::bind_method(D_METHOD("get_dynamic_range"), &GIProbeData::get_dynamic_range); ClassDB::bind_method(D_METHOD("set_energy", "energy"), &GIProbeData::set_energy); ClassDB::bind_method(D_METHOD("get_energy"), &GIProbeData::get_energy); ClassDB::bind_method(D_METHOD("set_bias", "bias"), &GIProbeData::set_bias); ClassDB::bind_method(D_METHOD("get_bias"), &GIProbeData::get_bias); ClassDB::bind_method(D_METHOD("set_propagation", "propagation"), &GIProbeData::set_propagation); ClassDB::bind_method(D_METHOD("get_propagation"), &GIProbeData::get_propagation); ClassDB::bind_method(D_METHOD("set_interior", "interior"), &GIProbeData::set_interior); ClassDB::bind_method(D_METHOD("is_interior"), &GIProbeData::is_interior); ClassDB::bind_method(D_METHOD("set_compress", "compress"), &GIProbeData::set_compress); ClassDB::bind_method(D_METHOD("is_compressed"), &GIProbeData::is_compressed); ADD_PROPERTY(PropertyInfo(Variant::RECT3, "bounds", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_bounds", "get_bounds"); ADD_PROPERTY(PropertyInfo(Variant::REAL, "cell_size", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_cell_size", "get_cell_size"); ADD_PROPERTY(PropertyInfo(Variant::TRANSFORM, "to_cell_xform", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_to_cell_xform", "get_to_cell_xform"); ADD_PROPERTY(PropertyInfo(Variant::POOL_INT_ARRAY, "dynamic_data", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_dynamic_data", "get_dynamic_data"); ADD_PROPERTY(PropertyInfo(Variant::INT, "dynamic_range", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_dynamic_range", "get_dynamic_range"); ADD_PROPERTY(PropertyInfo(Variant::REAL, "energy", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_energy", "get_energy"); ADD_PROPERTY(PropertyInfo(Variant::REAL, "bias", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_bias", "get_bias"); ADD_PROPERTY(PropertyInfo(Variant::REAL, "propagation", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_propagation", "get_propagation"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "interior", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_interior", "is_interior"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "compress", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_compress", "is_compressed"); } GIProbeData::GIProbeData() { probe = VS::get_singleton()->gi_probe_create(); } GIProbeData::~GIProbeData() { VS::get_singleton()->free(probe); } ////////////////////// ////////////////////// void GIProbe::set_probe_data(const Ref &p_data) { if (p_data.is_valid()) { VS::get_singleton()->instance_set_base(get_instance(), p_data->get_rid()); } else { VS::get_singleton()->instance_set_base(get_instance(), RID()); } probe_data = p_data; } Ref GIProbe::get_probe_data() const { return probe_data; } void GIProbe::set_subdiv(Subdiv p_subdiv) { ERR_FAIL_INDEX(p_subdiv, SUBDIV_MAX); subdiv = p_subdiv; update_gizmo(); } GIProbe::Subdiv GIProbe::get_subdiv() const { return subdiv; } void GIProbe::set_extents(const Vector3 &p_extents) { extents = p_extents; update_gizmo(); } Vector3 GIProbe::get_extents() const { return extents; } void GIProbe::set_dynamic_range(int p_dynamic_range) { dynamic_range = p_dynamic_range; } int GIProbe::get_dynamic_range() const { return dynamic_range; } void GIProbe::set_energy(float p_energy) { energy = p_energy; if (probe_data.is_valid()) { probe_data->set_energy(energy); } } float GIProbe::get_energy() const { return energy; } void GIProbe::set_bias(float p_bias) { bias = p_bias; if (probe_data.is_valid()) { probe_data->set_bias(bias); } } float GIProbe::get_bias() const { return bias; } void GIProbe::set_propagation(float p_propagation) { propagation = p_propagation; if (probe_data.is_valid()) { probe_data->set_propagation(propagation); } } float GIProbe::get_propagation() const { return propagation; } void GIProbe::set_interior(bool p_enable) { interior = p_enable; if (probe_data.is_valid()) { probe_data->set_interior(p_enable); } } bool GIProbe::is_interior() const { return interior; } void GIProbe::set_compress(bool p_enable) { compress = p_enable; if (probe_data.is_valid()) { probe_data->set_compress(p_enable); } } bool GIProbe::is_compressed() const { return compress; } #include "math.h" #define FINDMINMAX(x0, x1, x2, min, max) \ min = max = x0; \ if (x1 < min) min = x1; \ if (x1 > max) max = x1; \ if (x2 < min) min = x2; \ if (x2 > max) max = x2; static bool planeBoxOverlap(Vector3 normal, float d, Vector3 maxbox) { int q; Vector3 vmin, vmax; for (q = 0; q <= 2; q++) { if (normal[q] > 0.0f) { vmin[q] = -maxbox[q]; vmax[q] = maxbox[q]; } else { vmin[q] = maxbox[q]; vmax[q] = -maxbox[q]; } } if (normal.dot(vmin) + d > 0.0f) return false; if (normal.dot(vmax) + d >= 0.0f) return true; return false; } /*======================== X-tests ========================*/ #define AXISTEST_X01(a, b, fa, fb) \ p0 = a * v0.y - b * v0.z; \ p2 = a * v2.y - b * v2.z; \ if (p0 < p2) { \ min = p0; \ max = p2; \ } else { \ min = p2; \ max = p0; \ } \ rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \ if (min > rad || max < -rad) return false; #define AXISTEST_X2(a, b, fa, fb) \ p0 = a * v0.y - b * v0.z; \ p1 = a * v1.y - b * v1.z; \ if (p0 < p1) { \ min = p0; \ max = p1; \ } else { \ min = p1; \ max = p0; \ } \ rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \ if (min > rad || max < -rad) return false; /*======================== Y-tests ========================*/ #define AXISTEST_Y02(a, b, fa, fb) \ p0 = -a * v0.x + b * v0.z; \ p2 = -a * v2.x + b * v2.z; \ if (p0 < p2) { \ min = p0; \ max = p2; \ } else { \ min = p2; \ max = p0; \ } \ rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \ if (min > rad || max < -rad) return false; #define AXISTEST_Y1(a, b, fa, fb) \ p0 = -a * v0.x + b * v0.z; \ p1 = -a * v1.x + b * v1.z; \ if (p0 < p1) { \ min = p0; \ max = p1; \ } else { \ min = p1; \ max = p0; \ } \ rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \ if (min > rad || max < -rad) return false; /*======================== Z-tests ========================*/ #define AXISTEST_Z12(a, b, fa, fb) \ p1 = a * v1.x - b * v1.y; \ p2 = a * v2.x - b * v2.y; \ if (p2 < p1) { \ min = p2; \ max = p1; \ } else { \ min = p1; \ max = p2; \ } \ rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \ if (min > rad || max < -rad) return false; #define AXISTEST_Z0(a, b, fa, fb) \ p0 = a * v0.x - b * v0.y; \ p1 = a * v1.x - b * v1.y; \ if (p0 < p1) { \ min = p0; \ max = p1; \ } else { \ min = p1; \ max = p0; \ } \ rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \ if (min > rad || max < -rad) return false; static bool fast_tri_box_overlap(const Vector3 &boxcenter, const Vector3 boxhalfsize, const Vector3 *triverts) { /* use separating axis theorem to test overlap between triangle and box */ /* need to test for overlap in these directions: */ /* 1) the {x,y,z}-directions (actually, since we use the AABB of the triangle */ /* we do not even need to test these) */ /* 2) normal of the triangle */ /* 3) crossproduct(edge from tri, {x,y,z}-directin) */ /* this gives 3x3=9 more tests */ Vector3 v0, v1, v2; float min, max, d, p0, p1, p2, rad, fex, fey, fez; Vector3 normal, e0, e1, e2; /* This is the fastest branch on Sun */ /* move everything so that the boxcenter is in (0,0,0) */ v0 = triverts[0] - boxcenter; v1 = triverts[1] - boxcenter; v2 = triverts[2] - boxcenter; /* compute triangle edges */ e0 = v1 - v0; /* tri edge 0 */ e1 = v2 - v1; /* tri edge 1 */ e2 = v0 - v2; /* tri edge 2 */ /* Bullet 3: */ /* test the 9 tests first (this was faster) */ fex = Math::abs(e0.x); fey = Math::abs(e0.y); fez = Math::abs(e0.z); AXISTEST_X01(e0.z, e0.y, fez, fey); AXISTEST_Y02(e0.z, e0.x, fez, fex); AXISTEST_Z12(e0.y, e0.x, fey, fex); fex = Math::abs(e1.x); fey = Math::abs(e1.y); fez = Math::abs(e1.z); AXISTEST_X01(e1.z, e1.y, fez, fey); AXISTEST_Y02(e1.z, e1.x, fez, fex); AXISTEST_Z0(e1.y, e1.x, fey, fex); fex = Math::abs(e2.x); fey = Math::abs(e2.y); fez = Math::abs(e2.z); AXISTEST_X2(e2.z, e2.y, fez, fey); AXISTEST_Y1(e2.z, e2.x, fez, fex); AXISTEST_Z12(e2.y, e2.x, fey, fex); /* Bullet 1: */ /* first test overlap in the {x,y,z}-directions */ /* find min, max of the triangle each direction, and test for overlap in */ /* that direction -- this is equivalent to testing a minimal AABB around */ /* the triangle against the AABB */ /* test in X-direction */ FINDMINMAX(v0.x, v1.x, v2.x, min, max); if (min > boxhalfsize.x || max < -boxhalfsize.x) return false; /* test in Y-direction */ FINDMINMAX(v0.y, v1.y, v2.y, min, max); if (min > boxhalfsize.y || max < -boxhalfsize.y) return false; /* test in Z-direction */ FINDMINMAX(v0.z, v1.z, v2.z, min, max); if (min > boxhalfsize.z || max < -boxhalfsize.z) return false; /* Bullet 2: */ /* test if the box intersects the plane of the triangle */ /* compute plane equation of triangle: normal*x+d=0 */ normal = e0.cross(e1); d = -normal.dot(v0); /* plane eq: normal.x+d=0 */ if (!planeBoxOverlap(normal, d, boxhalfsize)) return false; return true; /* box and triangle overlaps */ } static _FORCE_INLINE_ Vector2 get_uv(const Vector3 &p_pos, const Vector3 *p_vtx, const Vector2 *p_uv) { if (p_pos.distance_squared_to(p_vtx[0]) < CMP_EPSILON2) return p_uv[0]; if (p_pos.distance_squared_to(p_vtx[1]) < CMP_EPSILON2) return p_uv[1]; if (p_pos.distance_squared_to(p_vtx[2]) < CMP_EPSILON2) return p_uv[2]; Vector3 v0 = p_vtx[1] - p_vtx[0]; Vector3 v1 = p_vtx[2] - p_vtx[0]; Vector3 v2 = p_pos - p_vtx[0]; float d00 = v0.dot(v0); float d01 = v0.dot(v1); float d11 = v1.dot(v1); float d20 = v2.dot(v0); float d21 = v2.dot(v1); float denom = (d00 * d11 - d01 * d01); if (denom == 0) return p_uv[0]; float v = (d11 * d20 - d01 * d21) / denom; float w = (d00 * d21 - d01 * d20) / denom; float u = 1.0f - v - w; return p_uv[0] * u + p_uv[1] * v + p_uv[2] * w; } void GIProbe::_plot_face(int p_idx, int p_level, int p_x, int p_y, int p_z, const Vector3 *p_vtx, const Vector2 *p_uv, const Baker::MaterialCache &p_material, const Rect3 &p_aabb, Baker *p_baker) { if (p_level == p_baker->cell_subdiv - 1) { //plot the face by guessing it's albedo and emission value //find best axis to map to, for scanning values int closest_axis; float closest_dot; Plane plane = Plane(p_vtx[0], p_vtx[1], p_vtx[2]); Vector3 normal = plane.normal; for (int i = 0; i < 3; i++) { Vector3 axis; axis[i] = 1.0; float dot = ABS(normal.dot(axis)); if (i == 0 || dot > closest_dot) { closest_axis = i; closest_dot = dot; } } Vector3 axis; axis[closest_axis] = 1.0; Vector3 t1; t1[(closest_axis + 1) % 3] = 1.0; Vector3 t2; t2[(closest_axis + 2) % 3] = 1.0; t1 *= p_aabb.size[(closest_axis + 1) % 3] / float(color_scan_cell_width); t2 *= p_aabb.size[(closest_axis + 2) % 3] / float(color_scan_cell_width); Color albedo_accum; Color emission_accum; Vector3 normal_accum; float alpha = 0.0; //map to a grid average in the best axis for this face for (int i = 0; i < color_scan_cell_width; i++) { Vector3 ofs_i = float(i) * t1; for (int j = 0; j < color_scan_cell_width; j++) { Vector3 ofs_j = float(j) * t2; Vector3 from = p_aabb.pos + ofs_i + ofs_j; Vector3 to = from + t1 + t2 + axis * p_aabb.size[closest_axis]; Vector3 half = (to - from) * 0.5; //is in this cell? if (!fast_tri_box_overlap(from + half, half, p_vtx)) { continue; //face does not span this cell } //go from -size to +size*2 to avoid skipping collisions Vector3 ray_from = from + (t1 + t2) * 0.5 - axis * p_aabb.size[closest_axis]; Vector3 ray_to = ray_from + axis * p_aabb.size[closest_axis] * 2; if (normal.dot(ray_from - ray_to) < 0) { SWAP(ray_from, ray_to); } Vector3 intersection; if (!plane.intersects_segment(ray_from, ray_to, &intersection)) { if (ABS(plane.distance_to(ray_from)) < ABS(plane.distance_to(ray_to))) { intersection = plane.project(ray_from); } else { intersection = plane.project(ray_to); } } intersection = Face3(p_vtx[0], p_vtx[1], p_vtx[2]).get_closest_point_to(intersection); Vector2 uv = get_uv(intersection, p_vtx, p_uv); int uv_x = CLAMP(Math::fposmod(uv.x, 1.0f) * bake_texture_size, 0, bake_texture_size - 1); int uv_y = CLAMP(Math::fposmod(uv.y, 1.0f) * bake_texture_size, 0, bake_texture_size - 1); int ofs = uv_y * bake_texture_size + uv_x; albedo_accum.r += p_material.albedo[ofs].r; albedo_accum.g += p_material.albedo[ofs].g; albedo_accum.b += p_material.albedo[ofs].b; albedo_accum.a += p_material.albedo[ofs].a; emission_accum.r += p_material.emission[ofs].r; emission_accum.g += p_material.emission[ofs].g; emission_accum.b += p_material.emission[ofs].b; normal_accum += normal; alpha += 1.0; } } if (alpha == 0) { //could not in any way get texture information.. so use closest point to center Face3 f(p_vtx[0], p_vtx[1], p_vtx[2]); Vector3 inters = f.get_closest_point_to(p_aabb.pos + p_aabb.size * 0.5); Vector2 uv = get_uv(inters, p_vtx, p_uv); int uv_x = CLAMP(Math::fposmod(uv.x, 1.0f) * bake_texture_size, 0, bake_texture_size - 1); int uv_y = CLAMP(Math::fposmod(uv.y, 1.0f) * bake_texture_size, 0, bake_texture_size - 1); int ofs = uv_y * bake_texture_size + uv_x; alpha = 1.0 / (color_scan_cell_width * color_scan_cell_width); albedo_accum.r = p_material.albedo[ofs].r * alpha; albedo_accum.g = p_material.albedo[ofs].g * alpha; albedo_accum.b = p_material.albedo[ofs].b * alpha; albedo_accum.a = p_material.albedo[ofs].a * alpha; emission_accum.r = p_material.emission[ofs].r * alpha; emission_accum.g = p_material.emission[ofs].g * alpha; emission_accum.b = p_material.emission[ofs].b * alpha; normal_accum *= alpha; } else { float accdiv = 1.0 / (color_scan_cell_width * color_scan_cell_width); alpha *= accdiv; albedo_accum.r *= accdiv; albedo_accum.g *= accdiv; albedo_accum.b *= accdiv; albedo_accum.a *= accdiv; emission_accum.r *= accdiv; emission_accum.g *= accdiv; emission_accum.b *= accdiv; normal_accum *= accdiv; } //put this temporarily here, corrected in a later step p_baker->bake_cells[p_idx].albedo[0] += albedo_accum.r; p_baker->bake_cells[p_idx].albedo[1] += albedo_accum.g; p_baker->bake_cells[p_idx].albedo[2] += albedo_accum.b; p_baker->bake_cells[p_idx].emission[0] += emission_accum.r; p_baker->bake_cells[p_idx].emission[1] += emission_accum.g; p_baker->bake_cells[p_idx].emission[2] += emission_accum.b; p_baker->bake_cells[p_idx].normal[0] += normal_accum.x; p_baker->bake_cells[p_idx].normal[1] += normal_accum.y; p_baker->bake_cells[p_idx].normal[2] += normal_accum.z; p_baker->bake_cells[p_idx].alpha += alpha; static const Vector3 side_normals[6] = { Vector3(-1, 0, 0), Vector3(1, 0, 0), Vector3(0, -1, 0), Vector3(0, 1, 0), Vector3(0, 0, -1), Vector3(0, 0, 1), }; /* for(int i=0;i<6;i++) { if (normal.dot(side_normals[i])>CMP_EPSILON) { p_baker->bake_cells[p_idx].used_sides|=(1<cell_subdiv - 1)) >> (p_level + 1); for (int i = 0; i < 8; i++) { Rect3 aabb = p_aabb; aabb.size *= 0.5; int nx = p_x; int ny = p_y; int nz = p_z; if (i & 1) { aabb.pos.x += aabb.size.x; nx += half; } if (i & 2) { aabb.pos.y += aabb.size.y; ny += half; } if (i & 4) { aabb.pos.z += aabb.size.z; nz += half; } //make sure to not plot beyond limits if (nx < 0 || nx >= p_baker->axis_cell_size[0] || ny < 0 || ny >= p_baker->axis_cell_size[1] || nz < 0 || nz >= p_baker->axis_cell_size[2]) continue; { Rect3 test_aabb = aabb; //test_aabb.grow_by(test_aabb.get_longest_axis_size()*0.05); //grow a bit to avoid numerical error in real-time Vector3 qsize = test_aabb.size * 0.5; //quarter size, for fast aabb test if (!fast_tri_box_overlap(test_aabb.pos + qsize, qsize, p_vtx)) { //if (!Face3(p_vtx[0],p_vtx[1],p_vtx[2]).intersects_aabb2(aabb)) { //does not fit in child, go on continue; } } if (p_baker->bake_cells[p_idx].childs[i] == Baker::CHILD_EMPTY) { //sub cell must be created uint32_t child_idx = p_baker->bake_cells.size(); p_baker->bake_cells[p_idx].childs[i] = child_idx; p_baker->bake_cells.resize(p_baker->bake_cells.size() + 1); p_baker->bake_cells[child_idx].level = p_level + 1; } _plot_face(p_baker->bake_cells[p_idx].childs[i], p_level + 1, nx, ny, nz, p_vtx, p_uv, p_material, aabb, p_baker); } } } void GIProbe::_fixup_plot(int p_idx, int p_level, int p_x, int p_y, int p_z, Baker *p_baker) { if (p_level == p_baker->cell_subdiv - 1) { p_baker->leaf_voxel_count++; float alpha = p_baker->bake_cells[p_idx].alpha; p_baker->bake_cells[p_idx].albedo[0] /= alpha; p_baker->bake_cells[p_idx].albedo[1] /= alpha; p_baker->bake_cells[p_idx].albedo[2] /= alpha; //transfer emission to light p_baker->bake_cells[p_idx].emission[0] /= alpha; p_baker->bake_cells[p_idx].emission[1] /= alpha; p_baker->bake_cells[p_idx].emission[2] /= alpha; p_baker->bake_cells[p_idx].normal[0] /= alpha; p_baker->bake_cells[p_idx].normal[1] /= alpha; p_baker->bake_cells[p_idx].normal[2] /= alpha; Vector3 n(p_baker->bake_cells[p_idx].normal[0], p_baker->bake_cells[p_idx].normal[1], p_baker->bake_cells[p_idx].normal[2]); if (n.length() < 0.01) { //too much fight over normal, zero it p_baker->bake_cells[p_idx].normal[0] = 0; p_baker->bake_cells[p_idx].normal[1] = 0; p_baker->bake_cells[p_idx].normal[2] = 0; } else { n.normalize(); p_baker->bake_cells[p_idx].normal[0] = n.x; p_baker->bake_cells[p_idx].normal[1] = n.y; p_baker->bake_cells[p_idx].normal[2] = n.z; } p_baker->bake_cells[p_idx].alpha = 1.0; /* //remove neighbours from used sides for(int n=0;n<6;n++) { int ofs[3]={0,0,0}; ofs[n/2]=(n&1)?1:-1; //convert to x,y,z on this level int x=p_x; int y=p_y; int z=p_z; x+=ofs[0]; y+=ofs[1]; z+=ofs[2]; int ofs_x=0; int ofs_y=0; int ofs_z=0; int size = 1<=size || y<0 || y>=size || z<0 || z>=size) { //neighbour is out, can't use it p_baker->bake_cells[p_idx].used_sides&=~(1<cell_subdiv-1;i++) { Baker::Cell *bc = &p_baker->bake_cells[neighbour]; int child = 0; if (x >= ofs_x + half) { child|=1; ofs_x+=half; } if (y >= ofs_y + half) { child|=2; ofs_y+=half; } if (z >= ofs_z + half) { child|=4; ofs_z+=half; } neighbour = bc->childs[child]; if (neighbour==Baker::CHILD_EMPTY) { break; } half>>=1; } if (neighbour!=Baker::CHILD_EMPTY) { p_baker->bake_cells[p_idx].used_sides&=~(1<cell_subdiv - 1)) >> (p_level + 1); for (int i = 0; i < 8; i++) { uint32_t child = p_baker->bake_cells[p_idx].childs[i]; if (child == Baker::CHILD_EMPTY) continue; int nx = p_x; int ny = p_y; int nz = p_z; if (i & 1) nx += half; if (i & 2) ny += half; if (i & 4) nz += half; _fixup_plot(child, p_level + 1, nx, ny, nz, p_baker); alpha_average += p_baker->bake_cells[child].alpha; } p_baker->bake_cells[p_idx].alpha = alpha_average / 8.0; p_baker->bake_cells[p_idx].emission[0] = 0; p_baker->bake_cells[p_idx].emission[1] = 0; p_baker->bake_cells[p_idx].emission[2] = 0; p_baker->bake_cells[p_idx].normal[0] = 0; p_baker->bake_cells[p_idx].normal[1] = 0; p_baker->bake_cells[p_idx].normal[2] = 0; p_baker->bake_cells[p_idx].albedo[0] = 0; p_baker->bake_cells[p_idx].albedo[1] = 0; p_baker->bake_cells[p_idx].albedo[2] = 0; } } Vector GIProbe::_get_bake_texture(Ref p_image, const Color &p_color) { Vector ret; if (p_image.is_null()) { ret.resize(bake_texture_size * bake_texture_size); for (int i = 0; i < bake_texture_size * bake_texture_size; i++) { ret[i] = p_color; } return ret; } if (p_image->is_compressed()) { print_line("DECOMPRESSING!!!!"); p_image->decompress(); } p_image->convert(Image::FORMAT_RGBA8); p_image->resize(bake_texture_size, bake_texture_size, Image::INTERPOLATE_CUBIC); PoolVector::Read r = p_image->get_data().read(); ret.resize(bake_texture_size * bake_texture_size); for (int i = 0; i < bake_texture_size * bake_texture_size; i++) { Color c; c.r = r[i * 4 + 0] / 255.0; c.g = r[i * 4 + 1] / 255.0; c.b = r[i * 4 + 2] / 255.0; c.a = r[i * 4 + 3] / 255.0; ret[i] = c; } return ret; } GIProbe::Baker::MaterialCache GIProbe::_get_material_cache(Ref p_material, Baker *p_baker) { //this way of obtaining materials is inaccurate and also does not support some compressed formats very well Ref mat = p_material; Ref material = mat; //hack for now if (p_baker->material_cache.has(material)) { return p_baker->material_cache[material]; } Baker::MaterialCache mc; if (mat.is_valid()) { Ref albedo_tex = mat->get_texture(SpatialMaterial::TEXTURE_ALBEDO); Ref img_albedo; if (albedo_tex.is_valid()) { img_albedo = albedo_tex->get_data(); } else { } mc.albedo = _get_bake_texture(img_albedo, mat->get_albedo()); Ref emission_tex = mat->get_texture(SpatialMaterial::TEXTURE_EMISSION); Color emission_col = mat->get_emission(); emission_col.r *= mat->get_emission_energy(); emission_col.g *= mat->get_emission_energy(); emission_col.b *= mat->get_emission_energy(); Ref img_emission; if (emission_tex.is_valid()) { img_emission = emission_tex->get_data(); } mc.emission = _get_bake_texture(img_emission, emission_col); } else { Ref empty; mc.albedo = _get_bake_texture(empty, Color(0.7, 0.7, 0.7)); mc.emission = _get_bake_texture(empty, Color(0, 0, 0)); } p_baker->material_cache[p_material] = mc; return mc; } void GIProbe::_plot_mesh(const Transform &p_xform, Ref &p_mesh, Baker *p_baker, const Vector > &p_materials, const Ref &p_override_material) { for (int i = 0; i < p_mesh->get_surface_count(); i++) { if (p_mesh->surface_get_primitive_type(i) != Mesh::PRIMITIVE_TRIANGLES) continue; //only triangles Ref src_material; if (p_override_material.is_valid()) { src_material = p_override_material; } else if (i < p_materials.size() && p_materials[i].is_valid()) { src_material = p_materials[i]; } else { src_material = p_mesh->surface_get_material(i); } Baker::MaterialCache material = _get_material_cache(src_material, p_baker); Array a = p_mesh->surface_get_arrays(i); PoolVector vertices = a[Mesh::ARRAY_VERTEX]; PoolVector::Read vr = vertices.read(); PoolVector uv = a[Mesh::ARRAY_TEX_UV]; PoolVector::Read uvr; PoolVector index = a[Mesh::ARRAY_INDEX]; bool read_uv = false; if (uv.size()) { uvr = uv.read(); read_uv = true; } if (index.size()) { int facecount = index.size() / 3; PoolVector::Read ir = index.read(); for (int j = 0; j < facecount; j++) { Vector3 vtxs[3]; Vector2 uvs[3]; for (int k = 0; k < 3; k++) { vtxs[k] = p_xform.xform(vr[ir[j * 3 + k]]); } if (read_uv) { for (int k = 0; k < 3; k++) { uvs[k] = uvr[ir[j * 3 + k]]; } } //test against original bounds if (!fast_tri_box_overlap(-extents, extents * 2, vtxs)) continue; //plot _plot_face(0, 0, 0, 0, 0, vtxs, uvs, material, p_baker->po2_bounds, p_baker); } } else { int facecount = vertices.size() / 3; for (int j = 0; j < facecount; j++) { Vector3 vtxs[3]; Vector2 uvs[3]; for (int k = 0; k < 3; k++) { vtxs[k] = p_xform.xform(vr[j * 3 + k]); } if (read_uv) { for (int k = 0; k < 3; k++) { uvs[k] = uvr[j * 3 + k]; } } //test against original bounds if (!fast_tri_box_overlap(-extents, extents * 2, vtxs)) continue; //plot face _plot_face(0, 0, 0, 0, 0, vtxs, uvs, material, p_baker->po2_bounds, p_baker); } } } } void GIProbe::_find_meshes(Node *p_at_node, Baker *p_baker) { MeshInstance *mi = p_at_node->cast_to(); if (mi && mi->get_flag(GeometryInstance::FLAG_USE_BAKED_LIGHT)) { Ref mesh = mi->get_mesh(); if (mesh.is_valid()) { Rect3 aabb = mesh->get_aabb(); Transform xf = get_global_transform().affine_inverse() * mi->get_global_transform(); if (Rect3(-extents, extents * 2).intersects(xf.xform(aabb))) { Baker::PlotMesh pm; pm.local_xform = xf; pm.mesh = mesh; for (int i = 0; i < mesh->get_surface_count(); i++) { pm.instance_materials.push_back(mi->get_surface_material(i)); } pm.override_material = mi->get_material_override(); p_baker->mesh_list.push_back(pm); } } } if (p_at_node->cast_to()) { Spatial *s = p_at_node->cast_to(); Array meshes = p_at_node->call("get_meshes"); for (int i = 0; i < meshes.size(); i += 2) { Transform mxf = meshes[i]; Ref mesh = meshes[i + 1]; if (!mesh.is_valid()) continue; Rect3 aabb = mesh->get_aabb(); Transform xf = get_global_transform().affine_inverse() * (s->get_global_transform() * mxf); if (Rect3(-extents, extents * 2).intersects(xf.xform(aabb))) { Baker::PlotMesh pm; pm.local_xform = xf; pm.mesh = mesh; p_baker->mesh_list.push_back(pm); } } } for (int i = 0; i < p_at_node->get_child_count(); i++) { Node *child = p_at_node->get_child(i); if (!child->get_owner()) continue; //maybe a helper _find_meshes(child, p_baker); } } void GIProbe::bake(Node *p_from_node, bool p_create_visual_debug) { Baker baker; static const int subdiv_value[SUBDIV_MAX] = { 7, 8, 9, 10 }; baker.cell_subdiv = subdiv_value[subdiv]; baker.bake_cells.resize(1); //find out the actual real bounds, power of 2, which gets the highest subdivision baker.po2_bounds = Rect3(-extents, extents * 2.0); int longest_axis = baker.po2_bounds.get_longest_axis_index(); baker.axis_cell_size[longest_axis] = (1 << (baker.cell_subdiv - 1)); baker.leaf_voxel_count = 0; for (int i = 0; i < 3; i++) { if (i == longest_axis) continue; baker.axis_cell_size[i] = baker.axis_cell_size[longest_axis]; float axis_size = baker.po2_bounds.size[longest_axis]; //shrink until fit subdiv while (axis_size / 2.0 >= baker.po2_bounds.size[i]) { axis_size /= 2.0; baker.axis_cell_size[i] >>= 1; } baker.po2_bounds.size[i] = baker.po2_bounds.size[longest_axis]; } Transform to_bounds; to_bounds.basis.scale(Vector3(baker.po2_bounds.size[longest_axis], baker.po2_bounds.size[longest_axis], baker.po2_bounds.size[longest_axis])); to_bounds.origin = baker.po2_bounds.pos; Transform to_grid; to_grid.basis.scale(Vector3(baker.axis_cell_size[longest_axis], baker.axis_cell_size[longest_axis], baker.axis_cell_size[longest_axis])); baker.to_cell_space = to_grid * to_bounds.affine_inverse(); _find_meshes(p_from_node ? p_from_node : get_parent(), &baker); int pmc = 0; for (List::Element *E = baker.mesh_list.front(); E; E = E->next()) { print_line("plotting mesh " + itos(pmc++) + "/" + itos(baker.mesh_list.size())); _plot_mesh(E->get().local_xform, E->get().mesh, &baker, E->get().instance_materials, E->get().override_material); } _fixup_plot(0, 0, 0, 0, 0, &baker); //create the data for visual server PoolVector data; data.resize(16 + (8 + 1 + 1 + 1 + 1) * baker.bake_cells.size()); //4 for header, rest for rest. { PoolVector::Write w = data.write(); uint32_t *w32 = (uint32_t *)w.ptr(); w32[0] = 0; //version w32[1] = baker.cell_subdiv; //subdiv w32[2] = baker.axis_cell_size[0]; w32[3] = baker.axis_cell_size[1]; w32[4] = baker.axis_cell_size[2]; w32[5] = baker.bake_cells.size(); w32[6] = baker.leaf_voxel_count; int ofs = 16; for (int i = 0; i < baker.bake_cells.size(); i++) { for (int j = 0; j < 8; j++) { w32[ofs++] = baker.bake_cells[i].childs[j]; } { //albedo uint32_t rgba = uint32_t(CLAMP(baker.bake_cells[i].albedo[0] * 255.0, 0, 255)) << 16; rgba |= uint32_t(CLAMP(baker.bake_cells[i].albedo[1] * 255.0, 0, 255)) << 8; rgba |= uint32_t(CLAMP(baker.bake_cells[i].albedo[2] * 255.0, 0, 255)) << 0; w32[ofs++] = rgba; } { //emission Vector3 e(baker.bake_cells[i].emission[0], baker.bake_cells[i].emission[1], baker.bake_cells[i].emission[2]); float l = e.length(); if (l > 0) { e.normalize(); l = CLAMP(l / 8.0, 0, 1.0); } uint32_t em = uint32_t(CLAMP(e[0] * 255, 0, 255)) << 24; em |= uint32_t(CLAMP(e[1] * 255, 0, 255)) << 16; em |= uint32_t(CLAMP(e[2] * 255, 0, 255)) << 8; em |= uint32_t(CLAMP(l * 255, 0, 255)); w32[ofs++] = em; } //w32[ofs++]=baker.bake_cells[i].used_sides; { //normal Vector3 n(baker.bake_cells[i].normal[0], baker.bake_cells[i].normal[1], baker.bake_cells[i].normal[2]); n = n * Vector3(0.5, 0.5, 0.5) + Vector3(0.5, 0.5, 0.5); uint32_t norm = 0; norm |= uint32_t(CLAMP(n.x * 255.0, 0, 255)) << 16; norm |= uint32_t(CLAMP(n.y * 255.0, 0, 255)) << 8; norm |= uint32_t(CLAMP(n.z * 255.0, 0, 255)) << 0; w32[ofs++] = norm; } { uint16_t alpha = CLAMP(uint32_t(baker.bake_cells[i].alpha * 65535.0), 0, 65535); uint16_t level = baker.bake_cells[i].level; w32[ofs++] = (uint32_t(level) << 16) | uint32_t(alpha); } } } if (p_create_visual_debug) { _create_debug_mesh(&baker); } else { Ref probe_data; probe_data.instance(); probe_data->set_bounds(Rect3(-extents, extents * 2.0)); probe_data->set_cell_size(baker.po2_bounds.size[longest_axis] / baker.axis_cell_size[longest_axis]); probe_data->set_dynamic_data(data); probe_data->set_dynamic_range(dynamic_range); probe_data->set_energy(energy); probe_data->set_bias(bias); probe_data->set_propagation(propagation); probe_data->set_interior(interior); probe_data->set_compress(compress); probe_data->set_to_cell_xform(baker.to_cell_space); set_probe_data(probe_data); } } void GIProbe::_debug_mesh(int p_idx, int p_level, const Rect3 &p_aabb, Ref &p_multimesh, int &idx, Baker *p_baker) { if (p_level == p_baker->cell_subdiv - 1) { Vector3 center = p_aabb.pos + p_aabb.size * 0.5; Transform xform; xform.origin = center; xform.basis.scale(p_aabb.size * 0.5); p_multimesh->set_instance_transform(idx, xform); Color col = Color(p_baker->bake_cells[p_idx].albedo[0], p_baker->bake_cells[p_idx].albedo[1], p_baker->bake_cells[p_idx].albedo[2]); p_multimesh->set_instance_color(idx, col); idx++; } else { for (int i = 0; i < 8; i++) { if (p_baker->bake_cells[p_idx].childs[i] == Baker::CHILD_EMPTY) continue; Rect3 aabb = p_aabb; aabb.size *= 0.5; if (i & 1) aabb.pos.x += aabb.size.x; if (i & 2) aabb.pos.y += aabb.size.y; if (i & 4) aabb.pos.z += aabb.size.z; _debug_mesh(p_baker->bake_cells[p_idx].childs[i], p_level + 1, aabb, p_multimesh, idx, p_baker); } } } void GIProbe::_create_debug_mesh(Baker *p_baker) { Ref mm; mm.instance(); mm->set_transform_format(MultiMesh::TRANSFORM_3D); mm->set_color_format(MultiMesh::COLOR_8BIT); print_line("leaf voxels: " + itos(p_baker->leaf_voxel_count)); mm->set_instance_count(p_baker->leaf_voxel_count); Ref mesh; mesh.instance(); { Array arr; arr.resize(Mesh::ARRAY_MAX); PoolVector vertices; PoolVector colors; int vtx_idx = 0; #define ADD_VTX(m_idx) \ ; \ vertices.push_back(face_points[m_idx]); \ colors.push_back(Color(1, 1, 1, 1)); \ vtx_idx++; for (int i = 0; i < 6; i++) { Vector3 face_points[4]; for (int j = 0; j < 4; j++) { float v[3]; v[0] = 1.0; v[1] = 1 - 2 * ((j >> 1) & 1); v[2] = v[1] * (1 - 2 * (j & 1)); for (int k = 0; k < 3; k++) { if (i < 3) face_points[j][(i + k) % 3] = v[k] * (i >= 3 ? -1 : 1); else face_points[3 - j][(i + k) % 3] = v[k] * (i >= 3 ? -1 : 1); } } //tri 1 ADD_VTX(0); ADD_VTX(1); ADD_VTX(2); //tri 2 ADD_VTX(2); ADD_VTX(3); ADD_VTX(0); } arr[Mesh::ARRAY_VERTEX] = vertices; arr[Mesh::ARRAY_COLOR] = colors; mesh->add_surface_from_arrays(Mesh::PRIMITIVE_TRIANGLES, arr); } { Ref fsm; fsm.instance(); fsm->set_flag(SpatialMaterial::FLAG_SRGB_VERTEX_COLOR, true); fsm->set_flag(SpatialMaterial::FLAG_ALBEDO_FROM_VERTEX_COLOR, true); fsm->set_flag(SpatialMaterial::FLAG_UNSHADED, true); fsm->set_albedo(Color(1, 1, 1, 1)); mesh->surface_set_material(0, fsm); } mm->set_mesh(mesh); int idx = 0; _debug_mesh(0, 0, p_baker->po2_bounds, mm, idx, p_baker); MultiMeshInstance *mmi = memnew(MultiMeshInstance); mmi->set_multimesh(mm); add_child(mmi); #ifdef TOOLS_ENABLED if (get_tree()->get_edited_scene_root() == this) { mmi->set_owner(this); } else { mmi->set_owner(get_owner()); } #else mmi->set_owner(get_owner()); #endif } void GIProbe::_debug_bake() { bake(NULL, true); } Rect3 GIProbe::get_aabb() const { return Rect3(-extents, extents * 2); } PoolVector GIProbe::get_faces(uint32_t p_usage_flags) const { return PoolVector(); } void GIProbe::_bind_methods() { ClassDB::bind_method(D_METHOD("set_probe_data", "data"), &GIProbe::set_probe_data); ClassDB::bind_method(D_METHOD("get_probe_data"), &GIProbe::get_probe_data); ClassDB::bind_method(D_METHOD("set_subdiv", "subdiv"), &GIProbe::set_subdiv); ClassDB::bind_method(D_METHOD("get_subdiv"), &GIProbe::get_subdiv); ClassDB::bind_method(D_METHOD("set_extents", "extents"), &GIProbe::set_extents); ClassDB::bind_method(D_METHOD("get_extents"), &GIProbe::get_extents); ClassDB::bind_method(D_METHOD("set_dynamic_range", "max"), &GIProbe::set_dynamic_range); ClassDB::bind_method(D_METHOD("get_dynamic_range"), &GIProbe::get_dynamic_range); ClassDB::bind_method(D_METHOD("set_energy", "max"), &GIProbe::set_energy); ClassDB::bind_method(D_METHOD("get_energy"), &GIProbe::get_energy); ClassDB::bind_method(D_METHOD("set_bias", "max"), &GIProbe::set_bias); ClassDB::bind_method(D_METHOD("get_bias"), &GIProbe::get_bias); ClassDB::bind_method(D_METHOD("set_propagation", "max"), &GIProbe::set_propagation); ClassDB::bind_method(D_METHOD("get_propagation"), &GIProbe::get_propagation); ClassDB::bind_method(D_METHOD("set_interior", "enable"), &GIProbe::set_interior); ClassDB::bind_method(D_METHOD("is_interior"), &GIProbe::is_interior); ClassDB::bind_method(D_METHOD("set_compress", "enable"), &GIProbe::set_compress); ClassDB::bind_method(D_METHOD("is_compressed"), &GIProbe::is_compressed); ClassDB::bind_method(D_METHOD("bake", "from_node", "create_visual_debug"), &GIProbe::bake, DEFVAL(Variant()), DEFVAL(false)); ClassDB::bind_method(D_METHOD("debug_bake"), &GIProbe::_debug_bake); ClassDB::set_method_flags(get_class_static(), _scs_create("debug_bake"), METHOD_FLAGS_DEFAULT | METHOD_FLAG_EDITOR); ADD_PROPERTY(PropertyInfo(Variant::INT, "subdiv", PROPERTY_HINT_ENUM, "64,128,256,512"), "set_subdiv", "get_subdiv"); ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "extents"), "set_extents", "get_extents"); ADD_PROPERTY(PropertyInfo(Variant::INT, "dynamic_range", PROPERTY_HINT_RANGE, "1,16,1"), "set_dynamic_range", "get_dynamic_range"); ADD_PROPERTY(PropertyInfo(Variant::REAL, "energy", PROPERTY_HINT_RANGE, "0,16,0.01"), "set_energy", "get_energy"); ADD_PROPERTY(PropertyInfo(Variant::REAL, "propagation", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_propagation", "get_propagation"); ADD_PROPERTY(PropertyInfo(Variant::REAL, "bias", PROPERTY_HINT_RANGE, "0,4,0.001"), "set_bias", "get_bias"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "interior"), "set_interior", "is_interior"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "compress"), "set_compress", "is_compressed"); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "data", PROPERTY_HINT_RESOURCE_TYPE, "GIProbeData"), "set_probe_data", "get_probe_data"); BIND_CONSTANT(SUBDIV_64); BIND_CONSTANT(SUBDIV_128); BIND_CONSTANT(SUBDIV_256); BIND_CONSTANT(SUBDIV_MAX); } GIProbe::GIProbe() { subdiv = SUBDIV_128; dynamic_range = 4; energy = 1.0; bias = 0.4; propagation = 1.0; extents = Vector3(10, 10, 10); color_scan_cell_width = 4; bake_texture_size = 128; interior = false; compress = false; gi_probe = VS::get_singleton()->gi_probe_create(); } GIProbe::~GIProbe() { }