/*************************************************************************/ /* gi_probe.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "gi_probe.h" #include "core/os/os.h" #include "core/method_bind_ext.gen.inc" #include "mesh_instance.h" #include "voxelizer.h" void GIProbeData::_set_data(const Dictionary &p_data) { ERR_FAIL_COND(!p_data.has("bounds")); ERR_FAIL_COND(!p_data.has("octree_size")); ERR_FAIL_COND(!p_data.has("octree_cells")); ERR_FAIL_COND(!p_data.has("octree_data")); ERR_FAIL_COND(!p_data.has("octree_df") && !p_data.has("octree_df_png")); ERR_FAIL_COND(!p_data.has("level_counts")); ERR_FAIL_COND(!p_data.has("to_cell_xform")); AABB bounds = p_data["bounds"]; Vector3 octree_size = p_data["octree_size"]; PoolVector<uint8_t> octree_cells = p_data["octree_cells"]; PoolVector<uint8_t> octree_data = p_data["octree_data"]; PoolVector<uint8_t> octree_df; if (p_data.has("octree_df")) { octree_df = p_data["octree_df"]; } else if (p_data.has("octree_df_png")) { PoolVector<uint8_t> octree_df_png = p_data["octree_df_png"]; Ref<Image> img; img.instance(); Error err = img->load_png_from_buffer(octree_df_png); ERR_FAIL_COND(err != OK); ERR_FAIL_COND(img->get_format() != Image::FORMAT_L8); octree_df = img->get_data(); } PoolVector<int> octree_levels = p_data["level_counts"]; Transform to_cell_xform = p_data["to_cell_xform"]; allocate(to_cell_xform, bounds, octree_size, octree_cells, octree_data, octree_df, octree_levels); } Dictionary GIProbeData::_get_data() const { Dictionary d; d["bounds"] = get_bounds(); Vector3i otsize = get_octree_size(); d["octree_size"] = Vector3(otsize); d["octree_cells"] = get_octree_cells(); d["octree_data"] = get_data_cells(); if (otsize != Vector3i()) { Ref<Image> img; img.instance(); img->create(otsize.x * otsize.y, otsize.z, false, Image::FORMAT_L8, get_distance_field()); PoolVector<uint8_t> df_png = img->save_png_to_buffer(); ERR_FAIL_COND_V(df_png.size() == 0, Dictionary()); d["octree_df_png"] = df_png; } else { d["octree_df"] = PoolVector<uint8_t>(); } d["level_counts"] = get_level_counts(); d["to_cell_xform"] = get_to_cell_xform(); return d; } void GIProbeData::allocate(const Transform &p_to_cell_xform, const AABB &p_aabb, const Vector3 &p_octree_size, const PoolVector<uint8_t> &p_octree_cells, const PoolVector<uint8_t> &p_data_cells, const PoolVector<uint8_t> &p_distance_field, const PoolVector<int> &p_level_counts) { VS::get_singleton()->gi_probe_allocate(probe, p_to_cell_xform, p_aabb, p_octree_size, p_octree_cells, p_data_cells, p_distance_field, p_level_counts); bounds = p_aabb; to_cell_xform = p_to_cell_xform; octree_size = p_octree_size; } AABB GIProbeData::get_bounds() const { return bounds; } Vector3 GIProbeData::get_octree_size() const { return octree_size; } PoolVector<uint8_t> GIProbeData::get_octree_cells() const { return VS::get_singleton()->gi_probe_get_octree_cells(probe); } PoolVector<uint8_t> GIProbeData::get_data_cells() const { return VS::get_singleton()->gi_probe_get_data_cells(probe); } PoolVector<uint8_t> GIProbeData::get_distance_field() const { return VS::get_singleton()->gi_probe_get_distance_field(probe); } PoolVector<int> GIProbeData::get_level_counts() const { return VS::get_singleton()->gi_probe_get_level_counts(probe); } Transform GIProbeData::get_to_cell_xform() const { return to_cell_xform; } void GIProbeData::set_dynamic_range(float p_range) { VS::get_singleton()->gi_probe_set_dynamic_range(probe, p_range); dynamic_range = p_range; } float GIProbeData::get_dynamic_range() const { return dynamic_range; } void GIProbeData::set_propagation(float p_propagation) { VS::get_singleton()->gi_probe_set_propagation(probe, p_propagation); propagation = p_propagation; } float GIProbeData::get_propagation() const { return propagation; } void GIProbeData::set_anisotropy_strength(float p_anisotropy_strength) { VS::get_singleton()->gi_probe_set_anisotropy_strength(probe, p_anisotropy_strength); anisotropy_strength = p_anisotropy_strength; } float GIProbeData::get_anisotropy_strength() const { return anisotropy_strength; } void GIProbeData::set_energy(float p_energy) { VS::get_singleton()->gi_probe_set_energy(probe, p_energy); energy = p_energy; } float GIProbeData::get_energy() const { return energy; } void GIProbeData::set_ao(float p_ao) { VS::get_singleton()->gi_probe_set_ao(probe, p_ao); ao = p_ao; } float GIProbeData::get_ao() const { return ao; } void GIProbeData::set_ao_size(float p_ao_size) { VS::get_singleton()->gi_probe_set_ao_size(probe, p_ao_size); ao_size = p_ao_size; } float GIProbeData::get_ao_size() const { return ao_size; } void GIProbeData::set_bias(float p_bias) { VS::get_singleton()->gi_probe_set_bias(probe, p_bias); bias = p_bias; } float GIProbeData::get_bias() const { return bias; } void GIProbeData::set_normal_bias(float p_normal_bias) { VS::get_singleton()->gi_probe_set_normal_bias(probe, p_normal_bias); normal_bias = p_normal_bias; } float GIProbeData::get_normal_bias() const { return normal_bias; } void GIProbeData::set_interior(bool p_enable) { VS::get_singleton()->gi_probe_set_interior(probe, p_enable); interior = p_enable; } bool GIProbeData::is_interior() const { return interior; } void GIProbeData::set_use_two_bounces(bool p_enable) { VS::get_singleton()->gi_probe_set_use_two_bounces(probe, p_enable); use_two_bounces = p_enable; } bool GIProbeData::is_using_two_bounces() const { return use_two_bounces; } RID GIProbeData::get_rid() const { return probe; } void GIProbeData::_validate_property(PropertyInfo &property) const { if (property.name == "anisotropy_strength") { bool anisotropy_enabled = ProjectSettings::get_singleton()->get("rendering/quality/gi_probes/anisotropic"); if (!anisotropy_enabled) { property.usage = PROPERTY_USAGE_NOEDITOR; } } } void GIProbeData::_bind_methods() { ClassDB::bind_method(D_METHOD("allocate", "to_cell_xform", "aabb", "octree_size", "octree_cells", "data_cells", "distance_field", "level_counts"), &GIProbeData::allocate); ClassDB::bind_method(D_METHOD("get_bounds"), &GIProbeData::get_bounds); ClassDB::bind_method(D_METHOD("get_octree_size"), &GIProbeData::get_octree_size); ClassDB::bind_method(D_METHOD("get_to_cell_xform"), &GIProbeData::get_to_cell_xform); ClassDB::bind_method(D_METHOD("get_octree_cells"), &GIProbeData::get_octree_cells); ClassDB::bind_method(D_METHOD("get_data_cells"), &GIProbeData::get_data_cells); ClassDB::bind_method(D_METHOD("get_level_counts"), &GIProbeData::get_level_counts); ClassDB::bind_method(D_METHOD("set_dynamic_range", "dynamic_range"), &GIProbeData::set_dynamic_range); ClassDB::bind_method(D_METHOD("get_dynamic_range"), &GIProbeData::get_dynamic_range); ClassDB::bind_method(D_METHOD("set_energy", "energy"), &GIProbeData::set_energy); ClassDB::bind_method(D_METHOD("get_energy"), &GIProbeData::get_energy); ClassDB::bind_method(D_METHOD("set_bias", "bias"), &GIProbeData::set_bias); ClassDB::bind_method(D_METHOD("get_bias"), &GIProbeData::get_bias); ClassDB::bind_method(D_METHOD("set_normal_bias", "bias"), &GIProbeData::set_normal_bias); ClassDB::bind_method(D_METHOD("get_normal_bias"), &GIProbeData::get_normal_bias); ClassDB::bind_method(D_METHOD("set_propagation", "propagation"), &GIProbeData::set_propagation); ClassDB::bind_method(D_METHOD("get_propagation"), &GIProbeData::get_propagation); ClassDB::bind_method(D_METHOD("set_anisotropy_strength", "strength"), &GIProbeData::set_anisotropy_strength); ClassDB::bind_method(D_METHOD("get_anisotropy_strength"), &GIProbeData::get_anisotropy_strength); ClassDB::bind_method(D_METHOD("set_ao", "ao"), &GIProbeData::set_ao); ClassDB::bind_method(D_METHOD("get_ao"), &GIProbeData::get_ao); ClassDB::bind_method(D_METHOD("set_ao_size", "strength"), &GIProbeData::set_ao_size); ClassDB::bind_method(D_METHOD("get_ao_size"), &GIProbeData::get_ao_size); ClassDB::bind_method(D_METHOD("set_interior", "interior"), &GIProbeData::set_interior); ClassDB::bind_method(D_METHOD("is_interior"), &GIProbeData::is_interior); ClassDB::bind_method(D_METHOD("set_use_two_bounces", "enable"), &GIProbeData::set_use_two_bounces); ClassDB::bind_method(D_METHOD("is_using_two_bounces"), &GIProbeData::is_using_two_bounces); ClassDB::bind_method(D_METHOD("_set_data", "data"), &GIProbeData::_set_data); ClassDB::bind_method(D_METHOD("_get_data"), &GIProbeData::_get_data); ADD_PROPERTY(PropertyInfo(Variant::DICTIONARY, "_data", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR | PROPERTY_USAGE_INTERNAL), "_set_data", "_get_data"); ADD_PROPERTY(PropertyInfo(Variant::INT, "dynamic_range", PROPERTY_HINT_RANGE, "0,8,0.01"), "set_dynamic_range", "get_dynamic_range"); ADD_PROPERTY(PropertyInfo(Variant::REAL, "energy", PROPERTY_HINT_RANGE, "0,64,0.01"), "set_energy", "get_energy"); ADD_PROPERTY(PropertyInfo(Variant::REAL, "bias", PROPERTY_HINT_RANGE, "0,8,0.01"), "set_bias", "get_bias"); ADD_PROPERTY(PropertyInfo(Variant::REAL, "normal_bias", PROPERTY_HINT_RANGE, "0,8,0.01"), "set_normal_bias", "get_normal_bias"); ADD_PROPERTY(PropertyInfo(Variant::REAL, "propagation", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_propagation", "get_propagation"); ADD_PROPERTY(PropertyInfo(Variant::REAL, "anisotropy_strength", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_anisotropy_strength", "get_anisotropy_strength"); ADD_PROPERTY(PropertyInfo(Variant::REAL, "ao", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_ao", "get_ao"); ADD_PROPERTY(PropertyInfo(Variant::REAL, "ao_size", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_ao_size", "get_ao_size"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "use_two_bounces"), "set_use_two_bounces", "is_using_two_bounces"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "interior"), "set_interior", "is_interior"); } GIProbeData::GIProbeData() { ao = 0.0; ao_size = 0.5; dynamic_range = 4; energy = 1.0; bias = 1.5; normal_bias = 0.0; propagation = 0.7; anisotropy_strength = 0.5; interior = false; probe = VS::get_singleton()->gi_probe_create(); } GIProbeData::~GIProbeData() { VS::get_singleton()->free(probe); } ////////////////////// ////////////////////// void GIProbe::set_probe_data(const Ref<GIProbeData> &p_data) { if (p_data.is_valid()) { VS::get_singleton()->instance_set_base(get_instance(), p_data->get_rid()); } else { VS::get_singleton()->instance_set_base(get_instance(), RID()); } probe_data = p_data; } Ref<GIProbeData> GIProbe::get_probe_data() const { return probe_data; } void GIProbe::set_subdiv(Subdiv p_subdiv) { ERR_FAIL_INDEX(p_subdiv, SUBDIV_MAX); subdiv = p_subdiv; update_gizmo(); } GIProbe::Subdiv GIProbe::get_subdiv() const { return subdiv; } void GIProbe::set_extents(const Vector3 &p_extents) { extents = p_extents; update_gizmo(); _change_notify("extents"); } Vector3 GIProbe::get_extents() const { return extents; } void GIProbe::_find_meshes(Node *p_at_node, List<PlotMesh> &plot_meshes) { MeshInstance *mi = Object::cast_to<MeshInstance>(p_at_node); if (mi && mi->get_flag(GeometryInstance::FLAG_USE_BAKED_LIGHT) && mi->is_visible_in_tree()) { Ref<Mesh> mesh = mi->get_mesh(); if (mesh.is_valid()) { AABB aabb = mesh->get_aabb(); Transform xf = get_global_transform().affine_inverse() * mi->get_global_transform(); if (AABB(-extents, extents * 2).intersects(xf.xform(aabb))) { PlotMesh pm; pm.local_xform = xf; pm.mesh = mesh; for (int i = 0; i < mesh->get_surface_count(); i++) { pm.instance_materials.push_back(mi->get_surface_material(i)); } pm.override_material = mi->get_material_override(); plot_meshes.push_back(pm); } } } Spatial *s = Object::cast_to<Spatial>(p_at_node); if (s) { if (s->is_visible_in_tree()) { Array meshes = p_at_node->call("get_meshes"); for (int i = 0; i < meshes.size(); i += 2) { Transform mxf = meshes[i]; Ref<Mesh> mesh = meshes[i + 1]; if (!mesh.is_valid()) continue; AABB aabb = mesh->get_aabb(); Transform xf = get_global_transform().affine_inverse() * (s->get_global_transform() * mxf); if (AABB(-extents, extents * 2).intersects(xf.xform(aabb))) { PlotMesh pm; pm.local_xform = xf; pm.mesh = mesh; plot_meshes.push_back(pm); } } } } for (int i = 0; i < p_at_node->get_child_count(); i++) { Node *child = p_at_node->get_child(i); _find_meshes(child, plot_meshes); } } GIProbe::BakeBeginFunc GIProbe::bake_begin_function = NULL; GIProbe::BakeStepFunc GIProbe::bake_step_function = NULL; GIProbe::BakeEndFunc GIProbe::bake_end_function = NULL; Vector3i GIProbe::get_estimated_cell_size() const { static const int subdiv_value[SUBDIV_MAX] = { 6, 7, 8, 9 }; int cell_subdiv = subdiv_value[subdiv]; int axis_cell_size[3]; AABB bounds = AABB(-extents, extents * 2.0); int longest_axis = bounds.get_longest_axis_index(); axis_cell_size[longest_axis] = 1 << cell_subdiv; for (int i = 0; i < 3; i++) { if (i == longest_axis) continue; axis_cell_size[i] = axis_cell_size[longest_axis]; float axis_size = bounds.size[longest_axis]; //shrink until fit subdiv while (axis_size / 2.0 >= bounds.size[i]) { axis_size /= 2.0; axis_cell_size[i] >>= 1; } } return Vector3i(axis_cell_size[0], axis_cell_size[1], axis_cell_size[2]); } void GIProbe::bake(Node *p_from_node, bool p_create_visual_debug) { static const int subdiv_value[SUBDIV_MAX] = { 6, 7, 8, 9 }; Voxelizer baker; baker.begin_bake(subdiv_value[subdiv], AABB(-extents, extents * 2.0)); List<PlotMesh> mesh_list; _find_meshes(p_from_node ? p_from_node : get_parent(), mesh_list); if (bake_begin_function) { bake_begin_function(mesh_list.size() + 1); } int pmc = 0; for (List<PlotMesh>::Element *E = mesh_list.front(); E; E = E->next()) { if (bake_step_function) { bake_step_function(pmc, RTR("Plotting Meshes") + " " + itos(pmc) + "/" + itos(mesh_list.size())); } pmc++; baker.plot_mesh(E->get().local_xform, E->get().mesh, E->get().instance_materials, E->get().override_material); } if (bake_step_function) { bake_step_function(pmc++, RTR("Finishing Plot")); } baker.end_bake(); //create the data for visual server if (p_create_visual_debug) { MultiMeshInstance *mmi = memnew(MultiMeshInstance); mmi->set_multimesh(baker.create_debug_multimesh()); add_child(mmi); #ifdef TOOLS_ENABLED if (get_tree()->get_edited_scene_root() == this) { mmi->set_owner(this); } else { mmi->set_owner(get_owner()); } #else mmi->set_owner(get_owner()); #endif } else { Ref<GIProbeData> probe_data = get_probe_data(); if (probe_data.is_null()) probe_data.instance(); if (bake_step_function) { bake_step_function(pmc++, RTR("Generating Distance Field")); } PoolVector<uint8_t> df = baker.get_sdf_3d_image(); probe_data->allocate(baker.get_to_cell_space_xform(), AABB(-extents, extents * 2.0), baker.get_giprobe_octree_size(), baker.get_giprobe_octree_cells(), baker.get_giprobe_data_cells(), df, baker.get_giprobe_level_cell_count()); set_probe_data(probe_data); #ifdef TOOLS_ENABLED probe_data->set_edited(true); //so it gets saved #endif } if (bake_end_function) { bake_end_function(); } _change_notify(); //bake property may have changed } void GIProbe::_debug_bake() { bake(NULL, true); } AABB GIProbe::get_aabb() const { return AABB(-extents, extents * 2); } PoolVector<Face3> GIProbe::get_faces(uint32_t p_usage_flags) const { return PoolVector<Face3>(); } String GIProbe::get_configuration_warning() const { if (OS::get_singleton()->get_current_video_driver() == OS::VIDEO_DRIVER_GLES2) { return TTR("GIProbes are not supported by the GLES2 video driver.\nUse a BakedLightmap instead."); } return String(); } void GIProbe::_bind_methods() { ClassDB::bind_method(D_METHOD("set_probe_data", "data"), &GIProbe::set_probe_data); ClassDB::bind_method(D_METHOD("get_probe_data"), &GIProbe::get_probe_data); ClassDB::bind_method(D_METHOD("set_subdiv", "subdiv"), &GIProbe::set_subdiv); ClassDB::bind_method(D_METHOD("get_subdiv"), &GIProbe::get_subdiv); ClassDB::bind_method(D_METHOD("set_extents", "extents"), &GIProbe::set_extents); ClassDB::bind_method(D_METHOD("get_extents"), &GIProbe::get_extents); ClassDB::bind_method(D_METHOD("bake", "from_node", "create_visual_debug"), &GIProbe::bake, DEFVAL(Variant()), DEFVAL(false)); ClassDB::bind_method(D_METHOD("debug_bake"), &GIProbe::_debug_bake); ClassDB::set_method_flags(get_class_static(), _scs_create("debug_bake"), METHOD_FLAGS_DEFAULT | METHOD_FLAG_EDITOR); ADD_PROPERTY(PropertyInfo(Variant::INT, "subdiv", PROPERTY_HINT_ENUM, "64,128,256,512"), "set_subdiv", "get_subdiv"); ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "extents"), "set_extents", "get_extents"); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "data", PROPERTY_HINT_RESOURCE_TYPE, "GIProbeData", PROPERTY_USAGE_DEFAULT | PROPERTY_USAGE_DO_NOT_SHARE_ON_DUPLICATE), "set_probe_data", "get_probe_data"); BIND_ENUM_CONSTANT(SUBDIV_64); BIND_ENUM_CONSTANT(SUBDIV_128); BIND_ENUM_CONSTANT(SUBDIV_256); BIND_ENUM_CONSTANT(SUBDIV_512); BIND_ENUM_CONSTANT(SUBDIV_MAX); } GIProbe::GIProbe() { subdiv = SUBDIV_128; extents = Vector3(10, 10, 10); gi_probe = VS::get_singleton()->gi_probe_create(); set_disable_scale(true); } GIProbe::~GIProbe() { VS::get_singleton()->free(gi_probe); }