/*************************************************************************/ /* baked_light_instance.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* http://www.godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "baked_light_instance.h" #include "scene/scene_string_names.h" #include "mesh_instance.h" #include "light.h" #include "math.h" #define FINDMINMAX(x0,x1,x2,min,max) \ min = max = x0; \ if(x1max) max=x1;\ if(x2max) max=x2; static bool planeBoxOverlap(Vector3 normal,float d, Vector3 maxbox) { int q; Vector3 vmin,vmax; for(q=0;q<=2;q++) { if(normal[q]>0.0f) { vmin[q]=-maxbox[q]; vmax[q]=maxbox[q]; } else { vmin[q]=maxbox[q]; vmax[q]=-maxbox[q]; } } if(normal.dot(vmin)+d>0.0f) return false; if(normal.dot(vmax)+d>=0.0f) return true; return false; } /*======================== X-tests ========================*/ #define AXISTEST_X01(a, b, fa, fb) \ p0 = a*v0.y - b*v0.z; \ p2 = a*v2.y - b*v2.z; \ if(p0rad || max<-rad) return false; #define AXISTEST_X2(a, b, fa, fb) \ p0 = a*v0.y - b*v0.z; \ p1 = a*v1.y - b*v1.z; \ if(p0rad || max<-rad) return false; /*======================== Y-tests ========================*/ #define AXISTEST_Y02(a, b, fa, fb) \ p0 = -a*v0.x + b*v0.z; \ p2 = -a*v2.x + b*v2.z; \ if(p0rad || max<-rad) return false; #define AXISTEST_Y1(a, b, fa, fb) \ p0 = -a*v0.x + b*v0.z; \ p1 = -a*v1.x + b*v1.z; \ if(p0rad || max<-rad) return false; /*======================== Z-tests ========================*/ #define AXISTEST_Z12(a, b, fa, fb) \ p1 = a*v1.x - b*v1.y; \ p2 = a*v2.x - b*v2.y; \ if(p2rad || max<-rad) return false; #define AXISTEST_Z0(a, b, fa, fb) \ p0 = a*v0.x - b*v0.y; \ p1 = a*v1.x - b*v1.y; \ if(p0rad || max<-rad) return false; static bool fast_tri_box_overlap(const Vector3& boxcenter,const Vector3 boxhalfsize,const Vector3 *triverts) { /* use separating axis theorem to test overlap between triangle and box */ /* need to test for overlap in these directions: */ /* 1) the {x,y,z}-directions (actually, since we use the AABB of the triangle */ /* we do not even need to test these) */ /* 2) normal of the triangle */ /* 3) crossproduct(edge from tri, {x,y,z}-directin) */ /* this gives 3x3=9 more tests */ Vector3 v0,v1,v2; float min,max,d,p0,p1,p2,rad,fex,fey,fez; Vector3 normal,e0,e1,e2; /* This is the fastest branch on Sun */ /* move everything so that the boxcenter is in (0,0,0) */ v0=triverts[0]-boxcenter; v1=triverts[1]-boxcenter; v2=triverts[2]-boxcenter; /* compute triangle edges */ e0=v1-v0; /* tri edge 0 */ e1=v2-v1; /* tri edge 1 */ e2=v0-v2; /* tri edge 2 */ /* Bullet 3: */ /* test the 9 tests first (this was faster) */ fex = Math::abs(e0.x); fey = Math::abs(e0.y); fez = Math::abs(e0.z); AXISTEST_X01(e0.z, e0.y, fez, fey); AXISTEST_Y02(e0.z, e0.x, fez, fex); AXISTEST_Z12(e0.y, e0.x, fey, fex); fex = Math::abs(e1.x); fey = Math::abs(e1.y); fez = Math::abs(e1.z); AXISTEST_X01(e1.z, e1.y, fez, fey); AXISTEST_Y02(e1.z, e1.x, fez, fex); AXISTEST_Z0(e1.y, e1.x, fey, fex); fex = Math::abs(e2.x); fey = Math::abs(e2.y); fez = Math::abs(e2.z); AXISTEST_X2(e2.z, e2.y, fez, fey); AXISTEST_Y1(e2.z, e2.x, fez, fex); AXISTEST_Z12(e2.y, e2.x, fey, fex); /* Bullet 1: */ /* first test overlap in the {x,y,z}-directions */ /* find min, max of the triangle each direction, and test for overlap in */ /* that direction -- this is equivalent to testing a minimal AABB around */ /* the triangle against the AABB */ /* test in X-direction */ FINDMINMAX(v0.x,v1.x,v2.x,min,max); if(min>boxhalfsize.x || max<-boxhalfsize.x) return false; /* test in Y-direction */ FINDMINMAX(v0.y,v1.y,v2.y,min,max); if(min>boxhalfsize.y || max<-boxhalfsize.y) return false; /* test in Z-direction */ FINDMINMAX(v0.z,v1.z,v2.z,min,max); if(min>boxhalfsize.z || max<-boxhalfsize.z) return false; /* Bullet 2: */ /* test if the box intersects the plane of the triangle */ /* compute plane equation of triangle: normal*x+d=0 */ normal=e0.cross(e1); d=-normal.dot(v0); /* plane eq: normal.x+d=0 */ if(!planeBoxOverlap(normal,d,boxhalfsize)) return false; return true; /* box and triangle overlaps */ } Vector BakedLight::_get_bake_texture(Image &p_image,const Color& p_color) { Vector ret; if (p_image.empty()) { ret.resize(bake_texture_size*bake_texture_size); for(int i=0;i::Read r = p_image.get_data().read(); ret.resize(bake_texture_size*bake_texture_size); for(int i=0;i p_material) { //this way of obtaining materials is inaccurate and also does not support some compressed formats very well Ref mat = p_material; Ref material = mat; //hack for now if (material_cache.has(material)) { return material_cache[material]; } MaterialCache mc; if (mat.is_valid()) { Ref albedo_tex = mat->get_texture(FixedSpatialMaterial::TEXTURE_ALBEDO); Image img_albedo; if (albedo_tex.is_valid()) { img_albedo = albedo_tex->get_data(); } mc.albedo=_get_bake_texture(img_albedo,mat->get_albedo()); Ref emission_tex = mat->get_texture(FixedSpatialMaterial::TEXTURE_EMISSION); Color emission_col = mat->get_emission(); emission_col.r*=mat->get_emission_energy(); emission_col.g*=mat->get_emission_energy(); emission_col.b*=mat->get_emission_energy(); Image img_emission; if (emission_tex.is_valid()) { img_emission = emission_tex->get_data(); } mc.emission=_get_bake_texture(img_emission,emission_col); } else { Image empty; mc.albedo=_get_bake_texture(empty,Color(0.7,0.7,0.7)); mc.emission=_get_bake_texture(empty,Color(0,0,0)); } material_cache[p_material]=mc; return mc; } static _FORCE_INLINE_ Vector2 get_uv(const Vector3& p_pos, const Vector3 *p_vtx, const Vector2* p_uv) { if (p_pos.distance_squared_to(p_vtx[0])closest_dot) { closest_axis=i; closest_dot=dot; } } Vector3 axis; axis[closest_axis]=1.0; Vector3 t1; t1[(closest_axis+1)%3]=1.0; Vector3 t2; t2[(closest_axis+2)%3]=1.0; t1*=p_aabb.size[(closest_axis+1)%3]/float(color_scan_cell_width); t2*=p_aabb.size[(closest_axis+2)%3]/float(color_scan_cell_width); Color albedo_accum; Color emission_accum; float alpha=0.0; //map to a grid average in the best axis for this face for(int i=0;iCMP_EPSILON) { bake_cells_write[p_idx].used_sides|=(1<::Write(); bake_cells.resize(1<=size || y<0 || y>=size || z<0 || z>=size) { //neighbour is out, can't use it bake_cells_write[p_idx].used_sides&=~(1<= ofs_x + half) { child|=1; ofs_x+=half; } if (y >= ofs_y + half) { child|=2; ofs_y+=half; } if (z >= ofs_z + half) { child|=4; ofs_z+=half; } neighbour = bc->childs[child]; if (neighbour==CHILD_EMPTY) { break; } half>>=1; } if (neighbour!=CHILD_EMPTY) { bake_cells_write[p_idx].used_sides&=~(1<> (p_level+1); for(int i=0;i<8;i++) { uint32_t child = bake_cells_write[p_idx].childs[i]; if (child==CHILD_EMPTY) continue; int nx=p_x; int ny=p_y; int nz=p_z; if (i&1) nx+=half; if (i&2) ny+=half; if (i&4) nz+=half; _fixup_plot(child,p_level+1,nx,ny,nz); alpha_average+=bake_cells_write[child].alpha; } bake_cells_write[p_idx].alpha=alpha_average/8.0; bake_cells_write[p_idx].light[0]=0; bake_cells_write[p_idx].light[1]=0; bake_cells_write[p_idx].light[2]=0; bake_cells_write[p_idx].albedo[0]=0; bake_cells_write[p_idx].albedo[1]=0; bake_cells_write[p_idx].albedo[2]=0; } //clean up light bake_cells_write[p_idx].light_pass=0; //find neighbours } void BakedLight::_bake_add_mesh(const Transform& p_xform,Ref& p_mesh) { for(int i=0;iget_surface_count();i++) { if (p_mesh->surface_get_primitive_type(i)!=Mesh::PRIMITIVE_TRIANGLES) continue; //only triangles MaterialCache material = _get_material_cache(p_mesh->surface_get_material(i)); Array a = p_mesh->surface_get_arrays(i); PoolVector vertices = a[Mesh::ARRAY_VERTEX]; PoolVector::Read vr=vertices.read(); PoolVector uv = a[Mesh::ARRAY_TEX_UV]; PoolVector::Read uvr; PoolVector index = a[Mesh::ARRAY_INDEX]; bool read_uv=false; if (uv.size()) { uvr=uv.read(); read_uv=true; } if (index.size()) { int facecount = index.size()/3; PoolVector::Read ir=index.read(); for(int j=0;j& p_mesh,bool &first) { for(int i=0;iget_surface_count();i++) { if (p_mesh->surface_get_primitive_type(i)!=Mesh::PRIMITIVE_TRIANGLES) continue; //only triangles Array a = p_mesh->surface_get_arrays(i); PoolVector vertices = a[Mesh::ARRAY_VERTEX]; int vc = vertices.size(); PoolVector::Read vr=vertices.read(); if (first) { bounds.pos=p_xform.xform(vr[0]); first=false; } for(int j=0;j::Element *E=geometries.front();E;E=E->next()) { print_line("aabb geom "+itos(count)+"/"+itos(geometries.size())); GeometryInstance *geom = E->get(); if (geom->cast_to()) { MeshInstance *mesh_instance = geom->cast_to(); Ref mesh = mesh_instance->get_mesh(); if (mesh.is_valid()) { _bake_add_to_aabb(geom->get_relative_transform(this),mesh,aabb_first); } } count++; } print_line("AABB: "+bounds); ERR_FAIL_COND(aabb_first); bake_cells_write = bake_cells.write(); count=0; for (Set::Element *E=geometries.front();E;E=E->next()) { GeometryInstance *geom = E->get(); print_line("plot geom "+itos(count)+"/"+itos(geometries.size())); if (geom->cast_to()) { MeshInstance *mesh_instance = geom->cast_to(); Ref mesh = mesh_instance->get_mesh(); if (mesh.is_valid()) { _bake_add_mesh(geom->get_relative_transform(this),mesh); } } count++; } _fixup_plot(0, 0,0,0,0); bake_cells_write=PoolVector::Write(); bake_cells.resize(bake_cells_used); print_line("total bake cells used: "+itos(bake_cells_used)); for(int i=0;i=0 && light_pass!=bake_cells_write[idx].light_pass) { //hit something, add or remove light to it Color albedo = Color(bake_cells_write[idx].albedo[0],bake_cells_write[idx].albedo[1],bake_cells_write[idx].albedo[2]); bake_cells_write[idx].light[0]+=albedo.r*p_color.r*p_sign; bake_cells_write[idx].light[1]+=albedo.g*p_color.g*p_sign; bake_cells_write[idx].light[2]+=albedo.b*p_color.b*p_sign; bake_cells_write[idx].light_pass=light_pass; } } else { int half = cells_per_axis >> (p_level+1); //go down for(int i=0;i<8;i++) { uint32_t child = bake_cells_write[p_idx].childs[i]; if (child==CHILD_EMPTY) continue; int nx=p_x; int ny=p_y; int nz=p_z; if (i&1) nx+=half; if (i&2) ny+=half; if (i&4) nz+=half; _bake_directional(child,p_level+1,nx,ny,nz,p_dir,p_color,p_sign); } } } void BakedLight::_bake_light(Light* p_light) { if (p_light->cast_to()) { DirectionalLight * dl = p_light->cast_to(); Transform rel_xf = dl->get_relative_transform(this); Vector3 light_dir = -rel_xf.basis.get_axis(2); Color color = dl->get_color(); float nrg = dl->get_param(Light::PARAM_ENERGY); color.r*=nrg; color.g*=nrg; color.b*=nrg; light_pass++; _bake_directional(0,0,0,0,0,light_dir,color,1); } } void BakedLight::_upscale_light(int p_idx,int p_level) { //go down float light_accum[3]={0,0,0}; float alpha_accum=0; bool check_children = p_level < (cell_subdiv -2); for(int i=0;i<8;i++) { uint32_t child = bake_cells_write[p_idx].childs[i]; if (child==CHILD_EMPTY) continue; if (check_children) { _upscale_light(child,p_level+1); } light_accum[0]+=bake_cells_write[child].light[0]; light_accum[1]+=bake_cells_write[child].light[1]; light_accum[2]+=bake_cells_write[child].light[2]; alpha_accum+=bake_cells_write[child].alpha; } bake_cells_write[p_idx].light[0]=light_accum[0]/8.0; bake_cells_write[p_idx].light[1]=light_accum[1]/8.0; bake_cells_write[p_idx].light[2]=light_accum[2]/8.0; bake_cells_write[p_idx].alpha=alpha_accum/8.0; } void BakedLight::bake_lights() { ERR_FAIL_COND(bake_cells.size()==0); bake_cells_write = bake_cells.write(); for(Set::Element *E=lights.front();E;E=E->next()) { _bake_light(E->get()); } _upscale_light(0,0); bake_cells_write=PoolVector::Write(); } Color BakedLight::_cone_trace(const Vector3& p_from, const Vector3& p_dir, float p_half_angle) { Color color(0,0,0,0); float tha = Math::tan(p_half_angle);//tan half angle Vector3 from =(p_from-bounds.pos)/bounds.size; //convert to 0..1 from/=cells_per_axis; //convert to voxels of size 1 Vector3 dir = (p_dir/bounds.size).normalized(); float max_dist = Vector3(cells_per_axis,cells_per_axis,cells_per_axis).length(); float dist = 1.0; // self occlusion in flat surfaces float alpha=0; while(dist < max_dist && alpha < 0.95) { #if 0 // smallest sample diameter possible is the voxel size float diameter = MAX(1.0, 2.0 * tha * dist); float lod = log2(diameter); Vector3 sample_pos = from + dist * dir; Color samples_base[2][8]={{Color(0,0,0,0),Color(0,0,0,0),Color(0,0,0,0),Color(0,0,0,0),Color(0,0,0,0),Color(0,0,0,0),Color(0,0,0,0),Color(0,0,0,0)}, {Color(0,0,0,0),Color(0,0,0,0),Color(0,0,0,0),Color(0,0,0,0),Color(0,0,0,0),Color(0,0,0,0),Color(0,0,0,0),Color(0,0,0,0)}}; float levelf = Math::fposmod(lod,1.0); float fx = Math::fposmod(sample_pos.x,1.0); float fy = Math::fposmod(sample_pos.y,1.0); float fz = Math::fposmod(sample_pos.z,1.0); for(int l=0;l<2;l++){ int bx = Math::floor(sample_pos.x); int by = Math::floor(sample_pos.y); int bz = Math::floor(sample_pos.z); int lodn=int(Math::floor(lod))-l; bx>>=lodn; by>>=lodn; bz>>=lodn; int limit = MAX(0,cell_subdiv-lodn-1); for(int c=0;c<8;c++) { int x = bx; int y = by; int z = bz; if (c&1) { x+=1; } if (c&2) { y+=1; } if (c&4) { z+=1; } int ofs_x=0; int ofs_y=0; int ofs_z=0; int size = cells_per_axis>>lodn; int half=size/2; bool outside=x<0 || x>=size || y<0 || y>=size || z<0 || z>=size; if (outside) continue; uint32_t cell=0; for(int i=0;i= ofs_x + half) { child|=1; ofs_x+=half; } if (y >= ofs_y + half) { child|=2; ofs_y+=half; } if (z >= ofs_z + half) { child|=4; ofs_z+=half; } cell = bc->childs[child]; if (cell==CHILD_EMPTY) break; half>>=1; } if (cell!=CHILD_EMPTY) { samples_base[l][c].r=bake_cells_write[cell].light[0]; samples_base[l][c].g=bake_cells_write[cell].light[1]; samples_base[l][c].b=bake_cells_write[cell].light[2]; samples_base[l][c].a=bake_cells_write[cell].alpha; } } } Color m0x0 = samples_base[0][0].linear_interpolate(samples_base[0][1],fx); Color m0x1 = samples_base[0][2].linear_interpolate(samples_base[0][3],fx); Color m0y0 = m0x0.linear_interpolate(m0x1,fy); m0x0 = samples_base[0][4].linear_interpolate(samples_base[0][5],fx); m0x1 = samples_base[0][6].linear_interpolate(samples_base[0][7],fx); Color m0y1 = m0x0.linear_interpolate(m0x1,fy); Color m0z = m0y0.linear_interpolate(m0y1,fz); Color m1x0 = samples_base[1][0].linear_interpolate(samples_base[1][1],fx); Color m1x1 = samples_base[1][2].linear_interpolate(samples_base[1][3],fx); Color m1y0 = m1x0.linear_interpolate(m1x1,fy); m1x0 = samples_base[1][4].linear_interpolate(samples_base[1][5],fx); m1x1 = samples_base[1][6].linear_interpolate(samples_base[1][7],fx); Color m1y1 = m1x0.linear_interpolate(m1x1,fy); Color m1z = m1y0.linear_interpolate(m1y1,fz); Color m = m0z.linear_interpolate(m1z,levelf); #else float diameter = 1.0; Vector3 sample_pos = from + dist * dir; Color m(0,0,0,0); { int x = Math::floor(sample_pos.x); int y = Math::floor(sample_pos.y); int z = Math::floor(sample_pos.z); int ofs_x=0; int ofs_y=0; int ofs_z=0; int size = cells_per_axis; int half=size/2; bool outside=x<0 || x>=size || y<0 || y>=size || z<0 || z>=size; if (!outside) { uint32_t cell=0; for(int i=0;i= ofs_x + half) { child|=1; ofs_x+=half; } if (y >= ofs_y + half) { child|=2; ofs_y+=half; } if (z >= ofs_z + half) { child|=4; ofs_z+=half; } cell = bc->childs[child]; if (cell==CHILD_EMPTY) break; half>>=1; } if (cell!=CHILD_EMPTY) { m.r=bake_cells_write[cell].light[0]; m.g=bake_cells_write[cell].light[1]; m.b=bake_cells_write[cell].light[2]; m.a=bake_cells_write[cell].alpha; } } } #endif // front-to-back compositing float a = (1.0 - alpha); color.r += a * m.r; color.g += a * m.g; color.b += a * m.b; alpha += a * m.a; //occlusion += a * voxelColor.a; //occlusion += (a * voxelColor.a) / (1.0 + 0.03 * diameter); dist += diameter * 0.5; // smoother //dist += diameter; // faster but misses more voxels } return color; } void BakedLight::_bake_radiance(int p_idx, int p_level, int p_x,int p_y,int p_z) { if (p_level==cell_subdiv-1) { const int NUM_CONES = 6; Vector3 cone_directions[6] = { Vector3(1, 0, 0), Vector3(0.5, 0.866025, 0), Vector3( 0.5, 0.267617, 0.823639), Vector3( 0.5, -0.700629, 0.509037), Vector3( 0.5, -0.700629, -0.509037), Vector3( 0.5, 0.267617, -0.823639) }; float coneWeights[6] = {0.25, 0.15, 0.15, 0.15, 0.15, 0.15}; Vector3 pos = (Vector3(p_x,p_y,p_z)/float(cells_per_axis))*bounds.size+bounds.pos; Vector3 voxel_size = bounds.size/float(cells_per_axis); pos+=voxel_size*0.5; Color accum; bake_cells_write[p_idx].light[0]=0; bake_cells_write[p_idx].light[1]=0; bake_cells_write[p_idx].light[2]=0; int freepix=0; for(int i=0;i<6;i++) { if (!(bake_cells_write[p_idx].used_sides&(1<> (p_level+1); //go down for(int i=0;i<8;i++) { uint32_t child = bake_cells_write[p_idx].childs[i]; if (child==CHILD_EMPTY) continue; int nx=p_x; int ny=p_y; int nz=p_z; if (i&1) nx+=half; if (i&2) ny+=half; if (i&4) nz+=half; _bake_radiance(child,p_level+1,nx,ny,nz); } } } void BakedLight::bake_radiance() { ERR_FAIL_COND(bake_cells.size()==0); bake_cells_write = bake_cells.write(); _bake_radiance(0,0,0,0,0); bake_cells_write=PoolVector::Write(); } int BakedLight::_find_cell(int x,int y, int z) { uint32_t cell=0; int ofs_x=0; int ofs_y=0; int ofs_z=0; int size = cells_per_axis; int half=size/2; if (x<0 || x>=size) return -1; if (y<0 || y>=size) return -1; if (z<0 || z>=size) return -1; for(int i=0;i= ofs_x + half) { child|=1; ofs_x+=half; } if (y >= ofs_y + half) { child|=2; ofs_y+=half; } if (z >= ofs_z + half) { child|=4; ofs_z+=half; } cell = bc->childs[child]; if (cell==CHILD_EMPTY) return -1; half>>=1; } return cell; } int BakedLight::_plot_ray(const Vector3& p_from, const Vector3& p_to) { Vector3 from = (p_from - bounds.pos) / bounds.size; Vector3 to = (p_to - bounds.pos) / bounds.size; int x1 = Math::floor(from.x*cells_per_axis); int y1 = Math::floor(from.y*cells_per_axis); int z1 = Math::floor(from.z*cells_per_axis); int x2 = Math::floor(to.x*cells_per_axis); int y2 = Math::floor(to.y*cells_per_axis); int z2 = Math::floor(to.z*cells_per_axis); int i, dx, dy, dz, l, m, n, x_inc, y_inc, z_inc, err_1, err_2, dx2, dy2, dz2; int point[3]; point[0] = x1; point[1] = y1; point[2] = z1; dx = x2 - x1; dy = y2 - y1; dz = z2 - z1; x_inc = (dx < 0) ? -1 : 1; l = ABS(dx); y_inc = (dy < 0) ? -1 : 1; m = ABS(dy); z_inc = (dz < 0) ? -1 : 1; n = ABS(dz); dx2 = l << 1; dy2 = m << 1; dz2 = n << 1; if ((l >= m) && (l >= n)) { err_1 = dy2 - l; err_2 = dz2 - l; for (i = 0; i < l; i++) { int cell = _find_cell(point[0],point[1],point[2]); if (cell>=0) return cell; if (err_1 > 0) { point[1] += y_inc; err_1 -= dx2; } if (err_2 > 0) { point[2] += z_inc; err_2 -= dx2; } err_1 += dy2; err_2 += dz2; point[0] += x_inc; } } else if ((m >= l) && (m >= n)) { err_1 = dx2 - m; err_2 = dz2 - m; for (i = 0; i < m; i++) { int cell = _find_cell(point[0],point[1],point[2]); if (cell>=0) return cell; if (err_1 > 0) { point[0] += x_inc; err_1 -= dy2; } if (err_2 > 0) { point[2] += z_inc; err_2 -= dy2; } err_1 += dx2; err_2 += dz2; point[1] += y_inc; } } else { err_1 = dy2 - n; err_2 = dx2 - n; for (i = 0; i < n; i++) { int cell = _find_cell(point[0],point[1],point[2]); if (cell>=0) return cell; if (err_1 > 0) { point[1] += y_inc; err_1 -= dz2; } if (err_2 > 0) { point[0] += x_inc; err_2 -= dz2; } err_1 += dy2; err_2 += dx2; point[2] += z_inc; } } return _find_cell(point[0],point[1],point[2]); } void BakedLight::set_cell_subdiv(int p_subdiv) { cell_subdiv=p_subdiv; //VS::get_singleton()->baked_light_set_subdivision(baked_light,p_subdiv); } int BakedLight::get_cell_subdiv() const { return cell_subdiv; } Rect3 BakedLight::get_aabb() const { return Rect3(Vector3(0,0,0),Vector3(1,1,1)); } PoolVector BakedLight::get_faces(uint32_t p_usage_flags) const { return PoolVector(); } String BakedLight::get_configuration_warning() const { return String(); } void BakedLight::_debug_mesh(int p_idx, int p_level, const Rect3 &p_aabb,DebugMode p_mode,Ref &p_multimesh,int &idx) { if (p_level==cell_subdiv-1) { Vector3 center = p_aabb.pos+p_aabb.size*0.5; Transform xform; xform.origin=center; xform.basis.scale(p_aabb.size*0.5); p_multimesh->set_instance_transform(idx,xform); Color col; switch(p_mode) { case DEBUG_ALBEDO: { col=Color(bake_cells_write[p_idx].albedo[0],bake_cells_write[p_idx].albedo[1],bake_cells_write[p_idx].albedo[2]); } break; case DEBUG_LIGHT: { col=Color(bake_cells_write[p_idx].light[0],bake_cells_write[p_idx].light[1],bake_cells_write[p_idx].light[2]); Color colr=Color(bake_cells_write[p_idx].radiance[0],bake_cells_write[p_idx].radiance[1],bake_cells_write[p_idx].radiance[2]); col.r+=colr.r; col.g+=colr.g; col.b+=colr.b; } break; } p_multimesh->set_instance_color(idx,col); idx++; } else { for(int i=0;i<8;i++) { if (bake_cells_write[p_idx].childs[i]==CHILD_EMPTY) continue; Rect3 aabb=p_aabb; aabb.size*=0.5; if (i&1) aabb.pos.x+=aabb.size.x; if (i&2) aabb.pos.y+=aabb.size.y; if (i&4) aabb.pos.z+=aabb.size.z; _debug_mesh(bake_cells_write[p_idx].childs[i],p_level+1,aabb,p_mode,p_multimesh,idx); } } } void BakedLight::create_debug_mesh(DebugMode p_mode) { Ref mm; mm.instance(); mm->set_transform_format(MultiMesh::TRANSFORM_3D); mm->set_color_format(MultiMesh::COLOR_8BIT); mm->set_instance_count(bake_cells_level_used[cell_subdiv-1]); Ref mesh; mesh.instance(); { Array arr; arr.resize(Mesh::ARRAY_MAX); PoolVector vertices; PoolVector colors; int vtx_idx=0; #define ADD_VTX(m_idx);\ vertices.push_back( face_points[m_idx] );\ colors.push_back( Color(1,1,1,1) );\ vtx_idx++;\ for (int i=0;i<6;i++) { Vector3 face_points[4]; for (int j=0;j<4;j++) { float v[3]; v[0]=1.0; v[1]=1-2*((j>>1)&1); v[2]=v[1]*(1-2*(j&1)); for (int k=0;k<3;k++) { if (i<3) face_points[j][(i+k)%3]=v[k]*(i>=3?-1:1); else face_points[3-j][(i+k)%3]=v[k]*(i>=3?-1:1); } } //tri 1 ADD_VTX(0); ADD_VTX(1); ADD_VTX(2); //tri 2 ADD_VTX(2); ADD_VTX(3); ADD_VTX(0); } arr[Mesh::ARRAY_VERTEX]=vertices; arr[Mesh::ARRAY_COLOR]=colors; mesh->add_surface_from_arrays(Mesh::PRIMITIVE_TRIANGLES,arr); } { Ref fsm; fsm.instance(); fsm->set_flag(FixedSpatialMaterial::FLAG_SRGB_VERTEX_COLOR,true); fsm->set_flag(FixedSpatialMaterial::FLAG_ALBEDO_FROM_VERTEX_COLOR,true); fsm->set_flag(FixedSpatialMaterial::FLAG_UNSHADED,true); fsm->set_albedo(Color(1,1,1,1)); mesh->surface_set_material(0,fsm); } mm->set_mesh(mesh); bake_cells_write = bake_cells.write(); int idx=0; _debug_mesh(0,0,bounds,p_mode,mm,idx); print_line("written: "+itos(idx)+" total: "+itos(bake_cells_level_used[cell_subdiv-1])); MultiMeshInstance *mmi = memnew( MultiMeshInstance ); mmi->set_multimesh(mm); add_child(mmi); #ifdef TOOLS_ENABLED if (get_tree()->get_edited_scene_root()==this){ mmi->set_owner(this); } else { mmi->set_owner(get_owner()); } #else mmi->set_owner(get_owner()); #endif } void BakedLight::_debug_mesh_albedo() { create_debug_mesh(DEBUG_ALBEDO); } void BakedLight::_debug_mesh_light() { create_debug_mesh(DEBUG_LIGHT); } void BakedLight::_bind_methods() { ClassDB::bind_method(_MD("set_cell_subdiv","steps"),&BakedLight::set_cell_subdiv); ClassDB::bind_method(_MD("get_cell_subdiv"),&BakedLight::get_cell_subdiv); ClassDB::bind_method(_MD("bake"),&BakedLight::bake); ClassDB::set_method_flags(get_class_static(),_SCS("bake"),METHOD_FLAGS_DEFAULT|METHOD_FLAG_EDITOR); ClassDB::bind_method(_MD("bake_lights"),&BakedLight::bake_lights); ClassDB::set_method_flags(get_class_static(),_SCS("bake_lights"),METHOD_FLAGS_DEFAULT|METHOD_FLAG_EDITOR); ClassDB::bind_method(_MD("bake_radiance"),&BakedLight::bake_radiance); ClassDB::set_method_flags(get_class_static(),_SCS("bake_radiance"),METHOD_FLAGS_DEFAULT|METHOD_FLAG_EDITOR); ClassDB::bind_method(_MD("debug_mesh_albedo"),&BakedLight::_debug_mesh_albedo); ClassDB::set_method_flags(get_class_static(),_SCS("debug_mesh_albedo"),METHOD_FLAGS_DEFAULT|METHOD_FLAG_EDITOR); ClassDB::bind_method(_MD("debug_mesh_light"),&BakedLight::_debug_mesh_light); ClassDB::set_method_flags(get_class_static(),_SCS("debug_mesh_light"),METHOD_FLAGS_DEFAULT|METHOD_FLAG_EDITOR); ADD_PROPERTY(PropertyInfo(Variant::INT,"cell_subdiv"),_SCS("set_cell_subdiv"),_SCS("get_cell_subdiv")); ADD_SIGNAL( MethodInfo("baked_light_changed")); } BakedLight::BakedLight() { //baked_light=VisualServer::get_singleton()->baked_light_create(); VS::get_singleton()->instance_set_base(get_instance(),baked_light); cell_subdiv=8; bake_texture_size=128; color_scan_cell_width=8; light_pass=0; } BakedLight::~BakedLight() { VS::get_singleton()->free(baked_light); } ///////////////////////// #if 0 void BakedLightSampler::set_param(Param p_param,float p_value) { ERR_FAIL_INDEX(p_param,PARAM_MAX); params[p_param]=p_value; VS::get_singleton()->baked_light_sampler_set_param(base,VS::BakedLightSamplerParam(p_param),p_value); } float BakedLightSampler::get_param(Param p_param) const{ ERR_FAIL_INDEX_V(p_param,PARAM_MAX,0); return params[p_param]; } void BakedLightSampler::set_resolution(int p_resolution){ ERR_FAIL_COND(p_resolution<4 || p_resolution>32); resolution=p_resolution; VS::get_singleton()->baked_light_sampler_set_resolution(base,resolution); } int BakedLightSampler::get_resolution() const { return resolution; } AABB BakedLightSampler::get_aabb() const { float r = get_param(PARAM_RADIUS); return AABB( Vector3(-r,-r,-r),Vector3(r*2,r*2,r*2)); } DVector BakedLightSampler::get_faces(uint32_t p_usage_flags) const { return DVector(); } void BakedLightSampler::_bind_methods() { ClassDB::bind_method(_MD("set_param","param","value"),&BakedLightSampler::set_param); ClassDB::bind_method(_MD("get_param","param"),&BakedLightSampler::get_param); ClassDB::bind_method(_MD("set_resolution","resolution"),&BakedLightSampler::set_resolution); ClassDB::bind_method(_MD("get_resolution"),&BakedLightSampler::get_resolution); BIND_CONSTANT( PARAM_RADIUS ); BIND_CONSTANT( PARAM_STRENGTH ); BIND_CONSTANT( PARAM_ATTENUATION ); BIND_CONSTANT( PARAM_DETAIL_RATIO ); BIND_CONSTANT( PARAM_MAX ); ADD_PROPERTYI( PropertyInfo(Variant::REAL,"params/radius",PROPERTY_HINT_RANGE,"0.01,1024,0.01"),_SCS("set_param"),_SCS("get_param"),PARAM_RADIUS); ADD_PROPERTYI( PropertyInfo(Variant::REAL,"params/strength",PROPERTY_HINT_RANGE,"0.01,16,0.01"),_SCS("set_param"),_SCS("get_param"),PARAM_STRENGTH); ADD_PROPERTYI( PropertyInfo(Variant::REAL,"params/attenuation",PROPERTY_HINT_EXP_EASING),_SCS("set_param"),_SCS("get_param"),PARAM_ATTENUATION); ADD_PROPERTYI( PropertyInfo(Variant::REAL,"params/detail_ratio",PROPERTY_HINT_RANGE,"0.01,1.0,0.01"),_SCS("set_param"),_SCS("get_param"),PARAM_DETAIL_RATIO); //ADD_PROPERTYI( PropertyInfo(Variant::REAL,"params/detail_ratio",PROPERTY_HINT_RANGE,"0,20,1"),_SCS("set_param"),_SCS("get_param"),PARAM_DETAIL_RATIO); ADD_PROPERTY( PropertyInfo(Variant::REAL,"params/resolution",PROPERTY_HINT_RANGE,"4,32,1"),_SCS("set_resolution"),_SCS("get_resolution")); } BakedLightSampler::BakedLightSampler() { base = VS::get_singleton()->baked_light_sampler_create(); set_base(base); params[PARAM_RADIUS]=1.0; params[PARAM_STRENGTH]=1.0; params[PARAM_ATTENUATION]=1.0; params[PARAM_DETAIL_RATIO]=0.1; resolution=16; } BakedLightSampler::~BakedLightSampler(){ VS::get_singleton()->free(base); } #endif