/*************************************************************************/ /* navigation_2d.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2019 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2019 Godot Engine contributors (cf. AUTHORS.md) */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "navigation_2d.h" #define USE_ENTRY_POINT void Navigation2D::_navpoly_link(int p_id) { ERR_FAIL_COND(!navpoly_map.has(p_id)); NavMesh &nm = navpoly_map[p_id]; ERR_FAIL_COND(nm.linked); PoolVector<Vector2> vertices = nm.navpoly->get_vertices(); int len = vertices.size(); if (len == 0) return; PoolVector<Vector2>::Read r = vertices.read(); for (int i = 0; i < nm.navpoly->get_polygon_count(); i++) { //build List<Polygon>::Element *P = nm.polygons.push_back(Polygon()); Polygon &p = P->get(); p.owner = &nm; Vector<int> poly = nm.navpoly->get_polygon(i); int plen = poly.size(); const int *indices = poly.ptr(); bool valid = true; p.edges.resize(plen); Vector2 center; float sum = 0; for (int j = 0; j < plen; j++) { int idx = indices[j]; if (idx < 0 || idx >= len) { valid = false; break; } Polygon::Edge e; Vector2 ep = nm.xform.xform(r[idx]); center += ep; e.point = _get_point(ep); p.edges.write[j] = e; int idxn = indices[(j + 1) % plen]; if (idxn < 0 || idxn >= len) { valid = false; break; } Vector2 epn = nm.xform.xform(r[idxn]); sum += (epn.x - ep.x) * (epn.y + ep.y); } p.clockwise = sum > 0; if (!valid) { nm.polygons.pop_back(); ERR_CONTINUE(!valid); continue; } p.center = center / plen; //connect for (int j = 0; j < plen; j++) { int next = (j + 1) % plen; EdgeKey ek(p.edges[j].point, p.edges[next].point); Map<EdgeKey, Connection>::Element *C = connections.find(ek); if (!C) { Connection c; c.A = &p; c.A_edge = j; c.B = NULL; c.B_edge = -1; connections[ek] = c; } else { if (C->get().B != NULL) { ConnectionPending pending; pending.polygon = &p; pending.edge = j; p.edges.write[j].P = C->get().pending.push_back(pending); continue; } C->get().B = &p; C->get().B_edge = j; C->get().A->edges.write[C->get().A_edge].C = &p; C->get().A->edges.write[C->get().A_edge].C_edge = j; p.edges.write[j].C = C->get().A; p.edges.write[j].C_edge = C->get().A_edge; //connection successful. } } } nm.linked = true; } void Navigation2D::_navpoly_unlink(int p_id) { ERR_FAIL_COND(!navpoly_map.has(p_id)); NavMesh &nm = navpoly_map[p_id]; ERR_FAIL_COND(!nm.linked); for (List<Polygon>::Element *E = nm.polygons.front(); E; E = E->next()) { Polygon &p = E->get(); int ec = p.edges.size(); Polygon::Edge *edges = p.edges.ptrw(); for (int i = 0; i < ec; i++) { int next = (i + 1) % ec; EdgeKey ek(edges[i].point, edges[next].point); Map<EdgeKey, Connection>::Element *C = connections.find(ek); ERR_CONTINUE(!C); if (edges[i].P) { C->get().pending.erase(edges[i].P); edges[i].P = NULL; } else if (C->get().B) { //disconnect C->get().B->edges.write[C->get().B_edge].C = NULL; C->get().B->edges.write[C->get().B_edge].C_edge = -1; C->get().A->edges.write[C->get().A_edge].C = NULL; C->get().A->edges.write[C->get().A_edge].C_edge = -1; if (C->get().A == &E->get()) { C->get().A = C->get().B; C->get().A_edge = C->get().B_edge; } C->get().B = NULL; C->get().B_edge = -1; if (C->get().pending.size()) { //reconnect if something is pending ConnectionPending cp = C->get().pending.front()->get(); C->get().pending.pop_front(); C->get().B = cp.polygon; C->get().B_edge = cp.edge; C->get().A->edges.write[C->get().A_edge].C = cp.polygon; C->get().A->edges.write[C->get().A_edge].C_edge = cp.edge; cp.polygon->edges.write[cp.edge].C = C->get().A; cp.polygon->edges.write[cp.edge].C_edge = C->get().A_edge; cp.polygon->edges.write[cp.edge].P = NULL; } } else { connections.erase(C); //erase } } } nm.polygons.clear(); nm.linked = false; } int Navigation2D::navpoly_add(const Ref<NavigationPolygon> &p_mesh, const Transform2D &p_xform, Object *p_owner) { int id = last_id++; NavMesh nm; nm.linked = false; nm.navpoly = p_mesh; nm.xform = p_xform; nm.owner = p_owner; navpoly_map[id] = nm; _navpoly_link(id); return id; } void Navigation2D::navpoly_set_transform(int p_id, const Transform2D &p_xform) { ERR_FAIL_COND(!navpoly_map.has(p_id)); NavMesh &nm = navpoly_map[p_id]; if (nm.xform == p_xform) return; //bleh _navpoly_unlink(p_id); nm.xform = p_xform; _navpoly_link(p_id); } void Navigation2D::navpoly_remove(int p_id) { ERR_FAIL_COND(!navpoly_map.has(p_id)); _navpoly_unlink(p_id); navpoly_map.erase(p_id); } Vector<Vector2> Navigation2D::get_simple_path(const Vector2 &p_start, const Vector2 &p_end, bool p_optimize) { Polygon *begin_poly = NULL; Polygon *end_poly = NULL; Vector2 begin_point; Vector2 end_point; float begin_d = 1e20; float end_d = 1e20; //look for point inside triangle for (Map<int, NavMesh>::Element *E = navpoly_map.front(); E; E = E->next()) { if (!E->get().linked) continue; for (List<Polygon>::Element *F = E->get().polygons.front(); F; F = F->next()) { Polygon &p = F->get(); if (begin_d || end_d) { for (int i = 2; i < p.edges.size(); i++) { if (begin_d > 0) { if (Geometry::is_point_in_triangle(p_start, _get_vertex(p.edges[0].point), _get_vertex(p.edges[i - 1].point), _get_vertex(p.edges[i].point))) { begin_poly = &p; begin_point = p_start; begin_d = 0; if (end_d == 0) break; } } if (end_d > 0) { if (Geometry::is_point_in_triangle(p_end, _get_vertex(p.edges[0].point), _get_vertex(p.edges[i - 1].point), _get_vertex(p.edges[i].point))) { end_poly = &p; end_point = p_end; end_d = 0; if (begin_d == 0) break; } } } } p.prev_edge = -1; } } //start or end not inside triangle.. look for closest segment :| if (begin_d || end_d) { for (Map<int, NavMesh>::Element *E = navpoly_map.front(); E; E = E->next()) { if (!E->get().linked) continue; for (List<Polygon>::Element *F = E->get().polygons.front(); F; F = F->next()) { Polygon &p = F->get(); int es = p.edges.size(); for (int i = 0; i < es; i++) { Vector2 edge[2] = { _get_vertex(p.edges[i].point), _get_vertex(p.edges[(i + 1) % es].point) }; if (begin_d > 0) { Vector2 spoint = Geometry::get_closest_point_to_segment_2d(p_start, edge); float d = spoint.distance_to(p_start); if (d < begin_d) { begin_poly = &p; begin_point = spoint; begin_d = d; } } if (end_d > 0) { Vector2 spoint = Geometry::get_closest_point_to_segment_2d(p_end, edge); float d = spoint.distance_to(p_end); if (d < end_d) { end_poly = &p; end_point = spoint; end_d = d; } } } } } } if (!begin_poly || !end_poly) { return Vector<Vector2>(); //no path } if (begin_poly == end_poly) { Vector<Vector2> path; path.resize(2); path.write[0] = begin_point; path.write[1] = end_point; return path; } bool found_route = false; List<Polygon *> open_list; begin_poly->entry = p_start; for (int i = 0; i < begin_poly->edges.size(); i++) { if (begin_poly->edges[i].C) { begin_poly->edges[i].C->prev_edge = begin_poly->edges[i].C_edge; #ifdef USE_ENTRY_POINT Vector2 edge[2] = { _get_vertex(begin_poly->edges[i].point), _get_vertex(begin_poly->edges[(i + 1) % begin_poly->edges.size()].point) }; Vector2 entry = Geometry::get_closest_point_to_segment_2d(begin_poly->entry, edge); begin_poly->edges[i].C->distance = begin_poly->entry.distance_to(entry); begin_poly->edges[i].C->entry = entry; #else begin_poly->edges[i].C->distance = begin_poly->center.distance_to(begin_poly->edges[i].C->center); #endif open_list.push_back(begin_poly->edges[i].C); if (begin_poly->edges[i].C == end_poly) { found_route = true; } } } while (!found_route) { if (open_list.size() == 0) { break; } //check open list List<Polygon *>::Element *least_cost_poly = NULL; float least_cost = 1e30; //this could be faster (cache previous results) for (List<Polygon *>::Element *E = open_list.front(); E; E = E->next()) { Polygon *p = E->get(); float cost = p->distance; #ifdef USE_ENTRY_POINT int es = p->edges.size(); float shortest_distance = 1e30; for (int i = 0; i < es; i++) { Polygon::Edge &e = p->edges.write[i]; if (!e.C) continue; Vector2 edge[2] = { _get_vertex(p->edges[i].point), _get_vertex(p->edges[(i + 1) % es].point) }; Vector2 edge_point = Geometry::get_closest_point_to_segment_2d(p->entry, edge); float dist = p->entry.distance_to(edge_point); if (dist < shortest_distance) shortest_distance = dist; } cost += shortest_distance; #else cost += p->center.distance_to(end_point); #endif if (cost < least_cost) { least_cost_poly = E; least_cost = cost; } } Polygon *p = least_cost_poly->get(); //open the neighbours for search int es = p->edges.size(); for (int i = 0; i < es; i++) { Polygon::Edge &e = p->edges.write[i]; if (!e.C) continue; #ifdef USE_ENTRY_POINT Vector2 edge[2] = { _get_vertex(p->edges[i].point), _get_vertex(p->edges[(i + 1) % es].point) }; Vector2 edge_entry = Geometry::get_closest_point_to_segment_2d(p->entry, edge); float distance = p->entry.distance_to(edge_entry) + p->distance; #else float distance = p->center.distance_to(e.C->center) + p->distance; #endif if (e.C->prev_edge != -1) { //oh this was visited already, can we win the cost? if (e.C->distance > distance) { e.C->prev_edge = e.C_edge; e.C->distance = distance; #ifdef USE_ENTRY_POINT e.C->entry = edge_entry; #endif } } else { //add to open neighbours e.C->prev_edge = e.C_edge; e.C->distance = distance; #ifdef USE_ENTRY_POINT e.C->entry = edge_entry; #endif open_list.push_back(e.C); if (e.C == end_poly) { //oh my reached end! stop algorithm found_route = true; break; } } } if (found_route) break; open_list.erase(least_cost_poly); } if (found_route) { Vector<Vector2> path; if (p_optimize) { //string pulling Vector2 apex_point = end_point; Vector2 portal_left = apex_point; Vector2 portal_right = apex_point; Polygon *left_poly = end_poly; Polygon *right_poly = end_poly; Polygon *p = end_poly; while (p) { Vector2 left; Vector2 right; //#define CLOCK_TANGENT(m_a,m_b,m_c) ( ((m_a)-(m_c)).cross((m_a)-(m_b)) ) #define CLOCK_TANGENT(m_a, m_b, m_c) ((((m_a).x - (m_c).x) * ((m_b).y - (m_c).y) - ((m_b).x - (m_c).x) * ((m_a).y - (m_c).y))) if (p == begin_poly) { left = begin_point; right = begin_point; } else { int prev = p->prev_edge; int prev_n = (p->prev_edge + 1) % p->edges.size(); left = _get_vertex(p->edges[prev].point); right = _get_vertex(p->edges[prev_n].point); if (p->clockwise) { SWAP(left, right); } /*if (CLOCK_TANGENT(apex_point,left,(left+right)*0.5) < 0){ SWAP(left,right); }*/ } bool skip = false; /* print_line("-----\nAPEX: "+(apex_point-end_point)); print_line("LEFT:"); print_line("\tPortal: "+(portal_left-end_point)); print_line("\tPoint: "+(left-end_point)); print_line("\tLeft Tangent: "+rtos(CLOCK_TANGENT(apex_point,portal_left,left))); print_line("\tLeft Distance: "+rtos(portal_left.distance_squared_to(apex_point))); print_line("\tLeft Test: "+rtos(CLOCK_TANGENT(apex_point,left,portal_right))); print_line("RIGHT:"); print_line("\tPortal: "+(portal_right-end_point)); print_line("\tPoint: "+(right-end_point)); print_line("\tRight Tangent: "+rtos(CLOCK_TANGENT(apex_point,portal_right,right))); print_line("\tRight Distance: "+rtos(portal_right.distance_squared_to(apex_point))); print_line("\tRight Test: "+rtos(CLOCK_TANGENT(apex_point,right,portal_left))); */ if (CLOCK_TANGENT(apex_point, portal_left, left) >= 0) { //process if (portal_left.distance_squared_to(apex_point) < CMP_EPSILON || CLOCK_TANGENT(apex_point, left, portal_right) > 0) { left_poly = p; portal_left = left; } else { apex_point = portal_right; p = right_poly; left_poly = p; portal_left = apex_point; portal_right = apex_point; if (!path.size() || path[path.size() - 1].distance_to(apex_point) > CMP_EPSILON) path.push_back(apex_point); skip = true; } } if (!skip && CLOCK_TANGENT(apex_point, portal_right, right) <= 0) { //process if (portal_right.distance_squared_to(apex_point) < CMP_EPSILON || CLOCK_TANGENT(apex_point, right, portal_left) < 0) { right_poly = p; portal_right = right; } else { apex_point = portal_left; p = left_poly; right_poly = p; portal_right = apex_point; portal_left = apex_point; if (!path.size() || path[path.size() - 1].distance_to(apex_point) > CMP_EPSILON) path.push_back(apex_point); } } if (p != begin_poly) p = p->edges[p->prev_edge].C; else p = NULL; } } else { //midpoints Polygon *p = end_poly; while (true) { int prev = p->prev_edge; int prev_n = (p->prev_edge + 1) % p->edges.size(); Vector2 point = (_get_vertex(p->edges[prev].point) + _get_vertex(p->edges[prev_n].point)) * 0.5; path.push_back(point); p = p->edges[prev].C; if (p == begin_poly) break; } } if (!path.size() || path[path.size() - 1].distance_squared_to(begin_point) > CMP_EPSILON) { path.push_back(begin_point); // Add the begin point } else { path.write[path.size() - 1] = begin_point; // Replace first midpoint by the exact begin point } path.invert(); if (path.size() <= 1 || path[path.size() - 1].distance_squared_to(end_point) > CMP_EPSILON) { path.push_back(end_point); // Add the end point } else { path.write[path.size() - 1] = end_point; // Replace last midpoint by the exact end point } return path; } return Vector<Vector2>(); } Vector2 Navigation2D::get_closest_point(const Vector2 &p_point) { Vector2 closest_point = Vector2(); float closest_point_d = 1e20; for (Map<int, NavMesh>::Element *E = navpoly_map.front(); E; E = E->next()) { if (!E->get().linked) continue; for (List<Polygon>::Element *F = E->get().polygons.front(); F; F = F->next()) { Polygon &p = F->get(); for (int i = 2; i < p.edges.size(); i++) { if (Geometry::is_point_in_triangle(p_point, _get_vertex(p.edges[0].point), _get_vertex(p.edges[i - 1].point), _get_vertex(p.edges[i].point))) { return p_point; //inside triangle, nothing else to discuss } } } } for (Map<int, NavMesh>::Element *E = navpoly_map.front(); E; E = E->next()) { if (!E->get().linked) continue; for (List<Polygon>::Element *F = E->get().polygons.front(); F; F = F->next()) { Polygon &p = F->get(); int es = p.edges.size(); for (int i = 0; i < es; i++) { Vector2 edge[2] = { _get_vertex(p.edges[i].point), _get_vertex(p.edges[(i + 1) % es].point) }; Vector2 spoint = Geometry::get_closest_point_to_segment_2d(p_point, edge); float d = spoint.distance_squared_to(p_point); if (d < closest_point_d) { closest_point = spoint; closest_point_d = d; } } } } return closest_point; } Object *Navigation2D::get_closest_point_owner(const Vector2 &p_point) { Object *owner = NULL; Vector2 closest_point = Vector2(); float closest_point_d = 1e20; for (Map<int, NavMesh>::Element *E = navpoly_map.front(); E; E = E->next()) { if (!E->get().linked) continue; for (List<Polygon>::Element *F = E->get().polygons.front(); F; F = F->next()) { Polygon &p = F->get(); for (int i = 2; i < p.edges.size(); i++) { if (Geometry::is_point_in_triangle(p_point, _get_vertex(p.edges[0].point), _get_vertex(p.edges[i - 1].point), _get_vertex(p.edges[i].point))) { return E->get().owner; } } } } for (Map<int, NavMesh>::Element *E = navpoly_map.front(); E; E = E->next()) { if (!E->get().linked) continue; for (List<Polygon>::Element *F = E->get().polygons.front(); F; F = F->next()) { Polygon &p = F->get(); int es = p.edges.size(); for (int i = 0; i < es; i++) { Vector2 edge[2] = { _get_vertex(p.edges[i].point), _get_vertex(p.edges[(i + 1) % es].point) }; Vector2 spoint = Geometry::get_closest_point_to_segment_2d(p_point, edge); float d = spoint.distance_squared_to(p_point); if (d < closest_point_d) { closest_point = spoint; closest_point_d = d; owner = E->get().owner; } } } } return owner; } void Navigation2D::_bind_methods() { ClassDB::bind_method(D_METHOD("navpoly_add", "mesh", "xform", "owner"), &Navigation2D::navpoly_add, DEFVAL(Variant())); ClassDB::bind_method(D_METHOD("navpoly_set_transform", "id", "xform"), &Navigation2D::navpoly_set_transform); ClassDB::bind_method(D_METHOD("navpoly_remove", "id"), &Navigation2D::navpoly_remove); ClassDB::bind_method(D_METHOD("get_simple_path", "start", "end", "optimize"), &Navigation2D::get_simple_path, DEFVAL(true)); ClassDB::bind_method(D_METHOD("get_closest_point", "to_point"), &Navigation2D::get_closest_point); ClassDB::bind_method(D_METHOD("get_closest_point_owner", "to_point"), &Navigation2D::get_closest_point_owner); } Navigation2D::Navigation2D() { ERR_FAIL_COND(sizeof(Point) != 8); cell_size = 1; // one pixel last_id = 1; }