/*************************************************************************/ /* rasterizer_iphone.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* http://www.godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2017 Godot Engine contributors (cf. AUTHORS.md) */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #ifdef IPHONE_ENABLED #include "rasterizer_iphone.h" #include "global_config.h" #include "os/os.h" #include _FORCE_INLINE_ static void _gl_load_transform(const Transform &tr) { GLfloat matrix[16] = { /* build a 16x16 matrix */ tr.basis.elements[0][0], tr.basis.elements[1][0], tr.basis.elements[2][0], 0, tr.basis.elements[0][1], tr.basis.elements[1][1], tr.basis.elements[2][1], 0, tr.basis.elements[0][2], tr.basis.elements[1][2], tr.basis.elements[2][2], 0, tr.origin.x, tr.origin.y, tr.origin.z, 1 }; glLoadMatrixf(matrix); }; _FORCE_INLINE_ static void _gl_mult_transform(const Transform &tr) { GLfloat matrix[16] = { /* build a 16x16 matrix */ tr.basis.elements[0][0], tr.basis.elements[1][0], tr.basis.elements[2][0], 0, tr.basis.elements[0][1], tr.basis.elements[1][1], tr.basis.elements[2][1], 0, tr.basis.elements[0][2], tr.basis.elements[1][2], tr.basis.elements[2][2], 0, tr.origin.x, tr.origin.y, tr.origin.z, 1 }; glMultMatrixf(matrix); }; static const GLenum prim_type[] = { GL_POINTS, GL_LINES, GL_TRIANGLES, GL_TRIANGLE_FAN }; static void _draw_primitive(int p_points, const float *p_vertices, const float *p_normals, const float *p_colors, const float *p_uvs, const Plane *p_tangents = NULL, int p_instanced = 1) { ERR_FAIL_COND(!p_vertices); ERR_FAIL_COND(p_points < 1 || p_points > 4); GLenum type = prim_type[p_points - 1]; if (!p_colors) { glColor4f(1, 1, 1, 1); }; glEnableClientState(GL_VERTEX_ARRAY); glVertexPointer(3, GL_FLOAT, 0, (GLvoid *)p_vertices); if (p_normals) { glEnableClientState(GL_NORMAL_ARRAY); glNormalPointer(GL_FLOAT, 0, (GLvoid *)p_normals); }; if (p_colors) { glEnableClientState(GL_COLOR_ARRAY); glColorPointer(4, GL_FLOAT, 0, p_colors); }; if (p_uvs) { glClientActiveTexture(GL_TEXTURE0); glEnableClientState(GL_TEXTURE_COORD_ARRAY); glTexCoordPointer(2, GL_FLOAT, 0, p_uvs); }; glDrawArrays(type, 0, p_points); glDisableClientState(GL_VERTEX_ARRAY); glDisableClientState(GL_NORMAL_ARRAY); glDisableClientState(GL_COLOR_ARRAY); glDisableClientState(GL_TEXTURE_COORD_ARRAY); }; /* TEXTURE API */ static Image _get_gl_image_and_format(const Image &p_image, Image::Format p_format, uint32_t p_flags, GLenum &r_gl_format, int &r_gl_components, bool &r_has_alpha_cache) { r_has_alpha_cache = false; Image image = p_image; switch (p_format) { case Image::FORMAT_L8: { r_gl_components = 1; r_gl_format = GL_LUMINANCE; } break; case Image::FORMAT_INTENSITY: { image.convert(Image::FORMAT_RGBA8); r_gl_components = 4; r_gl_format = GL_RGBA; r_has_alpha_cache = true; } break; case Image::FORMAT_LA8: { image.convert(Image::FORMAT_RGBA8); r_gl_components = 4; r_gl_format = GL_RGBA; r_has_alpha_cache = true; } break; case Image::FORMAT_INDEXED: { image.convert(Image::FORMAT_RGB8); r_gl_components = 3; r_gl_format = GL_RGB; } break; case Image::FORMAT_INDEXED_ALPHA: { image.convert(Image::FORMAT_RGBA8); r_gl_components = 4; r_gl_format = GL_RGB; r_has_alpha_cache = true; } break; case Image::FORMAT_RGB8: { r_gl_components = 3; r_gl_format = GL_RGB; } break; case Image::FORMAT_RGBA8: { r_gl_components = 4; r_gl_format = GL_RGBA; r_has_alpha_cache = true; } break; default: { ERR_FAIL_V(Image()); } } return image; } RID RasterizerIPhone::texture_create() { Texture *texture = memnew(Texture); ERR_FAIL_COND_V(!texture, RID()); glGenTextures(1, &texture->tex_id); texture->active = false; return texture_owner.make_rid(texture); } void RasterizerIPhone::texture_allocate(RID p_texture, int p_width, int p_height, Image::Format p_format, uint32_t p_flags) { bool has_alpha_cache; int components; GLenum format; Texture *texture = texture_owner.get(p_texture); ERR_FAIL_COND(!texture); texture->width = p_width; texture->height = p_height; texture->format = p_format; texture->flags = p_flags; //texture->target = (p_flags & VS::TEXTURE_FLAG_CUBEMAP) ? GL_TEXTURE_CUBE_MAP : GL_TEXTURE_2D; texture->target = GL_TEXTURE_2D; _get_gl_image_and_format(Image(), texture->format, texture->flags, format, components, has_alpha_cache); texture->gl_components_cache = components; texture->gl_format_cache = format; texture->format_has_alpha = has_alpha_cache; texture->has_alpha = false; //by default it doesn't have alpha unless something with alpha is blitteds glBindTexture(texture->target, texture->tex_id); if (texture->flags & VS::TEXTURE_FLAG_MIPMAPS) { glTexParameteri(GL_TEXTURE_2D, GL_GENERATE_MIPMAP, GL_TRUE); } if (texture->target == GL_TEXTURE_2D) { glTexImage2D(texture->target, 0, format, texture->width, texture->height, 0, format, GL_UNSIGNED_BYTE, NULL); } /* else { //cubemappor for (int i=0;i<6;i++) glTexImage2D(_cube_side_enum[i], 0, format, texture->width, texture->height, 0, format, GL_UNSIGNED_BYTE,NULL); } */ glTexParameteri(texture->target, GL_TEXTURE_MIN_FILTER, GL_LINEAR); // Linear Filtering if (texture->flags & VS::TEXTURE_FLAG_FILTER) { glTexParameteri(texture->target, GL_TEXTURE_MAG_FILTER, GL_LINEAR); // Linear Filtering if (texture->flags & VS::TEXTURE_FLAG_MIPMAPS) { //glTexParameteri(texture->target,GL_TEXTURE_MIN_FILTER,GL_LINEAR_MIPMAP_LINEAR); }; } if (texture->flags & VS::TEXTURE_FLAG_REPEAT /* && texture->target != GL_TEXTURE_CUBE_MAP*/) { glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); } else { //glTexParameterf( texture->target, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE ); glTexParameterf(texture->target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameterf(texture->target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); } texture->active = true; } void RasterizerIPhone::texture_blit_rect(RID p_texture, int p_x, int p_y, const Image &p_image, VS::CubeMapSide p_cube_side) { Texture *texture = texture_owner.get(p_texture); ERR_FAIL_COND(!texture); ERR_FAIL_COND(!texture->active); ERR_FAIL_COND(texture->format != p_image.get_format()); int components; GLenum format; bool alpha; Image img = _get_gl_image_and_format(p_image, p_image.get_format(), texture->flags, format, components, alpha); if (img.detect_alpha()) texture->has_alpha = true; GLenum blit_target = GL_TEXTURE_2D; //(texture->target == GL_TEXTURE_CUBE_MAP)?_cube_side_enum[p_cube_side]:GL_TEXTURE_2D; PoolVector::Read read = img.get_data().read(); glBindTexture(texture->target, texture->tex_id); glTexSubImage2D(blit_target, 0, p_x, p_y, img.get_width(), img.get_height(), format, GL_UNSIGNED_BYTE, read.ptr()); //glGenerateMipmap( texture->target ); } Image RasterizerIPhone::texture_get_rect(RID p_texture, int p_x, int p_y, int p_width, int p_height, VS::CubeMapSide p_cube_side) const { return Image(); } void RasterizerIPhone::texture_set_flags(RID p_texture, uint32_t p_flags) { Texture *texture = texture_owner.get(p_texture); ERR_FAIL_COND(!texture); glBindTexture(texture->target, texture->tex_id); uint32_t cube = texture->flags & VS::TEXTURE_FLAG_CUBEMAP; texture->flags = p_flags | cube; // can't remove a cube from being a cube if (texture->flags & VS::TEXTURE_FLAG_REPEAT /*&& texture->target != GL_TEXTURE_CUBE_MAP*/) { glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); } else { //glTexParameterf( texture->target, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE ); glTexParameterf(texture->target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameterf(texture->target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); } if (texture->flags & VS::TEXTURE_FLAG_FILTER) { glTexParameteri(texture->target, GL_TEXTURE_MAG_FILTER, GL_LINEAR); // Linear Filtering if (texture->flags & VS::TEXTURE_FLAG_MIPMAPS) glTexParameteri(texture->target, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); } else { glTexParameteri(texture->target, GL_TEXTURE_MAG_FILTER, GL_NEAREST); // nearest } } uint32_t RasterizerIPhone::texture_get_flags(RID p_texture) const { Texture *texture = texture_owner.get(p_texture); ERR_FAIL_COND_V(!texture, 0); return texture->flags; } Image::Format RasterizerIPhone::texture_get_format(RID p_texture) const { Texture *texture = texture_owner.get(p_texture); ERR_FAIL_COND_V(!texture, Image::FORMAT_L8); return texture->format; } uint32_t RasterizerIPhone::texture_get_width(RID p_texture) const { Texture *texture = texture_owner.get(p_texture); ERR_FAIL_COND_V(!texture, 0); return texture->width; } uint32_t RasterizerIPhone::texture_get_height(RID p_texture) const { Texture *texture = texture_owner.get(p_texture); ERR_FAIL_COND_V(!texture, 0); return texture->height; } bool RasterizerIPhone::texture_has_alpha(RID p_texture) const { Texture *texture = texture_owner.get(p_texture); ERR_FAIL_COND_V(!texture, 0); return texture->has_alpha; } /* SHADER API */ RID RasterizerIPhone::shader_create() { return RID(); } void RasterizerIPhone::shader_node_add(RID p_shader, VS::ShaderNodeType p_type, int p_id) { } void RasterizerIPhone::shader_node_remove(RID p_shader, int p_id) { } void RasterizerIPhone::shader_node_change_type(RID p_shader, int p_id, VS::ShaderNodeType p_type) { } void RasterizerIPhone::shader_node_set_param(RID p_shader, int p_id, const Variant &p_value) { } void RasterizerIPhone::shader_get_node_list(RID p_shader, List *p_node_list) const { } VS::ShaderNodeType RasterizerIPhone::shader_node_get_type(RID p_shader, int p_id) const { return VS::NODE_ADD; } Variant RasterizerIPhone::shader_node_get_param(RID p_shader, int p_id) const { return Variant(); } void RasterizerIPhone::shader_connect(RID p_shader, int p_src_id, int p_src_slot, int p_dst_id, int p_dst_slot) { } bool RasterizerIPhone::shader_is_connected(RID p_shader, int p_src_id, int p_src_slot, int p_dst_id, int p_dst_slot) const { return false; } void RasterizerIPhone::shader_disconnect(RID p_shader, int p_src_id, int p_src_slot, int p_dst_id, int p_dst_slot) { } void RasterizerIPhone::shader_get_connections(RID p_shader, List *p_connections) const { } void RasterizerIPhone::shader_clear(RID p_shader) { } /* COMMON MATERIAL API */ void RasterizerIPhone::material_set_param(RID p_material, const StringName &p_param, const Variant &p_value) { } Variant RasterizerIPhone::material_get_param(RID p_material, const StringName &p_param) const { return Variant(); } void RasterizerIPhone::material_get_param_list(RID p_material, List *p_param_list) const { } void RasterizerIPhone::material_set_flag(RID p_material, VS::MaterialFlag p_flag, bool p_enabled) { } bool RasterizerIPhone::material_get_flag(RID p_material, VS::MaterialFlag p_flag) const { return false; } void RasterizerIPhone::material_set_blend_mode(RID p_material, VS::MaterialBlendMode p_mode) { } VS::MaterialBlendMode RasterizerIPhone::material_get_blend_mode(RID p_material) const { return VS::MATERIAL_BLEND_MODE_ADD; } void RasterizerIPhone::material_set_line_width(RID p_material, float p_line_width) { } float RasterizerIPhone::material_get_line_width(RID p_material) const { return 0; } /* FIXED MATERIAL */ RID RasterizerIPhone::material_create() { return material_owner.make_rid(memnew(Material)); } void RasterizerIPhone::fixed_material_set_parameter(RID p_material, VS::SpatialMaterialParam p_parameter, const Variant &p_value) { Material *m = material_owner.get(p_material); ERR_FAIL_COND(!m); ERR_FAIL_INDEX(p_parameter, VisualServer::FIXED_MATERIAL_PARAM_MAX); m->parameters[p_parameter] = p_value; } Variant RasterizerIPhone::fixed_material_get_parameter(RID p_material, VS::SpatialMaterialParam p_parameter) const { Material *m = material_owner.get(p_material); ERR_FAIL_COND_V(!m, Variant()); ERR_FAIL_INDEX_V(p_parameter, VisualServer::FIXED_MATERIAL_PARAM_MAX, Variant()); return m->parameters[p_parameter]; } void RasterizerIPhone::fixed_material_set_texture(RID p_material, VS::SpatialMaterialParam p_parameter, RID p_texture) { Material *m = material_owner.get(p_material); ERR_FAIL_COND(!m); ERR_FAIL_INDEX(p_parameter, VisualServer::FIXED_MATERIAL_PARAM_MAX); m->textures[p_parameter] = p_texture; } RID RasterizerIPhone::fixed_material_get_texture(RID p_material, VS::SpatialMaterialParam p_parameter) const { Material *m = material_owner.get(p_material); ERR_FAIL_COND_V(!m, RID()); ERR_FAIL_INDEX_V(p_parameter, VisualServer::FIXED_MATERIAL_PARAM_MAX, Variant()); return m->textures[p_parameter]; } void RasterizerIPhone::fixed_material_set_detail_blend_mode(RID p_material, VS::MaterialBlendMode p_mode) { Material *m = material_owner.get(p_material); ERR_FAIL_COND(!m); m->detail_blend_mode = p_mode; } VS::MaterialBlendMode RasterizerIPhone::fixed_material_get_detail_blend_mode(RID p_material) const { Material *m = material_owner.get(p_material); ERR_FAIL_COND_V(!m, VS::MATERIAL_BLEND_MODE_MIX); return m->detail_blend_mode; } void RasterizerIPhone::fixed_material_set_texcoord_mode(RID p_material, VS::SpatialMaterialParam p_parameter, VS::SpatialMaterialTexCoordMode p_mode) { Material *m = material_owner.get(p_material); ERR_FAIL_COND(!m); ERR_FAIL_INDEX(p_parameter, VisualServer::FIXED_MATERIAL_PARAM_MAX); m->texcoord_mode[p_parameter] = p_mode; } VS::SpatialMaterialTexCoordMode RasterizerIPhone::fixed_material_get_texcoord_mode(RID p_material, VS::SpatialMaterialParam p_parameter) const { Material *m = material_owner.get(p_material); ERR_FAIL_COND_V(!m, VS::FIXED_MATERIAL_TEXCOORD_TEXGEN); ERR_FAIL_INDEX_V(p_parameter, VisualServer::FIXED_MATERIAL_PARAM_MAX, VS::FIXED_MATERIAL_TEXCOORD_UV); return m->texcoord_mode[p_parameter]; // for now } void RasterizerIPhone::fixed_material_set_texgen_mode(RID p_material, VS::SpatialMaterialTexGenMode p_mode) { Material *m = material_owner.get(p_material); ERR_FAIL_COND(!m); m->texgen_mode = p_mode; }; VS::SpatialMaterialTexGenMode RasterizerIPhone::fixed_material_get_texgen_mode(RID p_material) const { Material *m = material_owner.get(p_material); ERR_FAIL_COND_V(!m, VS::FIXED_MATERIAL_TEXGEN_SPHERE); return m->texgen_mode; }; void RasterizerIPhone::fixed_material_set_uv_transform(RID p_material, const Transform &p_transform) { Material *m = material_owner.get(p_material); ERR_FAIL_COND(!m); m->uv_transform = p_transform; } Transform RasterizerIPhone::fixed_material_get_uv_transform(RID p_material) const { Material *m = material_owner.get(p_material); ERR_FAIL_COND_V(!m, Transform()); return m->uv_transform; } /* SHADER MATERIAL */ RID RasterizerIPhone::shader_material_create() const { return RID(); } void RasterizerIPhone::shader_material_set_vertex_shader(RID p_material, RID p_shader, bool p_owned) { } RID RasterizerIPhone::shader_material_get_vertex_shader(RID p_material) const { return RID(); } void RasterizerIPhone::shader_material_set_fragment_shader(RID p_material, RID p_shader, bool p_owned) { } RID RasterizerIPhone::shader_material_get_fragment_shader(RID p_material) const { return RID(); } /* MESH API */ RID RasterizerIPhone::mesh_create() { return mesh_owner.make_rid(memnew(Mesh)); } void RasterizerIPhone::mesh_add_surface(RID p_mesh, VS::PrimitiveType p_primitive, uint32_t p_format, int p_array_len, int p_index_array_len) { Mesh *mesh = mesh_owner.get(p_mesh); ERR_FAIL_COND(!mesh); ERR_FAIL_COND((p_format & VS::ARRAY_FORMAT_VERTEX) == 0); // mandatory ERR_FAIL_COND(p_array_len <= 0); ERR_FAIL_COND(p_index_array_len == 0); ERR_FAIL_INDEX(p_primitive, VS::PRIMITIVE_MAX); Surface *surface = memnew(Surface); ERR_FAIL_COND(!surface); int total_elem_size = 0; bool use_VBO = true; //glGenBuffersARB!=NULL; // TODO detect if it's in there if (p_format & VS::ARRAY_FORMAT_WEIGHTS) { use_VBO = false; } for (int i = 0; i < VS::ARRAY_MAX; i++) { Surface::ArrayData &ad = surface->array[i]; ad.size = 0; ad.configured = false; ad.ofs = 0; int elem_size = 0; int elem_count = 0; if (!(p_format & (1 << i))) // no array continue; switch (i) { case VS::ARRAY_VERTEX: case VS::ARRAY_NORMAL: { elem_size = 3 * sizeof(GLfloat); // vertex elem_count = 3; } break; case VS::ARRAY_TANGENT: { elem_size = 4 * sizeof(GLfloat); // vertex elem_count = 4; } break; case VS::ARRAY_COLOR: { elem_size = 4; /* RGBA */ elem_count = 4; } break; case VS::ARRAY_TEX_UV: { elem_size = 2 * sizeof(GLfloat); elem_count = 2; } break; case VS::ARRAY_WEIGHTS: case VS::ARRAY_BONES: { elem_size = VS::ARRAY_WEIGHTS_SIZE * sizeof(GLfloat); elem_count = VS::ARRAY_WEIGHTS_SIZE; } break; case VS::ARRAY_INDEX: { if (p_index_array_len <= 0) { ERR_PRINT("p_index_array_len==NO_INDEX_ARRAY"); break; } /* determine wether using 8 or 16 bits indices */ if (p_index_array_len > (1 << 8)) { elem_size = 2; } else { elem_size = 1; } if (use_VBO) { glGenBuffers(1, &surface->index_id); ERR_FAIL_COND(surface->index_id == 0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, surface->index_id); glBufferData(GL_ELEMENT_ARRAY_BUFFER, p_index_array_len * elem_size, NULL, GL_STATIC_DRAW); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); //unbind } else { surface->index_array_local = (uint8_t *)memalloc(p_index_array_len * elem_size); }; surface->index_array_len = p_index_array_len; // only way it can exist ad.ofs = 0; ad.size = elem_size; ad.configured = false; ad.components = 1; continue; } break; default: { ERR_FAIL(); } } ad.ofs = total_elem_size; ad.size = elem_size; ad.components = elem_count; total_elem_size += elem_size; ad.configured = false; } surface->stride = total_elem_size; surface->array_len = p_array_len; surface->format = p_format; surface->primitive = p_primitive; /* bind the bigass buffers */ if (use_VBO) { glGenBuffers(1, &surface->vertex_id); ERR_FAIL_COND(surface->vertex_id == 0); glBindBuffer(GL_ARRAY_BUFFER, surface->vertex_id); glBufferData(GL_ARRAY_BUFFER, surface->array_len * surface->stride, NULL, GL_STATIC_DRAW); glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind } else { surface->array_local = (uint8_t *)memalloc(surface->array_len * surface->stride); }; mesh->surfaces.push_back(surface); } Error RasterizerIPhone::mesh_surface_set_array(RID p_mesh, int p_surface, VS::ArrayType p_type, const Variant &p_array) { ERR_FAIL_INDEX_V(p_type, VS::ARRAY_MAX, ERR_INVALID_PARAMETER); Mesh *mesh = mesh_owner.get(p_mesh); ERR_FAIL_COND_V(!mesh, ERR_INVALID_PARAMETER); ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), ERR_INVALID_PARAMETER); Surface *surface = mesh->surfaces[p_surface]; ERR_FAIL_COND_V(!surface, ERR_INVALID_PARAMETER); ERR_FAIL_COND_V(surface->array[p_type].size == 0, ERR_INVALID_PARAMETER); Surface::ArrayData &a = surface->array[p_type]; switch (p_type) { case VS::ARRAY_INDEX: { ERR_FAIL_COND_V(surface->index_array_len <= 0, ERR_INVALID_DATA); ERR_FAIL_COND_V(p_array.get_type() != Variant::INT_ARRAY, ERR_INVALID_PARAMETER); PoolVector indices = p_array; ERR_FAIL_COND_V(indices.size() == 0, ERR_INVALID_PARAMETER); ERR_FAIL_COND_V(indices.size() != surface->index_array_len, ERR_INVALID_PARAMETER); /* determine wether using 16 or 32 bits indices */ if (surface->index_array_local == 0) { glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, surface->index_id); }; PoolVector::Read read = indices.read(); const int *src = read.ptr(); for (int i = 0; i < surface->index_array_len; i++) { if (surface->index_array_local) { if (a.size <= (1 << 8)) { uint8_t v = src[i]; copymem(&surface->array_local[i * a.size], &v, a.size); } else { uint16_t v = src[i]; copymem(&surface->array_local[i * a.size], &v, a.size); } } else { if (a.size <= (1 << 8)) { uint8_t v = src[i]; glBufferSubData(GL_ELEMENT_ARRAY_BUFFER, i * a.size, a.size, &v); } else { uint16_t v = src[i]; glBufferSubData(GL_ELEMENT_ARRAY_BUFFER, i * a.size, a.size, &v); } }; } if (surface->index_array_local == 0) { glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); }; a.configured = true; return OK; } break; case VS::ARRAY_VERTEX: case VS::ARRAY_NORMAL: { ERR_FAIL_COND_V(p_array.get_type() != Variant::VECTOR3_ARRAY, ERR_INVALID_PARAMETER); PoolVector array = p_array; ERR_FAIL_COND_V(array.size() != surface->array_len, ERR_INVALID_PARAMETER); if (surface->array_local == 0) { glBindBuffer(GL_ARRAY_BUFFER, surface->vertex_id); }; PoolVector::Read read = array.read(); const Vector3 *src = read.ptr(); // setting vertices means regenerating the AABB if (p_type == VS::ARRAY_VERTEX) surface->aabb = AABB(); for (int i = 0; i < surface->array_len; i++) { GLfloat vector[3] = { src[i].x, src[i].y, src[i].z }; if (surface->array_local == 0) { glBufferSubData(GL_ARRAY_BUFFER, a.ofs + i * surface->stride, a.size, vector); } else { copymem(&surface->array_local[a.ofs + i * surface->stride], vector, a.size); } if (p_type == VS::ARRAY_VERTEX) { if (i == 0) { surface->aabb = AABB(src[i], Vector3()); } else { surface->aabb.expand_to(src[i]); } } } if (surface->array_local == 0) { glBindBuffer(GL_ARRAY_BUFFER, 0); }; } break; case VS::ARRAY_TANGENT: { ERR_FAIL_COND_V(p_array.get_type() != Variant::REAL_ARRAY, ERR_INVALID_PARAMETER); PoolVector array = p_array; ERR_FAIL_COND_V(array.size() != surface->array_len * 4, ERR_INVALID_PARAMETER); if (surface->array_local == 0) { glBindBuffer(GL_ARRAY_BUFFER, surface->vertex_id); }; PoolVector::Read read = array.read(); const real_t *src = read.ptr(); for (int i = 0; i < surface->array_len; i++) { GLfloat xyzw[4] = { src[i * 4 + 0], src[i * 4 + 1], src[i * 4 + 2], src[i * 4 + 3] }; if (surface->array_local == 0) { glBufferSubData(GL_ARRAY_BUFFER, a.ofs + i * surface->stride, a.size, xyzw); } else { copymem(&surface->array_local[a.ofs + i * surface->stride], xyzw, a.size); }; } if (surface->array_local == 0) { glBindBuffer(GL_ARRAY_BUFFER, 0); }; } break; case VS::ARRAY_COLOR: { ERR_FAIL_COND_V(p_array.get_type() != Variant::COLOR_ARRAY, ERR_INVALID_PARAMETER); PoolVector array = p_array; ERR_FAIL_COND_V(array.size() != surface->array_len, ERR_INVALID_PARAMETER); if (surface->array_local == 0) glBindBuffer(GL_ARRAY_BUFFER, surface->vertex_id); PoolVector::Read read = array.read(); const Color *src = read.ptr(); surface->has_alpha_cache = false; for (int i = 0; i < surface->array_len; i++) { if (src[i].a < 0.98) // tolerate alpha a bit, for crappy exporters surface->has_alpha_cache = true; uint8_t colors[4] = { src[i].r * 255.0, src[i].g * 255.0, src[i].b * 255.0, src[i].a * 255.0 }; // I'm not sure if this is correct, endianness-wise, i should re-check the GL spec if (surface->array_local == 0) glBufferSubData(GL_ARRAY_BUFFER, a.ofs + i * surface->stride, a.size, colors); else copymem(&surface->array_local[a.ofs + i * surface->stride], colors, a.size); } if (surface->array_local == 0) glBindBuffer(GL_ARRAY_BUFFER, 0); } break; case VS::ARRAY_TEX_UV: { ERR_FAIL_COND_V(p_array.get_type() != Variant::VECTOR3_ARRAY, ERR_INVALID_PARAMETER); PoolVector array = p_array; ERR_FAIL_COND_V(array.size() != surface->array_len, ERR_INVALID_PARAMETER); if (surface->array_local == 0) glBindBuffer(GL_ARRAY_BUFFER, surface->vertex_id); PoolVector::Read read = array.read(); const Vector3 *src = read.ptr(); for (int i = 0; i < surface->array_len; i++) { GLfloat uv[2] = { src[i].x, src[i].y }; if (surface->array_local == 0) glBufferSubData(GL_ARRAY_BUFFER, a.ofs + i * surface->stride, a.size, uv); else copymem(&surface->array_local[a.ofs + i * surface->stride], uv, a.size); } if (surface->array_local == 0) glBindBuffer(GL_ARRAY_BUFFER, 0); } break; case VS::ARRAY_BONES: case VS::ARRAY_WEIGHTS: { ERR_FAIL_COND_V(p_array.get_type() != Variant::REAL_ARRAY, ERR_INVALID_PARAMETER); PoolVector array = p_array; ERR_FAIL_COND_V(array.size() != surface->array_len * VS::ARRAY_WEIGHTS_SIZE, ERR_INVALID_PARAMETER); if (surface->array_local == 0) glBindBuffer(GL_ARRAY_BUFFER, surface->vertex_id); PoolVector::Read read = array.read(); const real_t *src = read.ptr(); for (int i = 0; i < surface->array_len; i++) { GLfloat data[VS::ARRAY_WEIGHTS_SIZE]; for (int j = 0; j < VS::ARRAY_WEIGHTS_SIZE; j++) data[j] = src[i * VS::ARRAY_WEIGHTS_SIZE + j]; if (surface->array_local == 0) glBufferSubData(GL_ARRAY_BUFFER, a.ofs + i * surface->stride, a.size, data); else copymem(&surface->array_local[a.ofs + i * surface->stride], data, a.size); } if (surface->array_local == 0) glBindBuffer(GL_ARRAY_BUFFER, 0); } break; default: { ERR_FAIL_V(ERR_INVALID_PARAMETER); } } a.configured = true; return OK; } Variant RasterizerIPhone::mesh_surface_get_array(RID p_mesh, int p_surface, VS::ArrayType p_type) const { return Variant(); } void RasterizerIPhone::mesh_surface_set_material(RID p_mesh, int p_surface, RID p_material, bool p_owned) { Mesh *mesh = mesh_owner.get(p_mesh); ERR_FAIL_COND(!mesh); ERR_FAIL_INDEX(p_surface, mesh->surfaces.size()); Surface *surface = mesh->surfaces[p_surface]; ERR_FAIL_COND(!surface); if (surface->material_owned && surface->material.is_valid()) free(surface->material); surface->material_owned = p_owned; surface->material = p_material; } RID RasterizerIPhone::mesh_surface_get_material(RID p_mesh, int p_surface) const { Mesh *mesh = mesh_owner.get(p_mesh); ERR_FAIL_COND_V(!mesh, RID()); ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), RID()); Surface *surface = mesh->surfaces[p_surface]; ERR_FAIL_COND_V(!surface, RID()); return surface->material; } int RasterizerIPhone::mesh_surface_get_array_len(RID p_mesh, int p_surface) const { Mesh *mesh = mesh_owner.get(p_mesh); ERR_FAIL_COND_V(!mesh, -1); ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), -1); Surface *surface = mesh->surfaces[p_surface]; ERR_FAIL_COND_V(!surface, -1); return surface->array_len; } int RasterizerIPhone::mesh_surface_get_array_index_len(RID p_mesh, int p_surface) const { Mesh *mesh = mesh_owner.get(p_mesh); ERR_FAIL_COND_V(!mesh, -1); ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), -1); Surface *surface = mesh->surfaces[p_surface]; ERR_FAIL_COND_V(!surface, -1); return surface->index_array_len; } uint32_t RasterizerIPhone::mesh_surface_get_format(RID p_mesh, int p_surface) const { Mesh *mesh = mesh_owner.get(p_mesh); ERR_FAIL_COND_V(!mesh, 0); ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), 0); Surface *surface = mesh->surfaces[p_surface]; ERR_FAIL_COND_V(!surface, 0); return surface->format; } VS::PrimitiveType RasterizerIPhone::mesh_surface_get_primitive_type(RID p_mesh, int p_surface) const { Mesh *mesh = mesh_owner.get(p_mesh); ERR_FAIL_COND_V(!mesh, VS::PRIMITIVE_POINTS); ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), VS::PRIMITIVE_POINTS); Surface *surface = mesh->surfaces[p_surface]; ERR_FAIL_COND_V(!surface, VS::PRIMITIVE_POINTS); return surface->primitive; } void RasterizerIPhone::mesh_erase_surface(RID p_mesh, int p_index) { Mesh *mesh = mesh_owner.get(p_mesh); ERR_FAIL_COND(!mesh); ERR_FAIL_INDEX(p_index, mesh->surfaces.size()); Surface *surface = mesh->surfaces[p_index]; ERR_FAIL_COND(!surface); memdelete(mesh->surfaces[p_index]); mesh->surfaces.remove(p_index); } int RasterizerIPhone::mesh_get_surface_count(RID p_mesh) const { Mesh *mesh = mesh_owner.get(p_mesh); ERR_FAIL_COND_V(!mesh, -1); return mesh->surfaces.size(); } AABB RasterizerIPhone::mesh_get_aabb(RID p_mesh) const { Mesh *mesh = mesh_owner.get(p_mesh); ERR_FAIL_COND_V(!mesh, AABB()); AABB aabb; for (int i = 0; i < mesh->surfaces.size(); i++) { if (i == 0) aabb = mesh->surfaces[i]->aabb; else aabb.merge_with(mesh->surfaces[i]->aabb); } return aabb; } /* MULTIMESH API */ RID RasterizerIPhone::multimesh_create() { return RID(); } void RasterizerIPhone::multimesh_set_instance_count(RID p_multimesh, int p_count) { } int RasterizerIPhone::multimesh_get_instance_count(RID p_multimesh) const { return 0; } void RasterizerIPhone::multimesh_set_mesh(RID p_multimesh, RID p_mesh) { } void RasterizerIPhone::multimesh_set_aabb(RID p_multimesh, const AABB &p_aabb) { } void RasterizerIPhone::multimesh_instance_set_transform(RID p_multimesh, int p_index, const Transform &p_transform) { } void RasterizerIPhone::multimesh_instance_set_color(RID p_multimesh, int p_index, const Color &p_color) { } RID RasterizerIPhone::multimesh_get_mesh(RID p_multimesh) const { return RID(); } AABB RasterizerIPhone::multimesh_get_aabb(RID p_multimesh) const { return AABB(); } Transform RasterizerIPhone::multimesh_instance_get_transform(RID p_multimesh, int p_index) const { return Transform(); } Color RasterizerIPhone::multimesh_instance_get_color(RID p_multimesh, int p_index) const { return Color(); } /* POLY API */ RID RasterizerIPhone::poly_create() { return RID(); } void RasterizerIPhone::poly_set_material(RID p_poly, RID p_material, bool p_owned) { } void RasterizerIPhone::poly_add_primitive(RID p_poly, const Vector &p_points, const Vector &p_normals, const Vector &p_colors, const Vector &p_uvs) { } void RasterizerIPhone::poly_clear(RID p_poly) { } AABB RasterizerIPhone::poly_get_aabb(RID p_poly) const { return AABB(); } /* PARTICLES API */ RID RasterizerIPhone::particles_create() { return RID(); } void RasterizerIPhone::particles_set_amount(RID p_particles, int p_amount) { } int RasterizerIPhone::particles_get_amount(RID p_particles) const { return 0; } void RasterizerIPhone::particles_set_emitting(RID p_particles, bool p_emitting) { } bool RasterizerIPhone::particles_is_emitting(RID p_particles) const { return false; } void RasterizerIPhone::particles_set_visibility_aabb(RID p_particles, const AABB &p_visibility) { } AABB RasterizerIPhone::particles_get_visibility_aabb(RID p_particles) const { return AABB(); } void RasterizerIPhone::particles_set_emission_half_extents(RID p_particles, const Vector3 &p_half_extents) { } Vector3 RasterizerIPhone::particles_get_emission_half_extents(RID p_particles) const { return Vector3(); } void RasterizerIPhone::particles_set_gravity_normal(RID p_particles, const Vector3 &p_normal) { } Vector3 RasterizerIPhone::particles_get_gravity_normal(RID p_particles) const { return Vector3(); } void RasterizerIPhone::particles_set_variable(RID p_particles, VS::ParticleVariable p_variable, float p_value) { } float RasterizerIPhone::particles_get_variable(RID p_particles, VS::ParticleVariable p_variable) const { return 0; } void RasterizerIPhone::particles_set_randomness(RID p_particles, VS::ParticleVariable p_variable, float p_randomness) { } float RasterizerIPhone::particles_get_randomness(RID p_particles, VS::ParticleVariable p_variable) const { return 0; } void RasterizerIPhone::particles_set_color_phase_pos(RID p_particles, int p_phase, float p_pos) { } float RasterizerIPhone::particles_get_color_phase_pos(RID p_particles, int p_phase) const { return 0; } void RasterizerIPhone::particles_set_color_phases(RID p_particles, int p_phases) { } int RasterizerIPhone::particles_get_color_phases(RID p_particles) const { return 0; } void RasterizerIPhone::particles_set_color_phase_color(RID p_particles, int p_phase, const Color &p_color) { } Color RasterizerIPhone::particles_get_color_phase_color(RID p_particles, int p_phase) const { return Color(); } void RasterizerIPhone::particles_set_attractors(RID p_particles, int p_attractors) { } int RasterizerIPhone::particles_get_attractors(RID p_particles) const { return 0; } void RasterizerIPhone::particles_set_attractor_pos(RID p_particles, int p_attractor, const Vector3 &p_pos) { } Vector3 RasterizerIPhone::particles_get_attractor_pos(RID p_particles, int p_attractor) const { return Vector3(); } void RasterizerIPhone::particles_set_attractor_strength(RID p_particles, int p_attractor, float p_force) { } float RasterizerIPhone::particles_get_attractor_strength(RID p_particles, int p_attractor) const { return 0; } void RasterizerIPhone::particles_set_material(RID p_particles, RID p_material, bool p_owned) { } RID RasterizerIPhone::particles_get_material(RID p_particles) const { return RID(); } AABB RasterizerIPhone::particles_get_aabb(RID p_particles) const { return AABB(); } /* BEAM API */ RID RasterizerIPhone::beam_create() { return RID(); } void RasterizerIPhone::beam_set_point_count(RID p_beam, int p_count) { } int RasterizerIPhone::beam_get_point_count(RID p_beam) const { return 0; } void RasterizerIPhone::beam_clear(RID p_beam) { } void RasterizerIPhone::beam_set_point(RID p_beam, int p_point, Vector3 &p_pos) { } Vector3 RasterizerIPhone::beam_get_point(RID p_beam, int p_point) const { return Vector3(); } void RasterizerIPhone::beam_set_primitive(RID p_beam, VS::BeamPrimitive p_primitive) { } VS::BeamPrimitive RasterizerIPhone::beam_get_primitive(RID p_beam) const { return VS::BEAM_CUBIC; } void RasterizerIPhone::beam_set_material(RID p_beam, RID p_material) { } RID RasterizerIPhone::beam_get_material(RID p_beam) const { return RID(); } AABB RasterizerIPhone::beam_get_aabb(RID p_particles) const { return AABB(); } /* SKELETON API */ RID RasterizerIPhone::skeleton_create() { Skeleton *skeleton = memnew(Skeleton); ERR_FAIL_COND_V(!skeleton, RID()); return skeleton_owner.make_rid(skeleton); } void RasterizerIPhone::skeleton_resize(RID p_skeleton, int p_bones) { Skeleton *skeleton = skeleton_owner.get(p_skeleton); ERR_FAIL_COND(!skeleton); if (p_bones == skeleton->bones.size()) { return; }; ERR_FAIL_COND(p_bones < 0 || p_bones > 256); skeleton->bones.resize(p_bones); } int RasterizerIPhone::skeleton_get_bone_count(RID p_skeleton) const { Skeleton *skeleton = skeleton_owner.get(p_skeleton); ERR_FAIL_COND_V(!skeleton, -1); return skeleton->bones.size(); } void RasterizerIPhone::skeleton_bone_set_transform(RID p_skeleton, int p_bone, const Transform &p_transform) { Skeleton *skeleton = skeleton_owner.get(p_skeleton); ERR_FAIL_COND(!skeleton); ERR_FAIL_INDEX(p_bone, skeleton->bones.size()); skeleton->bones[p_bone] = p_transform; } Transform RasterizerIPhone::skeleton_bone_get_transform(RID p_skeleton, int p_bone) { Skeleton *skeleton = skeleton_owner.get(p_skeleton); ERR_FAIL_COND_V(!skeleton, Transform()); ERR_FAIL_INDEX_V(p_bone, skeleton->bones.size(), Transform()); // something return skeleton->bones[p_bone]; } /* LIGHT API */ RID RasterizerIPhone::light_create(VS::LightType p_type) { Light *light = memnew(Light); light->type = p_type; return light_owner.make_rid(light); } VS::LightType RasterizerIPhone::light_get_type(RID p_light) const { Light *light = light_owner.get(p_light); ERR_FAIL_COND_V(!light, VS::LIGHT_OMNI); return light->type; } void RasterizerIPhone::light_set_color(RID p_light, VS::LightColor p_type, const Color &p_color) { Light *light = light_owner.get(p_light); ERR_FAIL_COND(!light); ERR_FAIL_INDEX(p_type, 3); light->colors[p_type] = p_color; } Color RasterizerIPhone::light_get_color(RID p_light, VS::LightColor p_type) const { Light *light = light_owner.get(p_light); ERR_FAIL_COND_V(!light, Color()); ERR_FAIL_INDEX_V(p_type, 3, Color()); return light->colors[p_type]; } void RasterizerIPhone::light_set_shadow(RID p_light, bool p_enabled) { Light *light = light_owner.get(p_light); ERR_FAIL_COND(!light); light->shadow_enabled = p_enabled; } bool RasterizerIPhone::light_has_shadow(RID p_light) const { Light *light = light_owner.get(p_light); ERR_FAIL_COND_V(!light, false); return light->shadow_enabled; } void RasterizerIPhone::light_set_volumetric(RID p_light, bool p_enabled) { Light *light = light_owner.get(p_light); ERR_FAIL_COND(!light); light->volumetric_enabled = p_enabled; } bool RasterizerIPhone::light_is_volumetric(RID p_light) const { Light *light = light_owner.get(p_light); ERR_FAIL_COND_V(!light, false); return light->volumetric_enabled; } void RasterizerIPhone::light_set_projector(RID p_light, RID p_texture) { Light *light = light_owner.get(p_light); ERR_FAIL_COND(!light); light->projector = p_texture; } RID RasterizerIPhone::light_get_projector(RID p_light) const { Light *light = light_owner.get(p_light); ERR_FAIL_COND_V(!light, RID()); return light->projector; } void RasterizerIPhone::light_set_var(RID p_light, VS::LightParam p_var, float p_value) { Light *light = light_owner.get(p_light); ERR_FAIL_COND(!light); ERR_FAIL_INDEX(p_var, VS::LIGHT_PARAM_MAX); light->vars[p_var] = p_value; } float RasterizerIPhone::light_get_var(RID p_light, VS::LightParam p_var) const { Light *light = light_owner.get(p_light); ERR_FAIL_COND_V(!light, 0); ERR_FAIL_INDEX_V(p_var, VS::LIGHT_PARAM_MAX, 0); return light->vars[p_var]; } AABB RasterizerIPhone::light_get_aabb(RID p_light) const { Light *light = light_owner.get(p_light); ERR_FAIL_COND_V(!light, AABB()); switch (light->type) { case VS::LIGHT_SPOT: { float len = light->vars[VS::LIGHT_PARAM_RADIUS]; float size = Math::tan(Math::deg2rad(light->vars[VS::LIGHT_PARAM_SPOT_ANGLE])) * len; return AABB(Vector3(-size, -size, -len), Vector3(size * 2, size * 2, len)); } break; case VS::LIGHT_OMNI: { float r = light->vars[VS::LIGHT_PARAM_RADIUS]; return AABB(-Vector3(r, r, r), Vector3(r, r, r) * 2); } break; case VS::LIGHT_DIRECTIONAL: { return AABB(); } break; default: {} } ERR_FAIL_V(AABB()); } RID RasterizerIPhone::light_instance_create(RID p_light) { Light *light = light_owner.get(p_light); ERR_FAIL_COND_V(!light, RID()); LightInstance *light_instance = memnew(LightInstance); light_instance->light = p_light; light_instance->base = light; light_instance->last_pass = 0; return light_instance_owner.make_rid(light_instance); } void RasterizerIPhone::light_instance_set_transform(RID p_light_instance, const Transform &p_transform) { LightInstance *lighti = light_instance_owner.get(p_light_instance); ERR_FAIL_COND(!lighti); lighti->transform = p_transform; } void RasterizerIPhone::light_instance_set_active_hint(RID p_light_instance) { LightInstance *lighti = light_instance_owner.get(p_light_instance); ERR_FAIL_COND(!lighti); lighti->last_pass = frame; } bool RasterizerIPhone::light_instance_has_shadow(RID p_light_instance) const { return false; } bool RasterizerIPhone::light_instance_assign_shadow(RID p_light_instance) { return false; } Rasterizer::ShadowType RasterizerIPhone::light_instance_get_shadow_type(RID p_light_instance) const { return Rasterizer::SHADOW_CUBE; } int RasterizerIPhone::light_instance_get_shadow_passes(RID p_light_instance) const { return 0; } void RasterizerIPhone::light_instance_set_pssm_split_info(RID p_light_instance, int p_split, float p_near, float p_far, const CameraMatrix &p_camera, const Transform &p_transform) { } /* PARTICLES INSTANCE */ RID RasterizerIPhone::particles_instance_create(RID p_particles) { return RID(); } void RasterizerIPhone::particles_instance_set_transform(RID p_particles_instance, const Transform &p_transform) { } /* RENDER API */ /* all calls (inside begin/end shadow) are always warranted to be in the following order: */ static GLfloat rtri; // Angle For The Triangle ( NEW ) static GLfloat rquad; // Angle For The Quad ( NEW ) void RasterizerIPhone::begin_frame() { window_size = Size2(OS::get_singleton()->get_video_mode().width, OS::get_singleton()->get_video_mode().height); double time = (OS::get_singleton()->get_ticks_usec() / 1000); // get msec time /= 1000.0; // make secs time_delta = time - last_time; last_time = time; frame++; glClearColor(0, 0, 1, 1); glClear(GL_COLOR_BUFFER_BIT); /* nehe ?*/ #if 0 glViewport(0,0,window_size.width,window_size.height); // Reset The Current Viewport glMatrixMode(GL_PROJECTION); // Select The Projection Matrix glLoadIdentity(); // Reset The Projection Matrix // Calculate The Aspect Ratio Of The Window gluPerspective(45.0f,(GLfloat)window_size.width/(GLfloat)window_size.height,0.1f,100.0f); glMatrixMode(GL_MODELVIEW); // Select The Modelview Matrix glLoadIdentity(); // Reset The Modelview Matrix glShadeModel(GL_SMOOTH); // Enable Smooth Shading glClearColor(0.0f, 0.0f, 0.0f, 0.5f); // Black Background glClearDepth(1.0f); // Depth Buffer Setup glEnable(GL_DEPTH_TEST); // Enables Depth Testing glDepthFunc(GL_LEQUAL); // The Type Of Depth Testing To Do glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); // Really Nice Perspective Calculations glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clear Screen And Depth Buffer glLoadIdentity(); // Reset The Current Modelview Matrix glTranslatef(-1.5f,0.0f,-6.0f); // Move Left 1.5 Units And Into The Screen 6.0 glRotatef(rtri,0.0f,1.0f,0.0f); // Rotate The Triangle On The Y axis ( NEW ) glBegin(GL_TRIANGLES); // Start Drawing A Triangle glColor3f(1.0f,0.0f,0.0f); // Red glVertex3f( 0.0f, 1.0f, 0.0f); // Top Of Triangle (Front) glColor3f(0.0f,1.0f,0.0f); // Green glVertex3f(-1.0f,-1.0f, 1.0f); // Left Of Triangle (Front) glColor3f(0.0f,0.0f,1.0f); // Blue glVertex3f( 1.0f,-1.0f, 1.0f); // Right Of Triangle (Front) glColor3f(1.0f,0.0f,0.0f); // Red glVertex3f( 0.0f, 1.0f, 0.0f); // Top Of Triangle (Right) glColor3f(0.0f,0.0f,1.0f); // Blue glVertex3f( 1.0f,-1.0f, 1.0f); // Left Of Triangle (Right) glColor3f(0.0f,1.0f,0.0f); // Green glVertex3f( 1.0f,-1.0f, -1.0f); // Right Of Triangle (Right) glColor3f(1.0f,0.0f,0.0f); // Red glVertex3f( 0.0f, 1.0f, 0.0f); // Top Of Triangle (Back) glColor3f(0.0f,1.0f,0.0f); // Green glVertex3f( 1.0f,-1.0f, -1.0f); // Left Of Triangle (Back) glColor3f(0.0f,0.0f,1.0f); // Blue glVertex3f(-1.0f,-1.0f, -1.0f); // Right Of Triangle (Back) glColor3f(1.0f,0.0f,0.0f); // Red glVertex3f( 0.0f, 1.0f, 0.0f); // Top Of Triangle (Left) glColor3f(0.0f,0.0f,1.0f); // Blue glVertex3f(-1.0f,-1.0f,-1.0f); // Left Of Triangle (Left) glColor3f(0.0f,1.0f,0.0f); // Green glVertex3f(-1.0f,-1.0f, 1.0f); // Right Of Triangle (Left) glEnd(); // Done Drawing The Pyramid glLoadIdentity(); // Reset The Current Modelview Matrix glTranslatef(1.5f,0.0f,-7.0f); // Move Right 1.5 Units And Into The Screen 7.0 glRotatef(rquad,1.0f,1.0f,1.0f); // Rotate The Quad On The X axis ( NEW ) glBegin(GL_QUADS); // Draw A Quad glColor3f(0.0f,1.0f,0.0f); // Set The Color To Green glVertex3f( 1.0f, 1.0f,-1.0f); // Top Right Of The Quad (Top) glVertex3f(-1.0f, 1.0f,-1.0f); // Top Left Of The Quad (Top) glVertex3f(-1.0f, 1.0f, 1.0f); // Bottom Left Of The Quad (Top) glVertex3f( 1.0f, 1.0f, 1.0f); // Bottom Right Of The Quad (Top) glColor3f(1.0f,0.5f,0.0f); // Set The Color To Orange glVertex3f( 1.0f,-1.0f, 1.0f); // Top Right Of The Quad (Bottom) glVertex3f(-1.0f,-1.0f, 1.0f); // Top Left Of The Quad (Bottom) glVertex3f(-1.0f,-1.0f,-1.0f); // Bottom Left Of The Quad (Bottom) glVertex3f( 1.0f,-1.0f,-1.0f); // Bottom Right Of The Quad (Bottom) glColor3f(1.0f,0.0f,0.0f); // Set The Color To Red glVertex3f( 1.0f, 1.0f, 1.0f); // Top Right Of The Quad (Front) glVertex3f(-1.0f, 1.0f, 1.0f); // Top Left Of The Quad (Front) glVertex3f(-1.0f,-1.0f, 1.0f); // Bottom Left Of The Quad (Front) glVertex3f( 1.0f,-1.0f, 1.0f); // Bottom Right Of The Quad (Front) glColor3f(1.0f,1.0f,0.0f); // Set The Color To Yellow glVertex3f( 1.0f,-1.0f,-1.0f); // Top Right Of The Quad (Back) glVertex3f(-1.0f,-1.0f,-1.0f); // Top Left Of The Quad (Back) glVertex3f(-1.0f, 1.0f,-1.0f); // Bottom Left Of The Quad (Back) glVertex3f( 1.0f, 1.0f,-1.0f); // Bottom Right Of The Quad (Back) glColor3f(0.0f,0.0f,1.0f); // Set The Color To Blue glVertex3f(-1.0f, 1.0f, 1.0f); // Top Right Of The Quad (Left) glVertex3f(-1.0f, 1.0f,-1.0f); // Top Left Of The Quad (Left) glVertex3f(-1.0f,-1.0f,-1.0f); // Bottom Left Of The Quad (Left) glVertex3f(-1.0f,-1.0f, 1.0f); // Bottom Right Of The Quad (Left) glColor3f(1.0f,0.0f,1.0f); // Set The Color To Violet glVertex3f( 1.0f, 1.0f,-1.0f); // Top Right Of The Quad (Right) glVertex3f( 1.0f, 1.0f, 1.0f); // Top Left Of The Quad (Right) glVertex3f( 1.0f,-1.0f, 1.0f); // Bottom Left Of The Quad (Right) glVertex3f( 1.0f,-1.0f,-1.0f); // Bottom Right Of The Quad (Right) glEnd(); // Done Drawing The Quad rtri+=0.2f; // Increase The Rotation Variable For The Triangle ( NEW ) rquad-=0.15f; // Decrease The Rotation Variable For The Quad ( NEW ) #endif } void RasterizerIPhone::set_viewport(const VS::ViewportRect &p_viewport) { viewport = p_viewport; canvas_transform = Transform(); canvas_transform.translate(-(viewport.width / 2.0f), -(viewport.height / 2.0f), 0.0f); canvas_transform.scale(Vector3(2.0f / viewport.width, -2.0f / viewport.height, 1.0f)); glViewport(viewport.x, window_size.height - (viewport.height + viewport.y), viewport.width, viewport.height); } void RasterizerIPhone::begin_scene(RID p_fx, VS::ScenarioDebugMode p_debug) { opaque_render_list.clear(); alpha_render_list.clear(); light_instance_count = 0; scene_fx = p_fx.is_valid() ? fx_owner.get(p_fx) : NULL; }; void RasterizerIPhone::begin_shadow_map(RID p_light_instance, int p_shadow_pass) { } void RasterizerIPhone::set_camera(const Transform &p_world, const CameraMatrix &p_projection) { camera_transform = p_world; camera_transform_inverse = camera_transform.inverse(); camera_projection = p_projection; camera_plane = Plane(camera_transform.origin, camera_transform.basis.get_axis(2)); camera_z_near = camera_projection.get_z_near(); camera_z_far = camera_projection.get_z_far(); camera_projection.get_viewport_size(camera_vp_size.x, camera_vp_size.y); } void RasterizerIPhone::add_light(RID p_light_instance) { #define LIGHT_FADE_TRESHOLD 0.05 ERR_FAIL_COND(light_instance_count >= MAX_LIGHTS); LightInstance *li = light_instance_owner.get(p_light_instance); ERR_FAIL_COND(!li); /* make light hash */ // actually, not really a hash, but helps to sort the lights // and avoid recompiling redudant shader versions li->hash_aux = li->base->type; if (li->base->shadow_enabled) li->hash_aux |= (1 << 3); if (li->base->projector.is_valid()) li->hash_aux |= (1 << 4); if (li->base->shadow_enabled && li->base->volumetric_enabled) li->hash_aux |= (1 << 5); switch (li->base->type) { case VisualServer::LIGHT_DIRECTIONAL: { Vector3 dir = li->transform.basis.get_axis(2); li->light_vector.x = dir.x; li->light_vector.y = dir.y; li->light_vector.z = dir.z; } break; case VisualServer::LIGHT_OMNI: { float radius = li->base->vars[VisualServer::LIGHT_PARAM_RADIUS]; if (radius == 0) radius = 0.0001; li->linear_att = (1 / LIGHT_FADE_TRESHOLD) / radius; li->light_vector.x = li->transform.origin.x; li->light_vector.y = li->transform.origin.y; li->light_vector.z = li->transform.origin.z; } break; case VisualServer::LIGHT_SPOT: { float radius = li->base->vars[VisualServer::LIGHT_PARAM_RADIUS]; if (radius == 0) radius = 0.0001; li->linear_att = (1 / LIGHT_FADE_TRESHOLD) / radius; li->light_vector.x = li->transform.origin.x; li->light_vector.y = li->transform.origin.y; li->light_vector.z = li->transform.origin.z; Vector3 dir = -li->transform.basis.get_axis(2); li->spot_vector.x = dir.x; li->spot_vector.y = dir.y; li->spot_vector.z = dir.z; } break; } light_instances[light_instance_count++] = li; } void RasterizerIPhone::_add_geometry(const Geometry *p_geometry, const Transform &p_world, uint32_t p_vertex_format, const RID *p_light_instances, int p_light_count, const ParamOverrideMap *p_material_overrides, const Skeleton *p_skeleton, GeometryOwner *p_owner) { Material *m = NULL; if (p_geometry->material.is_valid()) m = material_owner.get(p_geometry->material); if (!m) { m = material_owner.get(default_material); } ERR_FAIL_COND(!m); LightInstance *lights[RenderList::MAX_LIGHTS]; int light_count = 0; RenderList *render_list = &opaque_render_list; if (p_geometry->has_alpha || m->detail_blend_mode != VS::MATERIAL_BLEND_MODE_MIX) { render_list = &alpha_render_list; }; if (!m->flags[VS::MATERIAL_FLAG_UNSHADED]) { light_count = p_light_count; for (int i = 0; i < light_count; i++) { lights[i] = light_instance_owner.get(p_light_instances[i]); } } render_list->add_element(p_geometry, m, p_world, lights, light_count, p_material_overrides, p_skeleton, camera_plane.distance(p_world.origin), p_owner); } void RasterizerIPhone::add_mesh(RID p_mesh, const Transform *p_world, const RID *p_light_instances, int p_light_count, const ParamOverrideMap *p_material_overrides, RID p_skeleton) { Mesh *mesh = mesh_owner.get(p_mesh); int ssize = mesh->surfaces.size(); for (int i = 0; i < ssize; i++) { Surface *s = mesh->surfaces[i]; Skeleton *sk = p_skeleton.is_valid() ? skeleton_owner.get(p_skeleton) : NULL; _add_geometry(s, *p_world, s->format, p_light_instances, p_light_count, p_material_overrides, sk, NULL); } mesh->last_pass = frame; } void RasterizerIPhone::add_multimesh(RID p_multimesh, const Transform *p_world, const RID *p_light_instances, int p_light_count, const ParamOverrideMap *p_material_overrides) { } void RasterizerIPhone::add_poly(RID p_poly, const Transform *p_world, const RID *p_light_instances, int p_light_count, const ParamOverrideMap *p_material_overrides) { Poly *p = poly_owner.get(p_poly); if (!p->primitives.empty()) { const Poly::Primitive *pp = &p->primitives[0]; uint32_t format = VisualServer::ARRAY_FORMAT_VERTEX; if (!pp->normals.empty()) format |= VisualServer::ARRAY_FORMAT_NORMAL; if (!pp->colors.empty()) format |= VisualServer::ARRAY_FORMAT_COLOR; if (!pp->uvs.empty()) format |= VisualServer::ARRAY_TEX_UV; _add_geometry(p, *p_world, format, p_light_instances, p_light_count, p_material_overrides, NULL, NULL); } } void RasterizerIPhone::add_beam(RID p_beam, const Transform *p_world, const RID *p_light_instances, int p_light_count, const ParamOverrideMap *p_material_overrides) { } void RasterizerIPhone::add_particles(RID p_particle_instance, const RID *p_light_instances, int p_light_count, const ParamOverrideMap *p_material_overrides) { } void RasterizerIPhone::_setup_material(const Geometry *p_geometry, const Material *p_material) { if (p_material->flags[VS::MATERIAL_FLAG_DOUBLE_SIDED]) glDisable(GL_CULL_FACE); else { glEnable(GL_CULL_FACE); glCullFace((p_material->flags[VS::MATERIAL_FLAG_INVERT_FACES]) ? GL_FRONT : GL_BACK); } glEnable(GL_COLOR_MATERIAL); /* unused, unless color array */ //glColorMaterial( GL_FRONT_AND_BACK, GL_DIFFUSE ); glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE); ///ambient @TODO offer global ambient group option float ambient_rgba[4] = { 1, 1, 1, 1.0 }; glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, ambient_rgba); ///diffuse const Color &diffuse_color = p_material->parameters[VS::FIXED_MATERIAL_PARAM_DIFFUSE]; float diffuse_rgba[4] = { (float)diffuse_color.r, (float)diffuse_color.g, (float)diffuse_color.b, (float)diffuse_color.a }; glColor4f(diffuse_rgba[0], diffuse_rgba[1], diffuse_rgba[2], diffuse_rgba[3]); glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, diffuse_rgba); //specular const Color &specular_color = p_material->parameters[VS::FIXED_MATERIAL_PARAM_SPECULAR]; float specular_rgba[4] = { (float)specular_color.r, (float)specular_color.g, (float)specular_color.b, 1.0 }; glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, specular_rgba); const Color &emission_color = p_material->parameters[VS::FIXED_MATERIAL_PARAM_EMISSION]; float emission_rgba[4] = { (float)emission_color.r, (float)emission_color.g, (float)emission_color.b, 1.0 }; glMaterialfv(GL_FRONT_AND_BACK, GL_EMISSION, emission_rgba); glMaterialf(GL_FRONT_AND_BACK, GL_SHININESS, p_material->parameters[VS::FIXED_MATERIAL_PARAM_SPECULAR_EXP]); if (p_material->flags[VS::MATERIAL_FLAG_UNSHADED]) { glDisable(GL_LIGHTING); } else { glEnable(GL_LIGHTING); glDisable(GL_LIGHTING); } //depth test? /* if (p_material->flags[VS::MATERIAL_FLAG_WIREFRAME]) glPolygonMode(GL_FRONT_AND_BACK,GL_LINE); else glPolygonMode(GL_FRONT_AND_BACK,GL_FILL); */ if (p_material->textures[VS::FIXED_MATERIAL_PARAM_DIFFUSE]) { Texture *texture = texture_owner.get(p_material->textures[VS::FIXED_MATERIAL_PARAM_DIFFUSE]); ERR_FAIL_COND(!texture); glActiveTexture(GL_TEXTURE0); glEnable(GL_TEXTURE_2D); glBindTexture(GL_TEXTURE_2D, texture->tex_id); }; }; void RasterizerIPhone::_setup_light(LightInstance *p_instance, int p_idx) { Light *ld = p_instance->base; int glid = GL_LIGHT0 + p_idx; glLightfv(glid, GL_AMBIENT, ld->colors[VS::LIGHT_COLOR_AMBIENT].components); glLightfv(glid, GL_DIFFUSE, ld->colors[VS::LIGHT_COLOR_DIFFUSE].components); glLightfv(glid, GL_SPECULAR, ld->colors[VS::LIGHT_COLOR_SPECULAR].components); switch (ld->type) { case VS::LIGHT_DIRECTIONAL: { /* This doesn't have attenuation */ glMatrixMode(GL_MODELVIEW); glPushMatrix(); glLoadIdentity(); Vector3 v(0.0, 0.0, -1.0); // directional lights point up by default v = p_instance->transform.get_basis().xform(v); v = camera_transform_inverse.get_basis().xform(v); v.normalize(); // this sucks, so it will be optimized at some point v = -v; float lightpos[4] = { v.x, v.y, v.z, 0.0 }; glLightfv(glid, GL_POSITION, lightpos); //at modelview glPopMatrix(); } break; case VS::LIGHT_OMNI: { glLightf(glid, GL_SPOT_CUTOFF, 180.0); glLightf(glid, GL_CONSTANT_ATTENUATION, ld->vars[VS::LIGHT_PARAM_ATTENUATION]); glLightf(glid, GL_LINEAR_ATTENUATION, ld->vars[VS::LIGHT_PARAM_RADIUS]); glLightf(glid, GL_QUADRATIC_ATTENUATION, ld->vars[VS::LIGHT_PARAM_ENERGY]); // wut? glMatrixMode(GL_MODELVIEW); glPushMatrix(); glLoadIdentity(); Vector3 pos = p_instance->transform.get_origin(); pos = camera_transform_inverse.xform(pos); float lightpos[4] = { pos.x, pos.y, pos.z, 1.0 }; glLightfv(glid, GL_POSITION, lightpos); //at modelview glPopMatrix(); } break; case VS::LIGHT_SPOT: { glLightf(glid, GL_SPOT_CUTOFF, ld->vars[VS::LIGHT_PARAM_SPOT_ANGLE]); glLightf(glid, GL_SPOT_EXPONENT, ld->vars[VS::LIGHT_PARAM_SPOT_ATTENUATION]); glLightf(glid, GL_CONSTANT_ATTENUATION, ld->vars[VS::LIGHT_PARAM_ATTENUATION]); glLightf(glid, GL_LINEAR_ATTENUATION, ld->vars[VS::LIGHT_PARAM_RADIUS]); glLightf(glid, GL_QUADRATIC_ATTENUATION, ld->vars[VS::LIGHT_PARAM_ENERGY]); // wut? glMatrixMode(GL_MODELVIEW); glPushMatrix(); glLoadIdentity(); Vector3 v(0.0, 0.0, -1.0); // directional lights point up by default v = p_instance->transform.get_basis().xform(v); v = camera_transform_inverse.get_basis().xform(v); v.normalize(); // this sucks, so it will be optimized at some point float lightdir[4] = { v.x, v.y, v.z, 1.0 }; glLightfv(glid, GL_SPOT_DIRECTION, lightdir); //at modelview v = p_instance->transform.get_origin(); v = camera_transform_inverse.xform(v); float lightpos[4] = { v.x, v.y, v.z, 1.0 }; glLightfv(glid, GL_POSITION, lightpos); //at modelview glPopMatrix(); } break; default: break; } }; void RasterizerIPhone::_setup_lights(LightInstance **p_lights, int p_light_count) { for (int i = 0; i < MAX_LIGHTS; i++) { if (i < p_light_count) { glEnable(GL_LIGHT0 + i); _setup_light(p_lights[i], i); } else { glDisable(GL_LIGHT0 + i); } } } static const int gl_client_states[] = { GL_VERTEX_ARRAY, GL_NORMAL_ARRAY, -1, // ARRAY_TANGENT GL_COLOR_ARRAY, GL_TEXTURE_COORD_ARRAY, // ARRAY_TEX_UV GL_TEXTURE_COORD_ARRAY, // ARRAY_TEX_UV2 -1, // ARRAY_BONES -1, // ARRAY_WEIGHTS -1, // ARRAY_INDEX }; void RasterizerIPhone::_setup_geometry(const Geometry *p_geometry, const Material *p_material) { switch (p_geometry->type) { case Geometry::GEOMETRY_SURFACE: { Surface *surf = (Surface *)p_geometry; uint8_t *base = 0; bool use_VBO = (surf->array_local == 0); if (!use_VBO) { base = surf->array_local; glBindBuffer(GL_ARRAY_BUFFER, 0); } else { glBindBuffer(GL_ARRAY_BUFFER, surf->vertex_id); }; const Surface::ArrayData *a = surf->array; for (int i = 0; i < VS::ARRAY_MAX; i++) { const Surface::ArrayData &ad = surf->array[i]; if (ad.size == 0) { if (gl_client_states[i] != -1) { glDisableClientState(gl_client_states[i]); }; continue; // this one is disabled. } ERR_CONTINUE(!ad.configured); if (gl_client_states[i] != -1) { glEnableClientState(gl_client_states[i]); }; switch (i) { case VS::ARRAY_VERTEX: if (!use_VBO) glVertexPointer(3, GL_FLOAT, surf->stride, (GLvoid *)&base[a->ofs]); else if (surf->array[VS::ARRAY_BONES].size) glVertexPointer(3, GL_FLOAT, 0, skinned_buffer); else glVertexPointer(3, GL_FLOAT, surf->stride, (GLvoid *)a->ofs); break; case VS::ARRAY_NORMAL: if (use_VBO) glNormalPointer(GL_FLOAT, surf->stride, (GLvoid *)a->ofs); else glNormalPointer(GL_FLOAT, surf->stride, (GLvoid *)&base[a->ofs]); break; case VS::ARRAY_TANGENT: break; case VS::ARRAY_COLOR: if (use_VBO) glColorPointer(4, GL_UNSIGNED_BYTE, surf->stride, (GLvoid *)a->ofs); else glColorPointer(4, GL_UNSIGNED_BYTE, surf->stride, (GLvoid *)&base[a->ofs]); break; case VS::ARRAY_TEX_UV: case VS::ARRAY_TEX_UV2: if (use_VBO) glTexCoordPointer(2, GL_FLOAT, surf->stride, (GLvoid *)a->ofs); else glTexCoordPointer(2, GL_FLOAT, surf->stride, &base[a->ofs]); break; case VS::ARRAY_BONES: case VS::ARRAY_WEIGHTS: case VS::ARRAY_INDEX: break; }; } // process skeleton here } break; default: break; }; }; static const GLenum gl_primitive[] = { GL_POINTS, GL_LINES, GL_LINE_STRIP, GL_LINE_LOOP, GL_TRIANGLES, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN }; void RasterizerIPhone::_render(const Geometry *p_geometry, const Material *p_material, const Skeleton *p_skeleton) { switch (p_geometry->type) { case Geometry::GEOMETRY_SURFACE: { Surface *s = (Surface *)p_geometry; if (s->index_array_len > 0) { if (s->index_array_local) { glDrawElements(gl_primitive[s->primitive], s->index_array_len, (s->index_array_len > (1 << 8)) ? GL_UNSIGNED_SHORT : GL_UNSIGNED_BYTE, s->index_array_local); } else { glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, s->index_id); glDrawElements(gl_primitive[s->primitive], s->index_array_len, (s->index_array_len > (1 << 8)) ? GL_UNSIGNED_SHORT : GL_UNSIGNED_BYTE, 0); } } else { glDrawArrays(gl_primitive[s->primitive], 0, s->array_len); }; } break; default: break; }; }; void RasterizerIPhone::_render_list_forward(RenderList *p_render_list) { const Material *prev_material = NULL; uint64_t prev_light_hash = 0; const Skeleton *prev_skeleton = NULL; const Geometry *prev_geometry = NULL; const ParamOverrideMap *prev_overrides = NULL; // make it different than NULL Geometry::Type prev_geometry_type = Geometry::GEOMETRY_INVALID; glMatrixMode(GL_PROJECTION); glLoadMatrixf(&camera_projection.matrix[0][0]); for (int i = 0; i < p_render_list->element_count; i++) { RenderList::Element *e = p_render_list->elements[i]; const Material *material = e->material; uint64_t light_hash = e->light_hash; const Skeleton *skeleton = e->skeleton; const Geometry *geometry = e->geometry; const ParamOverrideMap *material_overrides = e->material_overrides; if (material != prev_material || geometry->type != prev_geometry_type) { _setup_material(e->geometry, material); //_setup_material_overrides(e->material,NULL,material_overrides); //_setup_material_skeleton(material,skeleton); } else { if (material_overrides != prev_overrides) { //_setup_material_overrides(e->material,prev_overrides,material_overrides); } if (prev_skeleton != skeleton) { //_setup_material_skeleton(material,skeleton); }; } if (geometry != prev_geometry || geometry->type != prev_geometry_type) { _setup_geometry(geometry, material); }; if (i == 0 || light_hash != prev_light_hash) _setup_lights(e->lights, e->light_count); glMatrixMode(GL_MODELVIEW); _gl_load_transform(camera_transform_inverse); _gl_mult_transform(e->transform); _render(geometry, material, skeleton); prev_material = material; prev_skeleton = skeleton; prev_geometry = geometry; prev_light_hash = e->light_hash; prev_geometry_type = geometry->type; prev_overrides = material_overrides; } }; void RasterizerIPhone::end_scene() { glEnable(GL_BLEND); glDepthMask(GL_FALSE); opaque_render_list.sort_mat_light(); _render_list_forward(&opaque_render_list); glDisable(GL_BLEND); glDepthMask(GL_TRUE); alpha_render_list.sort_z(); _render_list_forward(&alpha_render_list); } void RasterizerIPhone::end_shadow_map() { } void RasterizerIPhone::end_frame() { //ContextGL::get_singleton()->swap_buffers(); } /* CANVAS API */ void RasterizerIPhone::canvas_begin() { glDisable(GL_CULL_FACE); glDisable(GL_DEPTH_TEST); glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glLineWidth(1.0); glDisable(GL_LIGHTING); glMatrixMode(GL_PROJECTION); glLoadIdentity(); } void RasterizerIPhone::canvas_set_transparency(float p_transparency) { } void RasterizerIPhone::canvas_set_rect(const Rect2 &p_rect, bool p_clip) { glMatrixMode(GL_MODELVIEW); glLoadIdentity(); glScalef(2.0 / window_size.x, -2.0 / window_size.y, 0); glTranslatef((-(window_size.x / 2.0)) + p_rect.pos.x, (-(window_size.y / 2.0)) + p_rect.pos.y, 0); if (p_clip) { glEnable(GL_SCISSOR_TEST); glScissor(viewport.x + p_rect.pos.x, viewport.y + (viewport.height - (p_rect.pos.y + p_rect.size.height)), p_rect.size.width, p_rect.size.height); } else { glDisable(GL_SCISSOR_TEST); } } void RasterizerIPhone::canvas_draw_line(const Point2 &p_from, const Point2 &p_to, const Color &p_color, float p_width) { glColor4f(1, 1, 1, 1); float verts[6] = { p_from.x, p_from.y, 0, p_to.x, p_to.y, 0 }; float colors[] = { p_color.r, p_color.g, p_color.b, p_color.a, p_color.r, p_color.g, p_color.b, p_color.a, }; glLineWidth(p_width); _draw_primitive(2, verts, 0, colors, 0); } static void _draw_textured_quad(const Rect2 &p_rect, const Rect2 &p_src_region, const Size2 &p_tex_size) { float texcoords[] = { p_src_region.pos.x / p_tex_size.width, p_src_region.pos.y / p_tex_size.height, (p_src_region.pos.x + p_src_region.size.width) / p_tex_size.width, p_src_region.pos.y / p_tex_size.height, (p_src_region.pos.x + p_src_region.size.width) / p_tex_size.width, (p_src_region.pos.y + p_src_region.size.height) / p_tex_size.height, p_src_region.pos.x / p_tex_size.width, (p_src_region.pos.y + p_src_region.size.height) / p_tex_size.height, }; float coords[] = { p_rect.pos.x, p_rect.pos.y, 0, p_rect.pos.x + p_rect.size.width, p_rect.pos.y, 0, p_rect.pos.x + p_rect.size.width, p_rect.pos.y + p_rect.size.height, 0, p_rect.pos.x, p_rect.pos.y + p_rect.size.height, 0 }; _draw_primitive(4, coords, 0, 0, texcoords); } static void _draw_quad(const Rect2 &p_rect) { float coords[] = { p_rect.pos.x, p_rect.pos.y, 0, p_rect.pos.x + p_rect.size.width, p_rect.pos.y, 0, p_rect.pos.x + p_rect.size.width, p_rect.pos.y + p_rect.size.height, 0, p_rect.pos.x, p_rect.pos.y + p_rect.size.height, 0 }; _draw_primitive(4, coords, 0, 0, 0); } void RasterizerIPhone::canvas_draw_rect(const Rect2 &p_rect, bool p_region, const Rect2 &p_source, bool p_tile, RID p_texture, const Color &p_modulate) { glColor4f(p_modulate.r, p_modulate.g, p_modulate.b, p_modulate.a); if (p_texture.is_valid()) { glEnable(GL_TEXTURE_2D); Texture *texture = texture_owner.get(p_texture); ERR_FAIL_COND(!texture); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, texture->tex_id); if (!p_region) { Rect2 region = Rect2(0, 0, texture->width, texture->height); _draw_textured_quad(p_rect, region, region.size); } else { _draw_textured_quad(p_rect, p_source, Size2(texture->width, texture->height)); } } else { _draw_quad(p_rect); } } void RasterizerIPhone::canvas_draw_style_box(const Rect2 &p_rect, const Rect2 &p_src_region, RID p_texture, const float *p_margin, bool p_draw_center) { glColor4f(1, 1, 1, 1); Texture *texture = texture_owner.get(p_texture); ERR_FAIL_COND(!texture); glEnable(GL_TEXTURE_2D); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, texture->tex_id); Rect2 region = p_src_region; if (region.size.width <= 0) region.size.width = texture->width; if (region.size.height <= 0) region.size.height = texture->height; /* CORNERS */ _draw_textured_quad( // top left Rect2(p_rect.pos, Size2(p_margin[MARGIN_LEFT], p_margin[MARGIN_TOP])), Rect2(region.pos, Size2(p_margin[MARGIN_LEFT], p_margin[MARGIN_TOP])), Size2(texture->width, texture->height)); _draw_textured_quad( // top right Rect2(Point2(p_rect.pos.x + p_rect.size.width - p_margin[MARGIN_RIGHT], p_rect.pos.y), Size2(p_margin[MARGIN_RIGHT], p_margin[MARGIN_TOP])), Rect2(Point2(region.pos.x + region.size.width - p_margin[MARGIN_RIGHT], region.pos.y), Size2(p_margin[MARGIN_RIGHT], p_margin[MARGIN_TOP])), Size2(texture->width, texture->height)); _draw_textured_quad( // bottom left Rect2(Point2(p_rect.pos.x, p_rect.pos.y + p_rect.size.height - p_margin[MARGIN_BOTTOM]), Size2(p_margin[MARGIN_LEFT], p_margin[MARGIN_BOTTOM])), Rect2(Point2(region.pos.x, region.pos.y + region.size.height - p_margin[MARGIN_BOTTOM]), Size2(p_margin[MARGIN_LEFT], p_margin[MARGIN_BOTTOM])), Size2(texture->width, texture->height)); _draw_textured_quad( // bottom right Rect2(Point2(p_rect.pos.x + p_rect.size.width - p_margin[MARGIN_RIGHT], p_rect.pos.y + p_rect.size.height - p_margin[MARGIN_BOTTOM]), Size2(p_margin[MARGIN_RIGHT], p_margin[MARGIN_BOTTOM])), Rect2(Point2(region.pos.x + region.size.width - p_margin[MARGIN_RIGHT], region.pos.y + region.size.height - p_margin[MARGIN_BOTTOM]), Size2(p_margin[MARGIN_RIGHT], p_margin[MARGIN_BOTTOM])), Size2(texture->width, texture->height)); Rect2 rect_center(p_rect.pos + Point2(p_margin[MARGIN_LEFT], p_margin[MARGIN_TOP]), Size2(p_rect.size.width - p_margin[MARGIN_LEFT] - p_margin[MARGIN_RIGHT], p_rect.size.height - p_margin[MARGIN_TOP] - p_margin[MARGIN_BOTTOM])); Rect2 src_center(Point2(region.pos.x + p_margin[MARGIN_LEFT], region.pos.y + p_margin[MARGIN_TOP]), Size2(region.size.width - p_margin[MARGIN_LEFT] - p_margin[MARGIN_RIGHT], region.size.height - p_margin[MARGIN_TOP] - p_margin[MARGIN_BOTTOM])); _draw_textured_quad( // top Rect2(Point2(rect_center.pos.x, p_rect.pos.y), Size2(rect_center.size.width, p_margin[MARGIN_TOP])), Rect2(Point2(src_center.pos.x, region.pos.y), Size2(src_center.size.width, p_margin[MARGIN_TOP])), Size2(texture->width, texture->height)); _draw_textured_quad( // bottom Rect2(Point2(rect_center.pos.x, rect_center.pos.y + rect_center.size.height), Size2(rect_center.size.width, p_margin[MARGIN_BOTTOM])), Rect2(Point2(src_center.pos.x, src_center.pos.y + src_center.size.height), Size2(src_center.size.width, p_margin[MARGIN_BOTTOM])), Size2(texture->width, texture->height)); _draw_textured_quad( // left Rect2(Point2(p_rect.pos.x, rect_center.pos.y), Size2(p_margin[MARGIN_LEFT], rect_center.size.height)), Rect2(Point2(region.pos.x, region.pos.y + p_margin[MARGIN_TOP]), Size2(p_margin[MARGIN_LEFT], src_center.size.height)), Size2(texture->width, texture->height)); _draw_textured_quad( // right Rect2(Point2(rect_center.pos.x + rect_center.size.width, rect_center.pos.y), Size2(p_margin[MARGIN_RIGHT], rect_center.size.height)), Rect2(Point2(src_center.pos.x + src_center.size.width, region.pos.y + p_margin[MARGIN_TOP]), Size2(p_margin[MARGIN_RIGHT], src_center.size.height)), Size2(texture->width, texture->height)); if (p_draw_center) { _draw_textured_quad( rect_center, src_center, Size2(texture->width, texture->height)); } } void RasterizerIPhone::canvas_draw_primitive(const Vector &p_points, const Vector &p_colors, const Vector &p_uvs, RID p_texture) { ERR_FAIL_COND(p_points.size() < 1); float verts[12]; float uvs[8]; float colors[16]; glColor4f(1, 1, 1, 1); int idx = 0; for (int i = 0; i < p_points.size(); i++) { verts[idx++] = p_points[i].x; verts[idx++] = p_points[i].y; verts[idx++] = 0; } idx = 0; for (int i = 0; i < p_uvs.size(); i++) { uvs[idx++] = p_uvs[i].x; uvs[idx++] = p_uvs[i].y; } idx = 0; for (int i = 0; i < p_colors.size(); i++) { colors[idx++] = p_colors[i].r; colors[idx++] = p_colors[i].g; colors[idx++] = p_colors[i].b; colors[idx++] = p_colors[i].a; }; if (p_texture.is_valid()) { glEnable(GL_TEXTURE_2D); Texture *texture = texture_owner.get(p_texture); if (texture) { glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, texture->tex_id); } } _draw_primitive(p_points.size(), &verts[0], NULL, p_colors.size() ? &colors[0] : NULL, p_uvs.size() ? uvs : NULL); } /* FX */ RID RasterizerIPhone::fx_create() { return RID(); } void RasterizerIPhone::fx_get_effects(RID p_fx, List *p_effects) const { } void RasterizerIPhone::fx_set_active(RID p_fx, const String &p_effect, bool p_active) { } bool RasterizerIPhone::fx_is_active(RID p_fx, const String &p_effect) const { return false; } void RasterizerIPhone::fx_get_effect_params(RID p_fx, const String &p_effect, List *p_params) const { } Variant RasterizerIPhone::fx_get_effect_param(RID p_fx, const String &p_effect, const String &p_param) const { return Variant(); } void RasterizerIPhone::fx_set_effect_param(RID p_fx, const String &p_effect, const String &p_param, const Variant &p_pvalue) { } /*MISC*/ bool RasterizerIPhone::is_texture(const RID &p_rid) const { return texture_owner.owns(p_rid); } bool RasterizerIPhone::is_material(const RID &p_rid) const { return material_owner.owns(p_rid); } bool RasterizerIPhone::is_mesh(const RID &p_rid) const { return mesh_owner.owns(p_rid); } bool RasterizerIPhone::is_multimesh(const RID &p_rid) const { return false; } bool RasterizerIPhone::is_poly(const RID &p_rid) const { return poly_owner.owns(p_rid); } bool RasterizerIPhone::is_particles(const RID &p_beam) const { return false; } bool RasterizerIPhone::is_beam(const RID &p_beam) const { return false; } bool RasterizerIPhone::is_light(const RID &p_rid) const { return light_owner.owns(p_rid); } bool RasterizerIPhone::is_light_instance(const RID &p_rid) const { return light_instance_owner.owns(p_rid); } bool RasterizerIPhone::is_particles_instance(const RID &p_rid) const { return false; } bool RasterizerIPhone::is_skeleton(const RID &p_rid) const { return skeleton_owner.owns(p_rid); } bool RasterizerIPhone::is_fx(const RID &p_rid) const { return fx_owner.owns(p_rid); } bool RasterizerIPhone::is_shader(const RID &p_rid) const { return false; } void RasterizerIPhone::free(const RID &p_rid) const { if (texture_owner.owns(p_rid)) { // delete the texture Texture *texture = texture_owner.get(p_rid); glDeleteTextures(1, &texture->tex_id); texture_owner.free(p_rid); memdelete(texture); } else if (material_owner.owns(p_rid)) { Material *material = material_owner.get(p_rid); ERR_FAIL_COND(!material); material_owner.free(p_rid); memdelete(material); } else if (mesh_owner.owns(p_rid)) { Mesh *mesh = mesh_owner.get(p_rid); ERR_FAIL_COND(!mesh); for (int i = 0; i < mesh->surfaces.size(); i++) { Surface *surface = mesh->surfaces[i]; if (surface->array_local != 0) { memfree(surface->array_local); }; if (surface->index_array_local != 0) { memfree(surface->index_array_local); }; if (surface->vertex_id) glDeleteBuffers(1, &surface->vertex_id); if (surface->index_id) glDeleteBuffers(1, &surface->index_id); memdelete(surface); }; mesh->surfaces.clear(); mesh_owner.free(p_rid); memdelete(mesh); } else if (skeleton_owner.owns(p_rid)) { Skeleton *skeleton = skeleton_owner.get(p_rid); ERR_FAIL_COND(!skeleton) skeleton_owner.free(p_rid); memdelete(skeleton); } else if (light_owner.owns(p_rid)) { Light *light = light_owner.get(p_rid); ERR_FAIL_COND(!light) light_owner.free(p_rid); memdelete(light); } else if (light_instance_owner.owns(p_rid)) { LightInstance *light_instance = light_instance_owner.get(p_rid); ERR_FAIL_COND(!light_instance); light_instance_owner.free(p_rid); memdelete(light_instance); } else if (fx_owner.owns(p_rid)) { FX *fx = fx_owner.get(p_rid); ERR_FAIL_COND(!fx); fx_owner.free(p_rid); memdelete(fx); }; } void RasterizerIPhone::init() { glEnable(GL_DEPTH_TEST); glDepthFunc(GL_LEQUAL); glFrontFace(GL_CW); glEnable(GL_TEXTURE_2D); } void RasterizerIPhone::finish() { } int RasterizerIPhone::get_render_info(VS::RenderInfo p_info) { return false; } RasterizerIPhone::RasterizerIPhone() { frame = 0; }; RasterizerIPhone::~RasterizerIPhone(){ }; #endif