/*************************************************************************/ /* rasterizer_iphone.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* http://www.godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #ifdef IPHONE_ENABLED #include "rasterizer_iphone.h" #include "os/os.h" #include "globals.h" #include _FORCE_INLINE_ static void _gl_load_transform(const Transform& tr) { GLfloat matrix[16]={ /* build a 16x16 matrix */ tr.basis.elements[0][0], tr.basis.elements[1][0], tr.basis.elements[2][0], 0, tr.basis.elements[0][1], tr.basis.elements[1][1], tr.basis.elements[2][1], 0, tr.basis.elements[0][2], tr.basis.elements[1][2], tr.basis.elements[2][2], 0, tr.origin.x, tr.origin.y, tr.origin.z, 1 }; glLoadMatrixf(matrix); }; _FORCE_INLINE_ static void _gl_mult_transform(const Transform& tr) { GLfloat matrix[16]={ /* build a 16x16 matrix */ tr.basis.elements[0][0], tr.basis.elements[1][0], tr.basis.elements[2][0], 0, tr.basis.elements[0][1], tr.basis.elements[1][1], tr.basis.elements[2][1], 0, tr.basis.elements[0][2], tr.basis.elements[1][2], tr.basis.elements[2][2], 0, tr.origin.x, tr.origin.y, tr.origin.z, 1 }; glMultMatrixf(matrix); }; static const GLenum prim_type[]={GL_POINTS,GL_LINES,GL_TRIANGLES,GL_TRIANGLE_FAN}; static void _draw_primitive(int p_points, const float *p_vertices, const float *p_normals, const float* p_colors, const float *p_uvs,const Plane *p_tangents=NULL,int p_instanced=1) { ERR_FAIL_COND(!p_vertices); ERR_FAIL_COND(p_points <1 || p_points>4); GLenum type = prim_type[p_points - 1]; if (!p_colors) { glColor4f(1, 1, 1, 1); }; glEnableClientState(GL_VERTEX_ARRAY); glVertexPointer(3, GL_FLOAT, 0, (GLvoid*)p_vertices); if (p_normals) { glEnableClientState(GL_NORMAL_ARRAY); glNormalPointer(GL_FLOAT, 0, (GLvoid*)p_normals); }; if (p_colors) { glEnableClientState(GL_COLOR_ARRAY); glColorPointer(4,GL_FLOAT, 0, p_colors); }; if (p_uvs) { glClientActiveTexture(GL_TEXTURE0); glEnableClientState(GL_TEXTURE_COORD_ARRAY); glTexCoordPointer(2, GL_FLOAT, 0, p_uvs); }; glDrawArrays( type, 0, p_points); glDisableClientState(GL_VERTEX_ARRAY); glDisableClientState(GL_NORMAL_ARRAY); glDisableClientState(GL_COLOR_ARRAY); glDisableClientState(GL_TEXTURE_COORD_ARRAY); }; /* TEXTURE API */ static Image _get_gl_image_and_format(const Image& p_image, Image::Format p_format, uint32_t p_flags,GLenum& r_gl_format,int &r_gl_components,bool &r_has_alpha_cache) { r_has_alpha_cache=false; Image image=p_image; switch(p_format) { case Image::FORMAT_L8: { r_gl_components=1; r_gl_format=GL_LUMINANCE; } break; case Image::FORMAT_INTENSITY: { image.convert(Image::FORMAT_RGBA8); r_gl_components=4; r_gl_format=GL_RGBA; r_has_alpha_cache=true; } break; case Image::FORMAT_LA8: { image.convert(Image::FORMAT_RGBA8); r_gl_components=4; r_gl_format=GL_RGBA; r_has_alpha_cache=true; } break; case Image::FORMAT_INDEXED: { image.convert(Image::FORMAT_RGB8); r_gl_components=3; r_gl_format=GL_RGB; } break; case Image::FORMAT_INDEXED_ALPHA: { image.convert(Image::FORMAT_RGBA8); r_gl_components=4; r_gl_format=GL_RGB; r_has_alpha_cache=true; } break; case Image::FORMAT_RGB8: { r_gl_components=3; r_gl_format=GL_RGB; } break; case Image::FORMAT_RGBA8: { r_gl_components=4; r_gl_format=GL_RGBA; r_has_alpha_cache=true; } break; default: { ERR_FAIL_V(Image()); } } return image; } RID RasterizerIPhone::texture_create() { Texture *texture = memnew(Texture); ERR_FAIL_COND_V(!texture,RID()); glGenTextures(1, &texture->tex_id); texture->active=false; return texture_owner.make_rid( texture ); } void RasterizerIPhone::texture_allocate(RID p_texture,int p_width, int p_height,Image::Format p_format,uint32_t p_flags) { bool has_alpha_cache; int components; GLenum format; Texture *texture = texture_owner.get( p_texture ); ERR_FAIL_COND(!texture); texture->width=p_width; texture->height=p_height; texture->format=p_format; texture->flags=p_flags; //texture->target = (p_flags & VS::TEXTURE_FLAG_CUBEMAP) ? GL_TEXTURE_CUBE_MAP : GL_TEXTURE_2D; texture->target = GL_TEXTURE_2D; _get_gl_image_and_format(Image(),texture->format,texture->flags,format,components,has_alpha_cache); texture->gl_components_cache=components; texture->gl_format_cache=format; texture->format_has_alpha=has_alpha_cache; texture->has_alpha=false; //by default it doesn't have alpha unless something with alpha is blitteds glBindTexture(texture->target, texture->tex_id); if (texture->flags&VS::TEXTURE_FLAG_MIPMAPS) { glTexParameteri( GL_TEXTURE_2D, GL_GENERATE_MIPMAP, GL_TRUE ); } if (texture->target==GL_TEXTURE_2D) { glTexImage2D(texture->target, 0, format, texture->width, texture->height, 0, format, GL_UNSIGNED_BYTE,NULL); } /* else { //cubemappor for (int i=0;i<6;i++) glTexImage2D(_cube_side_enum[i], 0, format, texture->width, texture->height, 0, format, GL_UNSIGNED_BYTE,NULL); } */ glTexParameteri(texture->target,GL_TEXTURE_MIN_FILTER,GL_LINEAR); // Linear Filtering if (texture->flags&VS::TEXTURE_FLAG_FILTER) { glTexParameteri(texture->target,GL_TEXTURE_MAG_FILTER,GL_LINEAR); // Linear Filtering if (texture->flags&VS::TEXTURE_FLAG_MIPMAPS) { //glTexParameteri(texture->target,GL_TEXTURE_MIN_FILTER,GL_LINEAR_MIPMAP_LINEAR); }; } if (texture->flags&VS::TEXTURE_FLAG_REPEAT /* && texture->target != GL_TEXTURE_CUBE_MAP*/) { glTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT ); glTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT ); } else { //glTexParameterf( texture->target, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE ); glTexParameterf( texture->target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE ); glTexParameterf( texture->target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE ); } texture->active=true; } void RasterizerIPhone::texture_blit_rect(RID p_texture,int p_x,int p_y, const Image& p_image,VS::CubeMapSide p_cube_side) { Texture * texture = texture_owner.get(p_texture); ERR_FAIL_COND(!texture); ERR_FAIL_COND(!texture->active); ERR_FAIL_COND(texture->format != p_image.get_format() ); int components; GLenum format; bool alpha; Image img = _get_gl_image_and_format(p_image, p_image.get_format(),texture->flags,format,components,alpha); if (img.detect_alpha()) texture->has_alpha=true; GLenum blit_target = GL_TEXTURE_2D; //(texture->target == GL_TEXTURE_CUBE_MAP)?_cube_side_enum[p_cube_side]:GL_TEXTURE_2D; DVector::Read read = img.get_data().read(); glBindTexture(texture->target, texture->tex_id); glTexSubImage2D( blit_target, 0, p_x,p_y,img.get_width(),img.get_height(),format,GL_UNSIGNED_BYTE,read.ptr() ); //glGenerateMipmap( texture->target ); } Image RasterizerIPhone::texture_get_rect(RID p_texture,int p_x,int p_y,int p_width, int p_height,VS::CubeMapSide p_cube_side) const { return Image(); } void RasterizerIPhone::texture_set_flags(RID p_texture,uint32_t p_flags) { Texture *texture = texture_owner.get( p_texture ); ERR_FAIL_COND(!texture); glBindTexture(texture->target, texture->tex_id); uint32_t cube = texture->flags & VS::TEXTURE_FLAG_CUBEMAP; texture->flags=p_flags|cube; // can't remove a cube from being a cube if (texture->flags&VS::TEXTURE_FLAG_REPEAT /*&& texture->target != GL_TEXTURE_CUBE_MAP*/) { glTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT ); glTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT ); } else { //glTexParameterf( texture->target, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE ); glTexParameterf( texture->target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE ); glTexParameterf( texture->target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE ); } if (texture->flags&VS::TEXTURE_FLAG_FILTER) { glTexParameteri(texture->target,GL_TEXTURE_MAG_FILTER,GL_LINEAR); // Linear Filtering if (texture->flags&VS::TEXTURE_FLAG_MIPMAPS) glTexParameteri(texture->target,GL_TEXTURE_MIN_FILTER,GL_LINEAR_MIPMAP_LINEAR); } else { glTexParameteri(texture->target,GL_TEXTURE_MAG_FILTER,GL_NEAREST); // nearest } } uint32_t RasterizerIPhone::texture_get_flags(RID p_texture) const { Texture * texture = texture_owner.get(p_texture); ERR_FAIL_COND_V(!texture,0); return texture->flags; } Image::Format RasterizerIPhone::texture_get_format(RID p_texture) const { Texture * texture = texture_owner.get(p_texture); ERR_FAIL_COND_V(!texture,Image::FORMAT_L8); return texture->format; } uint32_t RasterizerIPhone::texture_get_width(RID p_texture) const { Texture * texture = texture_owner.get(p_texture); ERR_FAIL_COND_V(!texture,0); return texture->width; } uint32_t RasterizerIPhone::texture_get_height(RID p_texture) const { Texture * texture = texture_owner.get(p_texture); ERR_FAIL_COND_V(!texture,0); return texture->height; } bool RasterizerIPhone::texture_has_alpha(RID p_texture) const { Texture * texture = texture_owner.get(p_texture); ERR_FAIL_COND_V(!texture,0); return texture->has_alpha; } /* SHADER API */ RID RasterizerIPhone::shader_create() { return RID(); } void RasterizerIPhone::shader_node_add(RID p_shader,VS::ShaderNodeType p_type,int p_id) { } void RasterizerIPhone::shader_node_remove(RID p_shader,int p_id) { } void RasterizerIPhone::shader_node_change_type(RID p_shader, int p_id, VS::ShaderNodeType p_type) { } void RasterizerIPhone::shader_node_set_param(RID p_shader, int p_id, const Variant& p_value) { } void RasterizerIPhone::shader_get_node_list(RID p_shader,List *p_node_list) const { } VS::ShaderNodeType RasterizerIPhone::shader_node_get_type(RID p_shader,int p_id) const { return VS::NODE_ADD; } Variant RasterizerIPhone::shader_node_get_param(RID p_shader,int p_id) const { return Variant(); } void RasterizerIPhone::shader_connect(RID p_shader,int p_src_id,int p_src_slot, int p_dst_id,int p_dst_slot) { } bool RasterizerIPhone::shader_is_connected(RID p_shader,int p_src_id,int p_src_slot, int p_dst_id,int p_dst_slot) const { return false; } void RasterizerIPhone::shader_disconnect(RID p_shader,int p_src_id,int p_src_slot, int p_dst_id,int p_dst_slot) { } void RasterizerIPhone::shader_get_connections(RID p_shader,List *p_connections) const { } void RasterizerIPhone::shader_clear(RID p_shader) { } /* COMMON MATERIAL API */ void RasterizerIPhone::material_set_param(RID p_material, const StringName& p_param, const Variant& p_value) { } Variant RasterizerIPhone::material_get_param(RID p_material, const StringName& p_param) const { return Variant(); } void RasterizerIPhone::material_get_param_list(RID p_material, List *p_param_list) const { } void RasterizerIPhone::material_set_flag(RID p_material, VS::MaterialFlag p_flag,bool p_enabled) { } bool RasterizerIPhone::material_get_flag(RID p_material,VS::MaterialFlag p_flag) const { return false; } void RasterizerIPhone::material_set_blend_mode(RID p_material,VS::MaterialBlendMode p_mode) { } VS::MaterialBlendMode RasterizerIPhone::material_get_blend_mode(RID p_material) const { return VS::MATERIAL_BLEND_MODE_ADD; } void RasterizerIPhone::material_set_line_width(RID p_material,float p_line_width) { } float RasterizerIPhone::material_get_line_width(RID p_material) const { return 0; } /* FIXED MATERIAL */ RID RasterizerIPhone::material_create() { return material_owner.make_rid( memnew( Material ) ); } void RasterizerIPhone::fixed_material_set_parameter(RID p_material, VS::FixedSpatialMaterialParam p_parameter, const Variant& p_value) { Material *m=material_owner.get( p_material ); ERR_FAIL_COND(!m); ERR_FAIL_INDEX(p_parameter, VisualServer::FIXED_MATERIAL_PARAM_MAX); m->parameters[p_parameter] = p_value; } Variant RasterizerIPhone::fixed_material_get_parameter(RID p_material,VS::FixedSpatialMaterialParam p_parameter) const { Material *m=material_owner.get( p_material ); ERR_FAIL_COND_V(!m, Variant()); ERR_FAIL_INDEX_V(p_parameter, VisualServer::FIXED_MATERIAL_PARAM_MAX, Variant()); return m->parameters[p_parameter]; } void RasterizerIPhone::fixed_material_set_texture(RID p_material,VS::FixedSpatialMaterialParam p_parameter, RID p_texture) { Material *m=material_owner.get( p_material ); ERR_FAIL_COND(!m); ERR_FAIL_INDEX(p_parameter, VisualServer::FIXED_MATERIAL_PARAM_MAX); m->textures[p_parameter] = p_texture; } RID RasterizerIPhone::fixed_material_get_texture(RID p_material,VS::FixedSpatialMaterialParam p_parameter) const { Material *m=material_owner.get( p_material ); ERR_FAIL_COND_V(!m, RID()); ERR_FAIL_INDEX_V(p_parameter, VisualServer::FIXED_MATERIAL_PARAM_MAX, Variant()); return m->textures[p_parameter]; } void RasterizerIPhone::fixed_material_set_detail_blend_mode(RID p_material,VS::MaterialBlendMode p_mode) { Material *m=material_owner.get( p_material ); ERR_FAIL_COND(!m); m->detail_blend_mode = p_mode; } VS::MaterialBlendMode RasterizerIPhone::fixed_material_get_detail_blend_mode(RID p_material) const { Material *m=material_owner.get( p_material ); ERR_FAIL_COND_V(!m, VS::MATERIAL_BLEND_MODE_MIX); return m->detail_blend_mode; } void RasterizerIPhone::fixed_material_set_texcoord_mode(RID p_material,VS::FixedSpatialMaterialParam p_parameter, VS::FixedSpatialMaterialTexCoordMode p_mode) { Material *m=material_owner.get( p_material ); ERR_FAIL_COND(!m); ERR_FAIL_INDEX(p_parameter, VisualServer::FIXED_MATERIAL_PARAM_MAX); m->texcoord_mode[p_parameter] = p_mode; } VS::FixedSpatialMaterialTexCoordMode RasterizerIPhone::fixed_material_get_texcoord_mode(RID p_material,VS::FixedSpatialMaterialParam p_parameter) const { Material *m=material_owner.get( p_material ); ERR_FAIL_COND_V(!m, VS::FIXED_MATERIAL_TEXCOORD_TEXGEN); ERR_FAIL_INDEX_V(p_parameter, VisualServer::FIXED_MATERIAL_PARAM_MAX, VS::FIXED_MATERIAL_TEXCOORD_UV); return m->texcoord_mode[p_parameter]; // for now } void RasterizerIPhone::fixed_material_set_texgen_mode(RID p_material,VS::FixedSpatialMaterialTexGenMode p_mode) { Material *m=material_owner.get( p_material ); ERR_FAIL_COND(!m); m->texgen_mode = p_mode; }; VS::FixedSpatialMaterialTexGenMode RasterizerIPhone::fixed_material_get_texgen_mode(RID p_material) const { Material *m=material_owner.get( p_material ); ERR_FAIL_COND_V(!m, VS::FIXED_MATERIAL_TEXGEN_SPHERE); return m->texgen_mode; }; void RasterizerIPhone::fixed_material_set_uv_transform(RID p_material,const Transform& p_transform) { Material *m=material_owner.get( p_material ); ERR_FAIL_COND(!m); m->uv_transform = p_transform; } Transform RasterizerIPhone::fixed_material_get_uv_transform(RID p_material) const { Material *m=material_owner.get( p_material ); ERR_FAIL_COND_V(!m, Transform()); return m->uv_transform; } /* SHADER MATERIAL */ RID RasterizerIPhone::shader_material_create() const { return RID(); } void RasterizerIPhone::shader_material_set_vertex_shader(RID p_material,RID p_shader,bool p_owned) { } RID RasterizerIPhone::shader_material_get_vertex_shader(RID p_material) const { return RID(); } void RasterizerIPhone::shader_material_set_fragment_shader(RID p_material,RID p_shader,bool p_owned) { } RID RasterizerIPhone::shader_material_get_fragment_shader(RID p_material) const { return RID(); } /* MESH API */ RID RasterizerIPhone::mesh_create() { return mesh_owner.make_rid( memnew( Mesh ) ); } void RasterizerIPhone::mesh_add_surface(RID p_mesh,VS::PrimitiveType p_primitive,uint32_t p_format,int p_array_len,int p_index_array_len) { Mesh *mesh = mesh_owner.get( p_mesh ); ERR_FAIL_COND(!mesh); ERR_FAIL_COND((p_format&VS::ARRAY_FORMAT_VERTEX)==0); // mandatory ERR_FAIL_COND( p_array_len<=0 ); ERR_FAIL_COND( p_index_array_len==0 ); ERR_FAIL_INDEX( p_primitive, VS::PRIMITIVE_MAX ); Surface *surface = memnew( Surface ); ERR_FAIL_COND( !surface ); int total_elem_size=0; bool use_VBO=true; //glGenBuffersARB!=NULL; // TODO detect if it's in there if (p_format&VS::ARRAY_FORMAT_WEIGHTS) { use_VBO=false; } for (int i=0;iarray[i]; ad.size=0; ad.configured=false; ad.ofs=0; int elem_size=0; int elem_count=0; if (!(p_format&(1<(1<<8)) { elem_size=2; } else { elem_size=1; } if (use_VBO) { glGenBuffers(1,&surface->index_id); ERR_FAIL_COND(surface->index_id==0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,surface->index_id); glBufferData(GL_ELEMENT_ARRAY_BUFFER,p_index_array_len*elem_size,NULL,GL_STATIC_DRAW); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,0); //unbind } else { surface->index_array_local = (uint8_t*)memalloc(p_index_array_len*elem_size); }; surface->index_array_len=p_index_array_len; // only way it can exist ad.ofs=0; ad.size=elem_size; ad.configured=false; ad.components=1; continue; } break; default: { ERR_FAIL( ); } } ad.ofs=total_elem_size; ad.size=elem_size; ad.components=elem_count; total_elem_size+=elem_size; ad.configured=false; } surface->stride=total_elem_size; surface->array_len=p_array_len; surface->format=p_format; surface->primitive=p_primitive; /* bind the bigass buffers */ if (use_VBO) { glGenBuffers(1,&surface->vertex_id); ERR_FAIL_COND(surface->vertex_id==0); glBindBuffer(GL_ARRAY_BUFFER,surface->vertex_id); glBufferData(GL_ARRAY_BUFFER,surface->array_len*surface->stride,NULL,GL_STATIC_DRAW); glBindBuffer(GL_ARRAY_BUFFER,0); //unbind } else { surface->array_local = (uint8_t*)memalloc(surface->array_len*surface->stride); }; mesh->surfaces.push_back(surface); } Error RasterizerIPhone::mesh_surface_set_array(RID p_mesh, int p_surface,VS::ArrayType p_type,const Variant& p_array) { ERR_FAIL_INDEX_V(p_type, VS::ARRAY_MAX, ERR_INVALID_PARAMETER ); Mesh *mesh = mesh_owner.get( p_mesh ); ERR_FAIL_COND_V(!mesh,ERR_INVALID_PARAMETER); ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), ERR_INVALID_PARAMETER ); Surface *surface = mesh->surfaces[p_surface]; ERR_FAIL_COND_V( !surface, ERR_INVALID_PARAMETER ); ERR_FAIL_COND_V( surface->array[p_type].size==0, ERR_INVALID_PARAMETER ); Surface::ArrayData &a=surface->array[p_type]; switch(p_type) { case VS::ARRAY_INDEX: { ERR_FAIL_COND_V( surface->index_array_len<=0, ERR_INVALID_DATA ); ERR_FAIL_COND_V( p_array.get_type() != Variant::INT_ARRAY, ERR_INVALID_PARAMETER ); DVector indices = p_array; ERR_FAIL_COND_V( indices.size() == 0, ERR_INVALID_PARAMETER ); ERR_FAIL_COND_V( indices.size() != surface->index_array_len, ERR_INVALID_PARAMETER ); /* determine wether using 16 or 32 bits indices */ if (surface->index_array_local == 0) { glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,surface->index_id); }; DVector::Read read = indices.read(); const int *src=read.ptr(); for (int i=0;iindex_array_len;i++) { if (surface->index_array_local) { if (a.size<=(1<<8)) { uint8_t v=src[i]; copymem(&surface->array_local[i*a.size], &v, a.size); } else { uint16_t v=src[i]; copymem(&surface->array_local[i*a.size], &v, a.size); } } else { if (a.size<=(1<<8)) { uint8_t v=src[i]; glBufferSubData( GL_ELEMENT_ARRAY_BUFFER, i*a.size, a.size, &v ); } else { uint16_t v=src[i]; glBufferSubData( GL_ELEMENT_ARRAY_BUFFER, i*a.size, a.size, &v ); } }; } if (surface->index_array_local == 0) { glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,0); }; a.configured=true; return OK; } break; case VS::ARRAY_VERTEX: case VS::ARRAY_NORMAL: { ERR_FAIL_COND_V( p_array.get_type() != Variant::VECTOR3_ARRAY, ERR_INVALID_PARAMETER ); DVector array = p_array; ERR_FAIL_COND_V( array.size() != surface->array_len, ERR_INVALID_PARAMETER ); if (surface->array_local == 0) { glBindBuffer(GL_ARRAY_BUFFER,surface->vertex_id); }; DVector::Read read = array.read(); const Vector3* src=read.ptr(); // setting vertices means regenerating the AABB if (p_type==VS::ARRAY_VERTEX) surface->aabb=AABB(); for (int i=0;iarray_len;i++) { GLfloat vector[3]={ src[i].x, src[i].y, src[i].z }; if (surface->array_local == 0) { glBufferSubData( GL_ARRAY_BUFFER, a.ofs+i*surface->stride, a.size , vector ); } else { copymem(&surface->array_local[a.ofs+i*surface->stride], vector, a.size); } if (p_type==VS::ARRAY_VERTEX) { if (i==0) { surface->aabb=AABB(src[i],Vector3()); } else { surface->aabb.expand_to( src[i] ); } } } if (surface->array_local == 0) { glBindBuffer(GL_ARRAY_BUFFER,0); }; } break; case VS::ARRAY_TANGENT: { ERR_FAIL_COND_V( p_array.get_type() != Variant::REAL_ARRAY, ERR_INVALID_PARAMETER ); DVector array = p_array; ERR_FAIL_COND_V( array.size() != surface->array_len*4, ERR_INVALID_PARAMETER ); if (surface->array_local == 0) { glBindBuffer(GL_ARRAY_BUFFER,surface->vertex_id); }; DVector::Read read = array.read(); const real_t* src = read.ptr(); for (int i=0;iarray_len;i++) { GLfloat xyzw[4]={ src[i*4+0], src[i*4+1], src[i*4+2], src[i*4+3] }; if (surface->array_local == 0) { glBufferSubData( GL_ARRAY_BUFFER, a.ofs+i*surface->stride, a.size , xyzw ); } else { copymem(&surface->array_local[a.ofs+i*surface->stride], xyzw, a.size); }; } if (surface->array_local == 0) { glBindBuffer(GL_ARRAY_BUFFER,0); }; } break; case VS::ARRAY_COLOR: { ERR_FAIL_COND_V( p_array.get_type() != Variant::COLOR_ARRAY, ERR_INVALID_PARAMETER ); DVector array = p_array; ERR_FAIL_COND_V( array.size() != surface->array_len, ERR_INVALID_PARAMETER ); if (surface->array_local == 0) glBindBuffer(GL_ARRAY_BUFFER,surface->vertex_id); DVector::Read read = array.read(); const Color* src = read.ptr(); surface->has_alpha_cache=false; for (int i=0;iarray_len;i++) { if (src[i].a<0.98) // tolerate alpha a bit, for crappy exporters surface->has_alpha_cache=true; uint8_t colors[4]={ src[i].r * 255.0 , src[i].g * 255.0, src[i].b * 255.0, src[i].a * 255.0 }; // I'm not sure if this is correct, endianness-wise, i should re-check the GL spec if (surface->array_local == 0) glBufferSubData( GL_ARRAY_BUFFER, a.ofs+i*surface->stride, a.size , colors ); else copymem(&surface->array_local[a.ofs+i*surface->stride], colors, a.size); } if (surface->array_local == 0) glBindBuffer(GL_ARRAY_BUFFER,0); } break; case VS::ARRAY_TEX_UV: { ERR_FAIL_COND_V( p_array.get_type() != Variant::VECTOR3_ARRAY, ERR_INVALID_PARAMETER ); DVector array = p_array; ERR_FAIL_COND_V( array.size() != surface->array_len , ERR_INVALID_PARAMETER); if (surface->array_local == 0) glBindBuffer(GL_ARRAY_BUFFER,surface->vertex_id); DVector::Read read = array.read(); const Vector3 * src=read.ptr(); for (int i=0;iarray_len;i++) { GLfloat uv[2]={ src[i].x , src[i].y }; if (surface->array_local == 0) glBufferSubData( GL_ARRAY_BUFFER, a.ofs+i*surface->stride, a.size , uv ); else copymem(&surface->array_local[a.ofs+i*surface->stride], uv, a.size); } if (surface->array_local == 0) glBindBuffer(GL_ARRAY_BUFFER,0); } break; case VS::ARRAY_BONES: case VS::ARRAY_WEIGHTS: { ERR_FAIL_COND_V( p_array.get_type() != Variant::REAL_ARRAY, ERR_INVALID_PARAMETER ); DVector array = p_array; ERR_FAIL_COND_V( array.size() != surface->array_len*VS::ARRAY_WEIGHTS_SIZE, ERR_INVALID_PARAMETER ); if (surface->array_local == 0) glBindBuffer(GL_ARRAY_BUFFER,surface->vertex_id); DVector::Read read = array.read(); const real_t * src = read.ptr(); for (int i=0;iarray_len;i++) { GLfloat data[VS::ARRAY_WEIGHTS_SIZE]; for (int j=0;jarray_local == 0) glBufferSubData( GL_ARRAY_BUFFER, a.ofs+i*surface->stride, a.size , data ); else copymem(&surface->array_local[a.ofs+i*surface->stride], data, a.size); } if (surface->array_local == 0) glBindBuffer(GL_ARRAY_BUFFER,0); } break; default: { ERR_FAIL_V(ERR_INVALID_PARAMETER);} } a.configured=true; return OK; } Variant RasterizerIPhone::mesh_surface_get_array(RID p_mesh, int p_surface,VS::ArrayType p_type) const { return Variant(); } void RasterizerIPhone::mesh_surface_set_material(RID p_mesh, int p_surface, RID p_material,bool p_owned) { Mesh *mesh = mesh_owner.get( p_mesh ); ERR_FAIL_COND(!mesh); ERR_FAIL_INDEX(p_surface, mesh->surfaces.size() ); Surface *surface = mesh->surfaces[p_surface]; ERR_FAIL_COND( !surface); if (surface->material_owned && surface->material.is_valid()) free(surface->material); surface->material_owned=p_owned; surface->material=p_material; } RID RasterizerIPhone::mesh_surface_get_material(RID p_mesh, int p_surface) const { Mesh *mesh = mesh_owner.get( p_mesh ); ERR_FAIL_COND_V(!mesh,RID()); ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), RID() ); Surface *surface = mesh->surfaces[p_surface]; ERR_FAIL_COND_V( !surface, RID() ); return surface->material; } int RasterizerIPhone::mesh_surface_get_array_len(RID p_mesh, int p_surface) const { Mesh *mesh = mesh_owner.get( p_mesh ); ERR_FAIL_COND_V(!mesh,-1); ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), -1 ); Surface *surface = mesh->surfaces[p_surface]; ERR_FAIL_COND_V( !surface, -1 ); return surface->array_len; } int RasterizerIPhone::mesh_surface_get_array_index_len(RID p_mesh, int p_surface) const { Mesh *mesh = mesh_owner.get( p_mesh ); ERR_FAIL_COND_V(!mesh,-1); ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), -1 ); Surface *surface = mesh->surfaces[p_surface]; ERR_FAIL_COND_V( !surface, -1 ); return surface->index_array_len; } uint32_t RasterizerIPhone::mesh_surface_get_format(RID p_mesh, int p_surface) const { Mesh *mesh = mesh_owner.get( p_mesh ); ERR_FAIL_COND_V(!mesh,0); ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), 0 ); Surface *surface = mesh->surfaces[p_surface]; ERR_FAIL_COND_V( !surface, 0 ); return surface->format; } VS::PrimitiveType RasterizerIPhone::mesh_surface_get_primitive_type(RID p_mesh, int p_surface) const { Mesh *mesh = mesh_owner.get( p_mesh ); ERR_FAIL_COND_V(!mesh,VS::PRIMITIVE_POINTS); ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), VS::PRIMITIVE_POINTS ); Surface *surface = mesh->surfaces[p_surface]; ERR_FAIL_COND_V( !surface, VS::PRIMITIVE_POINTS ); return surface->primitive; } void RasterizerIPhone::mesh_erase_surface(RID p_mesh,int p_index) { Mesh *mesh = mesh_owner.get( p_mesh ); ERR_FAIL_COND(!mesh); ERR_FAIL_INDEX(p_index, mesh->surfaces.size() ); Surface *surface = mesh->surfaces[p_index]; ERR_FAIL_COND( !surface); memdelete( mesh->surfaces[p_index] ); mesh->surfaces.remove(p_index); } int RasterizerIPhone::mesh_get_surface_count(RID p_mesh) const { Mesh *mesh = mesh_owner.get( p_mesh ); ERR_FAIL_COND_V(!mesh,-1); return mesh->surfaces.size(); } AABB RasterizerIPhone::mesh_get_aabb(RID p_mesh) const { Mesh *mesh = mesh_owner.get( p_mesh ); ERR_FAIL_COND_V(!mesh,AABB()); AABB aabb; for (int i=0;isurfaces.size();i++) { if (i==0) aabb=mesh->surfaces[i]->aabb; else aabb.merge_with(mesh->surfaces[i]->aabb); } return aabb; } /* MULTIMESH API */ RID RasterizerIPhone::multimesh_create() { return RID(); } void RasterizerIPhone::multimesh_set_instance_count(RID p_multimesh,int p_count) { } int RasterizerIPhone::multimesh_get_instance_count(RID p_multimesh) const { return 0; } void RasterizerIPhone::multimesh_set_mesh(RID p_multimesh,RID p_mesh) { } void RasterizerIPhone::multimesh_set_aabb(RID p_multimesh,const AABB& p_aabb) { } void RasterizerIPhone::multimesh_instance_set_transform(RID p_multimesh,int p_index,const Transform& p_transform) { } void RasterizerIPhone::multimesh_instance_set_color(RID p_multimesh,int p_index,const Color& p_color) { } RID RasterizerIPhone::multimesh_get_mesh(RID p_multimesh) const { return RID(); } AABB RasterizerIPhone::multimesh_get_aabb(RID p_multimesh) const { return AABB(); } Transform RasterizerIPhone::multimesh_instance_get_transform(RID p_multimesh,int p_index) const { return Transform(); } Color RasterizerIPhone::multimesh_instance_get_color(RID p_multimesh,int p_index) const { return Color(); } /* POLY API */ RID RasterizerIPhone::poly_create() { return RID(); } void RasterizerIPhone::poly_set_material(RID p_poly, RID p_material,bool p_owned) { } void RasterizerIPhone::poly_add_primitive(RID p_poly, const Vector& p_points,const Vector& p_normals,const Vector& p_colors,const Vector& p_uvs) { } void RasterizerIPhone::poly_clear(RID p_poly) { } AABB RasterizerIPhone::poly_get_aabb(RID p_poly) const { return AABB(); } /* PARTICLES API */ RID RasterizerIPhone::particles_create() { return RID(); } void RasterizerIPhone::particles_set_amount(RID p_particles, int p_amount) { } int RasterizerIPhone::particles_get_amount(RID p_particles) const { return 0; } void RasterizerIPhone::particles_set_emitting(RID p_particles, bool p_emitting) { } bool RasterizerIPhone::particles_is_emitting(RID p_particles) const { return false; } void RasterizerIPhone::particles_set_visibility_aabb(RID p_particles, const AABB& p_visibility) { } AABB RasterizerIPhone::particles_get_visibility_aabb(RID p_particles) const { return AABB(); } void RasterizerIPhone::particles_set_emission_half_extents(RID p_particles, const Vector3& p_half_extents) { } Vector3 RasterizerIPhone::particles_get_emission_half_extents(RID p_particles) const { return Vector3(); } void RasterizerIPhone::particles_set_gravity_normal(RID p_particles, const Vector3& p_normal) { } Vector3 RasterizerIPhone::particles_get_gravity_normal(RID p_particles) const { return Vector3(); } void RasterizerIPhone::particles_set_variable(RID p_particles, VS::ParticleVariable p_variable,float p_value) { } float RasterizerIPhone::particles_get_variable(RID p_particles, VS::ParticleVariable p_variable) const { return 0; } void RasterizerIPhone::particles_set_randomness(RID p_particles, VS::ParticleVariable p_variable,float p_randomness) { } float RasterizerIPhone::particles_get_randomness(RID p_particles, VS::ParticleVariable p_variable) const { return 0; } void RasterizerIPhone::particles_set_color_phase_pos(RID p_particles, int p_phase, float p_pos) { } float RasterizerIPhone::particles_get_color_phase_pos(RID p_particles, int p_phase) const { return 0; } void RasterizerIPhone::particles_set_color_phases(RID p_particles, int p_phases) { } int RasterizerIPhone::particles_get_color_phases(RID p_particles) const { return 0; } void RasterizerIPhone::particles_set_color_phase_color(RID p_particles, int p_phase, const Color& p_color) { } Color RasterizerIPhone::particles_get_color_phase_color(RID p_particles, int p_phase) const { return Color(); } void RasterizerIPhone::particles_set_attractors(RID p_particles, int p_attractors) { } int RasterizerIPhone::particles_get_attractors(RID p_particles) const { return 0; } void RasterizerIPhone::particles_set_attractor_pos(RID p_particles, int p_attractor, const Vector3& p_pos) { } Vector3 RasterizerIPhone::particles_get_attractor_pos(RID p_particles,int p_attractor) const { return Vector3(); } void RasterizerIPhone::particles_set_attractor_strength(RID p_particles, int p_attractor, float p_force) { } float RasterizerIPhone::particles_get_attractor_strength(RID p_particles,int p_attractor) const { return 0; } void RasterizerIPhone::particles_set_material(RID p_particles, RID p_material,bool p_owned) { } RID RasterizerIPhone::particles_get_material(RID p_particles) const { return RID(); } AABB RasterizerIPhone::particles_get_aabb(RID p_particles) const { return AABB(); } /* BEAM API */ RID RasterizerIPhone::beam_create() { return RID(); } void RasterizerIPhone::beam_set_point_count(RID p_beam, int p_count) { } int RasterizerIPhone::beam_get_point_count(RID p_beam) const { return 0; } void RasterizerIPhone::beam_clear(RID p_beam) { } void RasterizerIPhone::beam_set_point(RID p_beam,int p_point,Vector3& p_pos) { } Vector3 RasterizerIPhone::beam_get_point(RID p_beam,int p_point) const { return Vector3(); } void RasterizerIPhone::beam_set_primitive(RID p_beam,VS::BeamPrimitive p_primitive) { } VS::BeamPrimitive RasterizerIPhone::beam_get_primitive(RID p_beam) const { return VS::BEAM_CUBIC; } void RasterizerIPhone::beam_set_material(RID p_beam, RID p_material) { } RID RasterizerIPhone::beam_get_material(RID p_beam) const { return RID(); } AABB RasterizerIPhone::beam_get_aabb(RID p_particles) const { return AABB(); } /* SKELETON API */ RID RasterizerIPhone::skeleton_create() { Skeleton *skeleton = memnew( Skeleton ); ERR_FAIL_COND_V(!skeleton,RID()); return skeleton_owner.make_rid( skeleton ); } void RasterizerIPhone::skeleton_resize(RID p_skeleton,int p_bones) { Skeleton *skeleton = skeleton_owner.get( p_skeleton ); ERR_FAIL_COND(!skeleton); if (p_bones == skeleton->bones.size()) { return; }; ERR_FAIL_COND( p_bones<0 || p_bones>256); skeleton->bones.resize(p_bones); } int RasterizerIPhone::skeleton_get_bone_count(RID p_skeleton) const { Skeleton *skeleton = skeleton_owner.get( p_skeleton ); ERR_FAIL_COND_V(!skeleton, -1); return skeleton->bones.size(); } void RasterizerIPhone::skeleton_bone_set_transform(RID p_skeleton,int p_bone, const Transform& p_transform) { Skeleton *skeleton = skeleton_owner.get( p_skeleton ); ERR_FAIL_COND(!skeleton); ERR_FAIL_INDEX( p_bone, skeleton->bones.size() ); skeleton->bones[p_bone] = p_transform; } Transform RasterizerIPhone::skeleton_bone_get_transform(RID p_skeleton,int p_bone) { Skeleton *skeleton = skeleton_owner.get( p_skeleton ); ERR_FAIL_COND_V(!skeleton, Transform()); ERR_FAIL_INDEX_V( p_bone, skeleton->bones.size(), Transform() ); // something return skeleton->bones[p_bone]; } /* LIGHT API */ RID RasterizerIPhone::light_create(VS::LightType p_type) { Light *light = memnew( Light ); light->type=p_type; return light_owner.make_rid(light); } VS::LightType RasterizerIPhone::light_get_type(RID p_light) const { Light *light = light_owner.get(p_light); ERR_FAIL_COND_V(!light,VS::LIGHT_OMNI); return light->type; } void RasterizerIPhone::light_set_color(RID p_light,VS::LightColor p_type, const Color& p_color) { Light *light = light_owner.get(p_light); ERR_FAIL_COND(!light); ERR_FAIL_INDEX( p_type, 3 ); light->colors[p_type]=p_color; } Color RasterizerIPhone::light_get_color(RID p_light,VS::LightColor p_type) const { Light *light = light_owner.get(p_light); ERR_FAIL_COND_V(!light, Color()); ERR_FAIL_INDEX_V( p_type, 3, Color() ); return light->colors[p_type]; } void RasterizerIPhone::light_set_shadow(RID p_light,bool p_enabled) { Light *light = light_owner.get(p_light); ERR_FAIL_COND(!light); light->shadow_enabled=p_enabled; } bool RasterizerIPhone::light_has_shadow(RID p_light) const { Light *light = light_owner.get(p_light); ERR_FAIL_COND_V(!light,false); return light->shadow_enabled; } void RasterizerIPhone::light_set_volumetric(RID p_light,bool p_enabled) { Light *light = light_owner.get(p_light); ERR_FAIL_COND(!light); light->volumetric_enabled=p_enabled; } bool RasterizerIPhone::light_is_volumetric(RID p_light) const { Light *light = light_owner.get(p_light); ERR_FAIL_COND_V(!light,false); return light->volumetric_enabled; } void RasterizerIPhone::light_set_projector(RID p_light,RID p_texture) { Light *light = light_owner.get(p_light); ERR_FAIL_COND(!light); light->projector=p_texture; } RID RasterizerIPhone::light_get_projector(RID p_light) const { Light *light = light_owner.get(p_light); ERR_FAIL_COND_V(!light,RID()); return light->projector; } void RasterizerIPhone::light_set_var(RID p_light, VS::LightParam p_var, float p_value) { Light * light = light_owner.get( p_light ); ERR_FAIL_COND(!light); ERR_FAIL_INDEX( p_var, VS::LIGHT_PARAM_MAX ); light->vars[p_var]=p_value; } float RasterizerIPhone::light_get_var(RID p_light, VS::LightParam p_var) const { Light * light = light_owner.get( p_light ); ERR_FAIL_COND_V(!light,0); ERR_FAIL_INDEX_V( p_var, VS::LIGHT_PARAM_MAX,0 ); return light->vars[p_var]; } AABB RasterizerIPhone::light_get_aabb(RID p_light) const { Light *light = light_owner.get( p_light ); ERR_FAIL_COND_V(!light,AABB()); switch( light->type ) { case VS::LIGHT_SPOT: { float len=light->vars[VS::LIGHT_PARAM_RADIUS]; float size=Math::tan(Math::deg2rad(light->vars[VS::LIGHT_PARAM_SPOT_ANGLE]))*len; return AABB( Vector3( -size,-size,-len ), Vector3( size*2, size*2, len ) ); } break; case VS::LIGHT_OMNI: { float r = light->vars[VS::LIGHT_PARAM_RADIUS]; return AABB( -Vector3(r,r,r), Vector3(r,r,r)*2 ); } break; case VS::LIGHT_DIRECTIONAL: { return AABB(); } break; default: {} } ERR_FAIL_V( AABB() ); } RID RasterizerIPhone::light_instance_create(RID p_light) { Light *light = light_owner.get( p_light ); ERR_FAIL_COND_V(!light, RID()); LightInstance *light_instance = memnew( LightInstance ); light_instance->light=p_light; light_instance->base=light; light_instance->last_pass=0; return light_instance_owner.make_rid( light_instance ); } void RasterizerIPhone::light_instance_set_transform(RID p_light_instance,const Transform& p_transform) { LightInstance *lighti = light_instance_owner.get( p_light_instance ); ERR_FAIL_COND(!lighti); lighti->transform=p_transform; } void RasterizerIPhone::light_instance_set_active_hint(RID p_light_instance) { LightInstance *lighti = light_instance_owner.get( p_light_instance ); ERR_FAIL_COND(!lighti); lighti->last_pass=frame; } bool RasterizerIPhone::light_instance_has_shadow(RID p_light_instance) const { return false; } bool RasterizerIPhone::light_instance_assign_shadow(RID p_light_instance) { return false; } Rasterizer::ShadowType RasterizerIPhone::light_instance_get_shadow_type(RID p_light_instance) const { return Rasterizer::SHADOW_CUBE; } int RasterizerIPhone::light_instance_get_shadow_passes(RID p_light_instance) const { return 0; } void RasterizerIPhone::light_instance_set_pssm_split_info(RID p_light_instance, int p_split, float p_near,float p_far, const CameraMatrix& p_camera, const Transform& p_transform) { } /* PARTICLES INSTANCE */ RID RasterizerIPhone::particles_instance_create(RID p_particles) { return RID(); } void RasterizerIPhone::particles_instance_set_transform(RID p_particles_instance,const Transform& p_transform) { } /* RENDER API */ /* all calls (inside begin/end shadow) are always warranted to be in the following order: */ static GLfloat rtri; // Angle For The Triangle ( NEW ) static GLfloat rquad; // Angle For The Quad ( NEW ) void RasterizerIPhone::begin_frame() { window_size = Size2( OS::get_singleton()->get_video_mode().width, OS::get_singleton()->get_video_mode().height ); double time = (OS::get_singleton()->get_ticks_usec()/1000); // get msec time/=1000.0; // make secs time_delta=time-last_time; last_time=time; frame++; glClearColor(0,0,1,1); glClear(GL_COLOR_BUFFER_BIT); /* nehe ?*/ #if 0 glViewport(0,0,window_size.width,window_size.height); // Reset The Current Viewport glMatrixMode(GL_PROJECTION); // Select The Projection Matrix glLoadIdentity(); // Reset The Projection Matrix // Calculate The Aspect Ratio Of The Window gluPerspective(45.0f,(GLfloat)window_size.width/(GLfloat)window_size.height,0.1f,100.0f); glMatrixMode(GL_MODELVIEW); // Select The Modelview Matrix glLoadIdentity(); // Reset The Modelview Matrix glShadeModel(GL_SMOOTH); // Enable Smooth Shading glClearColor(0.0f, 0.0f, 0.0f, 0.5f); // Black Background glClearDepth(1.0f); // Depth Buffer Setup glEnable(GL_DEPTH_TEST); // Enables Depth Testing glDepthFunc(GL_LEQUAL); // The Type Of Depth Testing To Do glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); // Really Nice Perspective Calculations glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clear Screen And Depth Buffer glLoadIdentity(); // Reset The Current Modelview Matrix glTranslatef(-1.5f,0.0f,-6.0f); // Move Left 1.5 Units And Into The Screen 6.0 glRotatef(rtri,0.0f,1.0f,0.0f); // Rotate The Triangle On The Y axis ( NEW ) glBegin(GL_TRIANGLES); // Start Drawing A Triangle glColor3f(1.0f,0.0f,0.0f); // Red glVertex3f( 0.0f, 1.0f, 0.0f); // Top Of Triangle (Front) glColor3f(0.0f,1.0f,0.0f); // Green glVertex3f(-1.0f,-1.0f, 1.0f); // Left Of Triangle (Front) glColor3f(0.0f,0.0f,1.0f); // Blue glVertex3f( 1.0f,-1.0f, 1.0f); // Right Of Triangle (Front) glColor3f(1.0f,0.0f,0.0f); // Red glVertex3f( 0.0f, 1.0f, 0.0f); // Top Of Triangle (Right) glColor3f(0.0f,0.0f,1.0f); // Blue glVertex3f( 1.0f,-1.0f, 1.0f); // Left Of Triangle (Right) glColor3f(0.0f,1.0f,0.0f); // Green glVertex3f( 1.0f,-1.0f, -1.0f); // Right Of Triangle (Right) glColor3f(1.0f,0.0f,0.0f); // Red glVertex3f( 0.0f, 1.0f, 0.0f); // Top Of Triangle (Back) glColor3f(0.0f,1.0f,0.0f); // Green glVertex3f( 1.0f,-1.0f, -1.0f); // Left Of Triangle (Back) glColor3f(0.0f,0.0f,1.0f); // Blue glVertex3f(-1.0f,-1.0f, -1.0f); // Right Of Triangle (Back) glColor3f(1.0f,0.0f,0.0f); // Red glVertex3f( 0.0f, 1.0f, 0.0f); // Top Of Triangle (Left) glColor3f(0.0f,0.0f,1.0f); // Blue glVertex3f(-1.0f,-1.0f,-1.0f); // Left Of Triangle (Left) glColor3f(0.0f,1.0f,0.0f); // Green glVertex3f(-1.0f,-1.0f, 1.0f); // Right Of Triangle (Left) glEnd(); // Done Drawing The Pyramid glLoadIdentity(); // Reset The Current Modelview Matrix glTranslatef(1.5f,0.0f,-7.0f); // Move Right 1.5 Units And Into The Screen 7.0 glRotatef(rquad,1.0f,1.0f,1.0f); // Rotate The Quad On The X axis ( NEW ) glBegin(GL_QUADS); // Draw A Quad glColor3f(0.0f,1.0f,0.0f); // Set The Color To Green glVertex3f( 1.0f, 1.0f,-1.0f); // Top Right Of The Quad (Top) glVertex3f(-1.0f, 1.0f,-1.0f); // Top Left Of The Quad (Top) glVertex3f(-1.0f, 1.0f, 1.0f); // Bottom Left Of The Quad (Top) glVertex3f( 1.0f, 1.0f, 1.0f); // Bottom Right Of The Quad (Top) glColor3f(1.0f,0.5f,0.0f); // Set The Color To Orange glVertex3f( 1.0f,-1.0f, 1.0f); // Top Right Of The Quad (Bottom) glVertex3f(-1.0f,-1.0f, 1.0f); // Top Left Of The Quad (Bottom) glVertex3f(-1.0f,-1.0f,-1.0f); // Bottom Left Of The Quad (Bottom) glVertex3f( 1.0f,-1.0f,-1.0f); // Bottom Right Of The Quad (Bottom) glColor3f(1.0f,0.0f,0.0f); // Set The Color To Red glVertex3f( 1.0f, 1.0f, 1.0f); // Top Right Of The Quad (Front) glVertex3f(-1.0f, 1.0f, 1.0f); // Top Left Of The Quad (Front) glVertex3f(-1.0f,-1.0f, 1.0f); // Bottom Left Of The Quad (Front) glVertex3f( 1.0f,-1.0f, 1.0f); // Bottom Right Of The Quad (Front) glColor3f(1.0f,1.0f,0.0f); // Set The Color To Yellow glVertex3f( 1.0f,-1.0f,-1.0f); // Top Right Of The Quad (Back) glVertex3f(-1.0f,-1.0f,-1.0f); // Top Left Of The Quad (Back) glVertex3f(-1.0f, 1.0f,-1.0f); // Bottom Left Of The Quad (Back) glVertex3f( 1.0f, 1.0f,-1.0f); // Bottom Right Of The Quad (Back) glColor3f(0.0f,0.0f,1.0f); // Set The Color To Blue glVertex3f(-1.0f, 1.0f, 1.0f); // Top Right Of The Quad (Left) glVertex3f(-1.0f, 1.0f,-1.0f); // Top Left Of The Quad (Left) glVertex3f(-1.0f,-1.0f,-1.0f); // Bottom Left Of The Quad (Left) glVertex3f(-1.0f,-1.0f, 1.0f); // Bottom Right Of The Quad (Left) glColor3f(1.0f,0.0f,1.0f); // Set The Color To Violet glVertex3f( 1.0f, 1.0f,-1.0f); // Top Right Of The Quad (Right) glVertex3f( 1.0f, 1.0f, 1.0f); // Top Left Of The Quad (Right) glVertex3f( 1.0f,-1.0f, 1.0f); // Bottom Left Of The Quad (Right) glVertex3f( 1.0f,-1.0f,-1.0f); // Bottom Right Of The Quad (Right) glEnd(); // Done Drawing The Quad rtri+=0.2f; // Increase The Rotation Variable For The Triangle ( NEW ) rquad-=0.15f; // Decrease The Rotation Variable For The Quad ( NEW ) #endif } void RasterizerIPhone::set_viewport(const VS::ViewportRect& p_viewport) { viewport=p_viewport; canvas_transform=Transform(); canvas_transform.translate(-(viewport.width / 2.0f), -(viewport.height / 2.0f), 0.0f); canvas_transform.scale( Vector3( 2.0f / viewport.width, -2.0f / viewport.height, 1.0f ) ); glViewport( viewport.x, window_size.height-(viewport.height+viewport.y), viewport.width,viewport.height ); } void RasterizerIPhone::begin_scene(RID p_fx,VS::ScenarioDebugMode p_debug) { opaque_render_list.clear(); alpha_render_list.clear(); light_instance_count=0; scene_fx = p_fx.is_valid() ? fx_owner.get(p_fx) : NULL; }; void RasterizerIPhone::begin_shadow_map( RID p_light_instance, int p_shadow_pass ) { } void RasterizerIPhone::set_camera(const Transform& p_world,const CameraMatrix& p_projection) { camera_transform=p_world; camera_transform_inverse=camera_transform.inverse(); camera_projection=p_projection; camera_plane = Plane( camera_transform.origin, camera_transform.basis.get_axis(2) ); camera_z_near=camera_projection.get_z_near(); camera_z_far=camera_projection.get_z_far(); camera_projection.get_viewport_size(camera_vp_size.x,camera_vp_size.y); } void RasterizerIPhone::add_light( RID p_light_instance ) { #define LIGHT_FADE_TRESHOLD 0.05 ERR_FAIL_COND( light_instance_count >= MAX_LIGHTS ); LightInstance *li = light_instance_owner.get(p_light_instance); ERR_FAIL_COND(!li); /* make light hash */ // actually, not really a hash, but helps to sort the lights // and avoid recompiling redudant shader versions li->hash_aux=li->base->type; if (li->base->shadow_enabled) li->hash_aux|=(1<<3); if (li->base->projector.is_valid()) li->hash_aux|=(1<<4); if (li->base->shadow_enabled && li->base->volumetric_enabled) li->hash_aux|=(1<<5); switch(li->base->type) { case VisualServer::LIGHT_DIRECTIONAL: { Vector3 dir = li->transform.basis.get_axis(2); li->light_vector.x=dir.x; li->light_vector.y=dir.y; li->light_vector.z=dir.z; } break; case VisualServer::LIGHT_OMNI: { float radius = li->base->vars[VisualServer::LIGHT_PARAM_RADIUS]; if (radius==0) radius=0.0001; li->linear_att=(1/LIGHT_FADE_TRESHOLD)/radius; li->light_vector.x=li->transform.origin.x; li->light_vector.y=li->transform.origin.y; li->light_vector.z=li->transform.origin.z; } break; case VisualServer::LIGHT_SPOT: { float radius = li->base->vars[VisualServer::LIGHT_PARAM_RADIUS]; if (radius==0) radius=0.0001; li->linear_att=(1/LIGHT_FADE_TRESHOLD)/radius; li->light_vector.x=li->transform.origin.x; li->light_vector.y=li->transform.origin.y; li->light_vector.z=li->transform.origin.z; Vector3 dir = -li->transform.basis.get_axis(2); li->spot_vector.x=dir.x; li->spot_vector.y=dir.y; li->spot_vector.z=dir.z; } break; } light_instances[light_instance_count++]=li; } void RasterizerIPhone::_add_geometry( const Geometry* p_geometry, const Transform& p_world, uint32_t p_vertex_format, const RID* p_light_instances, int p_light_count, const ParamOverrideMap* p_material_overrides,const Skeleton* p_skeleton, GeometryOwner *p_owner) { Material *m=NULL; if (p_geometry->material.is_valid()) m=material_owner.get( p_geometry->material ); if (!m) { m=material_owner.get( default_material ); } ERR_FAIL_COND(!m); LightInstance *lights[RenderList::MAX_LIGHTS]; int light_count=0; RenderList *render_list=&opaque_render_list; if (p_geometry->has_alpha || m->detail_blend_mode!=VS::MATERIAL_BLEND_MODE_MIX) { render_list = &alpha_render_list; }; if (!m->flags[VS::MATERIAL_FLAG_UNSHADED]) { light_count=p_light_count; for(int i=0;iadd_element( p_geometry, m, p_world, lights, light_count, p_material_overrides,p_skeleton, camera_plane.distance(p_world.origin), p_owner ); } void RasterizerIPhone::add_mesh( RID p_mesh, const Transform* p_world, const RID* p_light_instances, int p_light_count, const ParamOverrideMap* p_material_overrides, RID p_skeleton) { Mesh *mesh = mesh_owner.get(p_mesh); int ssize = mesh->surfaces.size(); for (int i=0;isurfaces[i]; Skeleton *sk = p_skeleton.is_valid()?skeleton_owner.get(p_skeleton):NULL; _add_geometry(s,*p_world,s->format,p_light_instances,p_light_count,p_material_overrides,sk,NULL); } mesh->last_pass=frame; } void RasterizerIPhone::add_multimesh( RID p_multimesh, const Transform* p_world, const RID* p_light_instances, int p_light_count, const ParamOverrideMap* p_material_overrides) { } void RasterizerIPhone::add_poly( RID p_poly, const Transform* p_world, const RID* p_light_instances, int p_light_count, const ParamOverrideMap* p_material_overrides) { Poly *p = poly_owner.get(p_poly); if (!p->primitives.empty()) { const Poly::Primitive *pp = &p->primitives[0]; uint32_t format=VisualServer::ARRAY_FORMAT_VERTEX; if (!pp->normals.empty()) format|=VisualServer::ARRAY_FORMAT_NORMAL; if (!pp->colors.empty()) format|=VisualServer::ARRAY_FORMAT_COLOR; if (!pp->uvs.empty()) format|=VisualServer::ARRAY_TEX_UV; _add_geometry(p,*p_world,format,p_light_instances,p_light_count,p_material_overrides,NULL, NULL); } } void RasterizerIPhone::add_beam( RID p_beam, const Transform* p_world, const RID* p_light_instances, int p_light_count, const ParamOverrideMap* p_material_overrides) { } void RasterizerIPhone::add_particles( RID p_particle_instance, const RID* p_light_instances, int p_light_count, const ParamOverrideMap* p_material_overrides) { } void RasterizerIPhone::_setup_material(const Geometry *p_geometry,const Material *p_material) { if (p_material->flags[VS::MATERIAL_FLAG_DOUBLE_SIDED]) glDisable(GL_CULL_FACE); else { glEnable(GL_CULL_FACE); glCullFace( (p_material->flags[VS::MATERIAL_FLAG_INVERT_FACES])?GL_FRONT:GL_BACK); } glEnable(GL_COLOR_MATERIAL); /* unused, unless color array */ //glColorMaterial( GL_FRONT_AND_BACK, GL_DIFFUSE ); glTexEnvi( GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE ); ///ambient @TODO offer global ambient group option float ambient_rgba[4]={ 1, 1, 1, 1.0 }; glMaterialfv(GL_FRONT_AND_BACK,GL_AMBIENT,ambient_rgba); ///diffuse const Color &diffuse_color=p_material->parameters[VS::FIXED_MATERIAL_PARAM_DIFFUSE]; float diffuse_rgba[4]={ (float)diffuse_color.r, (float)diffuse_color.g, (float)diffuse_color.b, (float)diffuse_color.a }; glColor4f( diffuse_rgba[0],diffuse_rgba[1],diffuse_rgba[2],diffuse_rgba[3]); glMaterialfv(GL_FRONT_AND_BACK,GL_DIFFUSE,diffuse_rgba); //specular const Color &specular_color=p_material->parameters[VS::FIXED_MATERIAL_PARAM_SPECULAR]; float specular_rgba[4]={ (float)specular_color.r, (float)specular_color.g, (float)specular_color.b, 1.0 }; glMaterialfv(GL_FRONT_AND_BACK,GL_SPECULAR,specular_rgba); const Color &emission_color=p_material->parameters[VS::FIXED_MATERIAL_PARAM_EMISSION]; float emission_rgba[4]={ (float)emission_color.r, (float)emission_color.g, (float)emission_color.b, 1.0 }; glMaterialfv(GL_FRONT_AND_BACK,GL_EMISSION,emission_rgba); glMaterialf(GL_FRONT_AND_BACK,GL_SHININESS,p_material->parameters[VS::FIXED_MATERIAL_PARAM_SPECULAR_EXP]); if (p_material->flags[VS::MATERIAL_FLAG_UNSHADED]) { glDisable(GL_LIGHTING); } else { glEnable(GL_LIGHTING); glDisable(GL_LIGHTING); } //depth test? /* if (p_material->flags[VS::MATERIAL_FLAG_WIREFRAME]) glPolygonMode(GL_FRONT_AND_BACK,GL_LINE); else glPolygonMode(GL_FRONT_AND_BACK,GL_FILL); */ if (p_material->textures[VS::FIXED_MATERIAL_PARAM_DIFFUSE]) { Texture *texture = texture_owner.get( p_material->textures[VS::FIXED_MATERIAL_PARAM_DIFFUSE] ); ERR_FAIL_COND(!texture); glActiveTexture(GL_TEXTURE0); glEnable(GL_TEXTURE_2D); glBindTexture( GL_TEXTURE_2D,texture->tex_id ); }; }; void RasterizerIPhone::_setup_light(LightInstance* p_instance, int p_idx) { Light* ld = p_instance->base; int glid = GL_LIGHT0 + p_idx; glLightfv(glid , GL_AMBIENT, ld->colors[VS::LIGHT_COLOR_AMBIENT].components ); glLightfv(glid, GL_DIFFUSE, ld->colors[VS::LIGHT_COLOR_DIFFUSE].components ); glLightfv(glid, GL_SPECULAR, ld->colors[VS::LIGHT_COLOR_SPECULAR].components ); switch(ld->type) { case VS::LIGHT_DIRECTIONAL: { /* This doesnt have attenuation */ glMatrixMode(GL_MODELVIEW); glPushMatrix(); glLoadIdentity(); Vector3 v(0.0,0.0,-1.0); // directional lights point up by default v = p_instance->transform.get_basis().xform( v ); v = camera_transform_inverse.get_basis().xform( v ); v.normalize(); // this sucks, so it will be optimized at some point v = -v; float lightpos[4]={v.x,v.y,v.z,0.0}; glLightfv(glid,GL_POSITION,lightpos); //at modelview glPopMatrix(); } break; case VS::LIGHT_OMNI: { glLightf(glid,GL_SPOT_CUTOFF,180.0); glLightf(glid,GL_CONSTANT_ATTENUATION, ld->vars[VS::LIGHT_PARAM_ATTENUATION]); glLightf(glid,GL_LINEAR_ATTENUATION, ld->vars[VS::LIGHT_PARAM_RADIUS]); glLightf(glid,GL_QUADRATIC_ATTENUATION, ld->vars[VS::LIGHT_PARAM_ENERGY]); // wut? glMatrixMode(GL_MODELVIEW); glPushMatrix(); glLoadIdentity(); Vector3 pos = p_instance->transform.get_origin(); pos = camera_transform_inverse.xform(pos); float lightpos[4]={pos.x,pos.y,pos.z,1.0}; glLightfv(glid,GL_POSITION,lightpos); //at modelview glPopMatrix(); } break; case VS::LIGHT_SPOT: { glLightf(glid,GL_SPOT_CUTOFF, ld->vars[VS::LIGHT_PARAM_SPOT_ANGLE]); glLightf(glid,GL_SPOT_EXPONENT, ld->vars[VS::LIGHT_PARAM_SPOT_ATTENUATION]); glLightf(glid,GL_CONSTANT_ATTENUATION, ld->vars[VS::LIGHT_PARAM_ATTENUATION]); glLightf(glid,GL_LINEAR_ATTENUATION, ld->vars[VS::LIGHT_PARAM_RADIUS]); glLightf(glid,GL_QUADRATIC_ATTENUATION, ld->vars[VS::LIGHT_PARAM_ENERGY]); // wut? glMatrixMode(GL_MODELVIEW); glPushMatrix(); glLoadIdentity(); Vector3 v(0.0,0.0,-1.0); // directional lights point up by default v = p_instance->transform.get_basis().xform( v ); v = camera_transform_inverse.get_basis().xform( v ); v.normalize(); // this sucks, so it will be optimized at some point float lightdir[4]={v.x, v.y, v.z, 1.0}; glLightfv(glid,GL_SPOT_DIRECTION,lightdir); //at modelview v = p_instance->transform.get_origin(); v = camera_transform_inverse.xform(v); float lightpos[4]={v.x,v.y,v.z,1.0}; glLightfv(glid,GL_POSITION,lightpos); //at modelview glPopMatrix(); } break; default: break; } }; void RasterizerIPhone::_setup_lights(LightInstance **p_lights,int p_light_count) { for (int i=0; itype) { case Geometry::GEOMETRY_SURFACE: { Surface *surf = (Surface*)p_geometry; uint8_t *base=0; bool use_VBO = (surf->array_local==0); if (!use_VBO) { base = surf->array_local; glBindBuffer(GL_ARRAY_BUFFER, 0); } else { glBindBuffer(GL_ARRAY_BUFFER, surf->vertex_id); }; const Surface::ArrayData* a=surf->array; for (int i=0;iarray[i]; if (ad.size==0) { if (gl_client_states[i] != -1) { glDisableClientState(gl_client_states[i]); }; continue; // this one is disabled. } ERR_CONTINUE( !ad.configured ); if (gl_client_states[i] != -1) { glEnableClientState(gl_client_states[i]); }; switch (i) { case VS::ARRAY_VERTEX: if (!use_VBO) glVertexPointer(3,GL_FLOAT,surf->stride,(GLvoid*)&base[a->ofs]); else if (surf->array[VS::ARRAY_BONES].size) glVertexPointer(3, GL_FLOAT, 0, skinned_buffer); else glVertexPointer(3,GL_FLOAT,surf->stride,(GLvoid*)a->ofs); break; case VS::ARRAY_NORMAL: if (use_VBO) glNormalPointer(GL_FLOAT,surf->stride,(GLvoid*)a->ofs); else glNormalPointer(GL_FLOAT,surf->stride,(GLvoid*)&base[a->ofs]); break; case VS::ARRAY_TANGENT: break; case VS::ARRAY_COLOR: if (use_VBO) glColorPointer(4,GL_UNSIGNED_BYTE,surf->stride,(GLvoid*)a->ofs); else glColorPointer(4,GL_UNSIGNED_BYTE,surf->stride,(GLvoid*)&base[a->ofs]); break; case VS::ARRAY_TEX_UV: case VS::ARRAY_TEX_UV2: if (use_VBO) glTexCoordPointer(2,GL_FLOAT,surf->stride,(GLvoid*)a->ofs); else glTexCoordPointer(2,GL_FLOAT,surf->stride,&base[a->ofs]); break; case VS::ARRAY_BONES: case VS::ARRAY_WEIGHTS: case VS::ARRAY_INDEX: break; }; } // process skeleton here } break; default: break; }; }; static const GLenum gl_primitive[]={ GL_POINTS, GL_LINES, GL_LINE_STRIP, GL_LINE_LOOP, GL_TRIANGLES, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN }; void RasterizerIPhone::_render(const Geometry *p_geometry,const Material *p_material, const Skeleton* p_skeleton) { switch(p_geometry->type) { case Geometry::GEOMETRY_SURFACE: { Surface *s = (Surface*)p_geometry; if (s->index_array_len>0) { if (s->index_array_local) { glDrawElements(gl_primitive[s->primitive], s->index_array_len, (s->index_array_len>(1<<8))?GL_UNSIGNED_SHORT:GL_UNSIGNED_BYTE, s->index_array_local); } else { glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,s->index_id); glDrawElements(gl_primitive[s->primitive],s->index_array_len, (s->index_array_len>(1<<8))?GL_UNSIGNED_SHORT:GL_UNSIGNED_BYTE,0); } } else { glDrawArrays(gl_primitive[s->primitive],0,s->array_len); }; } break; default: break; }; }; void RasterizerIPhone::_render_list_forward(RenderList *p_render_list) { const Material *prev_material=NULL; uint64_t prev_light_hash=0; const Skeleton *prev_skeleton=NULL; const Geometry *prev_geometry=NULL; const ParamOverrideMap* prev_overrides=NULL; // make it diferent than NULL Geometry::Type prev_geometry_type=Geometry::GEOMETRY_INVALID; glMatrixMode(GL_PROJECTION); glLoadMatrixf(&camera_projection.matrix[0][0]); for (int i=0;ielement_count;i++) { RenderList::Element *e = p_render_list->elements[i]; const Material *material = e->material; uint64_t light_hash = e->light_hash; const Skeleton *skeleton = e->skeleton; const Geometry *geometry = e->geometry; const ParamOverrideMap* material_overrides=e->material_overrides; if (material!=prev_material || geometry->type!=prev_geometry_type) { _setup_material(e->geometry,material); //_setup_material_overrides(e->material,NULL,material_overrides); //_setup_material_skeleton(material,skeleton); } else { if (material_overrides != prev_overrides) { //_setup_material_overrides(e->material,prev_overrides,material_overrides); } if (prev_skeleton!=skeleton) { //_setup_material_skeleton(material,skeleton); }; } if (geometry!=prev_geometry || geometry->type!=prev_geometry_type) { _setup_geometry(geometry, material); }; if (i==0 || light_hash!=prev_light_hash) _setup_lights(e->lights,e->light_count); glMatrixMode(GL_MODELVIEW); _gl_load_transform(camera_transform_inverse); _gl_mult_transform(e->transform); _render(geometry, material, skeleton); prev_material=material; prev_skeleton=skeleton; prev_geometry=geometry; prev_light_hash=e->light_hash; prev_geometry_type=geometry->type; prev_overrides=material_overrides; } }; void RasterizerIPhone::end_scene() { glEnable(GL_BLEND); glDepthMask(GL_FALSE); opaque_render_list.sort_mat_light(); _render_list_forward(&opaque_render_list); glDisable(GL_BLEND); glDepthMask(GL_TRUE); alpha_render_list.sort_z(); _render_list_forward(&alpha_render_list); } void RasterizerIPhone::end_shadow_map() { } void RasterizerIPhone::end_frame() { //ContextGL::get_singleton()->swap_buffers(); } /* CANVAS API */ void RasterizerIPhone::canvas_begin() { glDisable(GL_CULL_FACE); glDisable(GL_DEPTH_TEST); glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glLineWidth(1.0); glDisable(GL_LIGHTING); glMatrixMode(GL_PROJECTION); glLoadIdentity(); } void RasterizerIPhone::canvas_set_transparency(float p_transparency) { } void RasterizerIPhone::canvas_set_rect(const Rect2& p_rect, bool p_clip) { glMatrixMode(GL_MODELVIEW); glLoadIdentity(); glScalef(2.0 / window_size.x, -2.0 / window_size.y, 0); glTranslatef((-(window_size.x / 2.0)) + p_rect.pos.x, (-(window_size.y / 2.0)) + p_rect.pos.y, 0); if (p_clip) { glEnable(GL_SCISSOR_TEST); glScissor(viewport.x+p_rect.pos.x,viewport.y+ (viewport.height-(p_rect.pos.y+p_rect.size.height)), p_rect.size.width,p_rect.size.height); } else { glDisable(GL_SCISSOR_TEST); } } void RasterizerIPhone::canvas_draw_line(const Point2& p_from, const Point2& p_to,const Color& p_color,float p_width) { glColor4f(1, 1, 1, 1); float verts[6]={ p_from.x,p_from.y,0, p_to.x,p_to.y,0 }; float colors[]={ p_color.r, p_color.g, p_color.b, p_color.a, p_color.r, p_color.g, p_color.b, p_color.a, }; glLineWidth(p_width); _draw_primitive(2,verts,0,colors,0); } static void _draw_textured_quad(const Rect2& p_rect, const Rect2& p_src_region, const Size2& p_tex_size ) { float texcoords[]= { p_src_region.pos.x/p_tex_size.width, p_src_region.pos.y/p_tex_size.height, (p_src_region.pos.x+p_src_region.size.width)/p_tex_size.width, p_src_region.pos.y/p_tex_size.height, (p_src_region.pos.x+p_src_region.size.width)/p_tex_size.width, (p_src_region.pos.y+p_src_region.size.height)/p_tex_size.height, p_src_region.pos.x/p_tex_size.width, (p_src_region.pos.y+p_src_region.size.height)/p_tex_size.height, }; float coords[]= { p_rect.pos.x, p_rect.pos.y, 0, p_rect.pos.x+p_rect.size.width, p_rect.pos.y, 0, p_rect.pos.x+p_rect.size.width, p_rect.pos.y+p_rect.size.height, 0, p_rect.pos.x,p_rect.pos.y+p_rect.size.height, 0 }; _draw_primitive(4,coords,0,0,texcoords); } static void _draw_quad(const Rect2& p_rect) { float coords[]= { p_rect.pos.x,p_rect.pos.y, 0, p_rect.pos.x+p_rect.size.width,p_rect.pos.y, 0, p_rect.pos.x+p_rect.size.width,p_rect.pos.y+p_rect.size.height, 0, p_rect.pos.x,p_rect.pos.y+p_rect.size.height, 0 }; _draw_primitive(4,coords,0,0,0); } void RasterizerIPhone::canvas_draw_rect(const Rect2& p_rect, bool p_region, const Rect2& p_source,bool p_tile,RID p_texture,const Color& p_modulate) { glColor4f(p_modulate.r, p_modulate.g, p_modulate.b, p_modulate.a); if ( p_texture.is_valid() ) { glEnable(GL_TEXTURE_2D); Texture *texture = texture_owner.get( p_texture ); ERR_FAIL_COND(!texture); glActiveTexture(GL_TEXTURE0); glBindTexture( GL_TEXTURE_2D,texture->tex_id ); if (!p_region) { Rect2 region = Rect2(0,0,texture->width,texture->height); _draw_textured_quad(p_rect,region,region.size); } else { _draw_textured_quad(p_rect, p_source, Size2(texture->width,texture->height) ); } } else { _draw_quad( p_rect ); } } void RasterizerIPhone::canvas_draw_style_box(const Rect2& p_rect, const Rect2& p_src_region, RID p_texture,const float *p_margin, bool p_draw_center) { glColor4f(1, 1, 1, 1); Texture *texture = texture_owner.get( p_texture ); ERR_FAIL_COND(!texture); glEnable(GL_TEXTURE_2D); glActiveTexture(GL_TEXTURE0); glBindTexture( GL_TEXTURE_2D,texture->tex_id ); Rect2 region = p_src_region; if (region.size.width <= 0 ) region.size.width = texture->width; if (region.size.height <= 0) region.size.height = texture->height; /* CORNERS */ _draw_textured_quad( // top left Rect2( p_rect.pos, Size2(p_margin[MARGIN_LEFT],p_margin[MARGIN_TOP])), Rect2( region.pos, Size2(p_margin[MARGIN_LEFT],p_margin[MARGIN_TOP])), Size2( texture->width, texture->height ) ); _draw_textured_quad( // top right Rect2( Point2( p_rect.pos.x + p_rect.size.width - p_margin[MARGIN_RIGHT], p_rect.pos.y), Size2(p_margin[MARGIN_RIGHT],p_margin[MARGIN_TOP])), Rect2( Point2(region.pos.x+region.size.width-p_margin[MARGIN_RIGHT], region.pos.y), Size2(p_margin[MARGIN_RIGHT],p_margin[MARGIN_TOP])), Size2( texture->width, texture->height ) ); _draw_textured_quad( // bottom left Rect2( Point2(p_rect.pos.x,p_rect.pos.y + p_rect.size.height - p_margin[MARGIN_BOTTOM]), Size2(p_margin[MARGIN_LEFT],p_margin[MARGIN_BOTTOM])), Rect2( Point2(region.pos.x, region.pos.y+region.size.height-p_margin[MARGIN_BOTTOM]), Size2(p_margin[MARGIN_LEFT],p_margin[MARGIN_BOTTOM])), Size2( texture->width, texture->height ) ); _draw_textured_quad( // bottom right Rect2( Point2( p_rect.pos.x + p_rect.size.width - p_margin[MARGIN_RIGHT], p_rect.pos.y + p_rect.size.height - p_margin[MARGIN_BOTTOM]), Size2(p_margin[MARGIN_RIGHT],p_margin[MARGIN_BOTTOM])), Rect2( Point2(region.pos.x+region.size.width-p_margin[MARGIN_RIGHT], region.pos.y+region.size.height-p_margin[MARGIN_BOTTOM]), Size2(p_margin[MARGIN_RIGHT],p_margin[MARGIN_BOTTOM])), Size2( texture->width, texture->height ) ); Rect2 rect_center( p_rect.pos+Point2( p_margin[MARGIN_LEFT], p_margin[MARGIN_TOP]), Size2( p_rect.size.width - p_margin[MARGIN_LEFT] - p_margin[MARGIN_RIGHT], p_rect.size.height - p_margin[MARGIN_TOP] - p_margin[MARGIN_BOTTOM] )); Rect2 src_center( Point2(region.pos.x+p_margin[MARGIN_LEFT], region.pos.y+p_margin[MARGIN_TOP]), Size2(region.size.width - p_margin[MARGIN_LEFT] - p_margin[MARGIN_RIGHT], region.size.height - p_margin[MARGIN_TOP] - p_margin[MARGIN_BOTTOM] )); _draw_textured_quad( // top Rect2( Point2(rect_center.pos.x,p_rect.pos.y),Size2(rect_center.size.width,p_margin[MARGIN_TOP])), Rect2( Point2(src_center.pos.x,region.pos.y), Size2(src_center.size.width,p_margin[MARGIN_TOP])), Size2( texture->width, texture->height ) ); _draw_textured_quad( // bottom Rect2( Point2(rect_center.pos.x,rect_center.pos.y+rect_center.size.height),Size2(rect_center.size.width,p_margin[MARGIN_BOTTOM])), Rect2( Point2(src_center.pos.x,src_center.pos.y+src_center.size.height), Size2(src_center.size.width,p_margin[MARGIN_BOTTOM])), Size2( texture->width, texture->height ) ); _draw_textured_quad( // left Rect2( Point2(p_rect.pos.x,rect_center.pos.y),Size2(p_margin[MARGIN_LEFT],rect_center.size.height)), Rect2( Point2(region.pos.x,region.pos.y+p_margin[MARGIN_TOP]), Size2(p_margin[MARGIN_LEFT],src_center.size.height)), Size2( texture->width, texture->height ) ); _draw_textured_quad( // right Rect2( Point2(rect_center.pos.x+rect_center.size.width,rect_center.pos.y),Size2(p_margin[MARGIN_RIGHT],rect_center.size.height)), Rect2( Point2(src_center.pos.x+src_center.size.width,region.pos.y+p_margin[MARGIN_TOP]), Size2(p_margin[MARGIN_RIGHT],src_center.size.height)), Size2( texture->width, texture->height ) ); if (p_draw_center) { _draw_textured_quad( rect_center, src_center, Size2( texture->width, texture->height )); } } void RasterizerIPhone::canvas_draw_primitive(const Vector& p_points, const Vector& p_colors,const Vector& p_uvs, RID p_texture) { ERR_FAIL_COND(p_points.size()<1); float verts[12]; float uvs[8]; float colors[16]; glColor4f(1, 1, 1, 1); int idx = 0; for(int i=0;itex_id ); } } _draw_primitive(p_points.size(),&verts[0],NULL,p_colors.size()?&colors[0]:NULL,p_uvs.size()?uvs:NULL); } /* FX */ RID RasterizerIPhone::fx_create() { return RID(); } void RasterizerIPhone::fx_get_effects(RID p_fx,List *p_effects) const { } void RasterizerIPhone::fx_set_active(RID p_fx,const String& p_effect, bool p_active) { } bool RasterizerIPhone::fx_is_active(RID p_fx,const String& p_effect) const { return false; } void RasterizerIPhone::fx_get_effect_params(RID p_fx,const String& p_effect,List *p_params) const { } Variant RasterizerIPhone::fx_get_effect_param(RID p_fx,const String& p_effect,const String& p_param) const { return Variant(); } void RasterizerIPhone::fx_set_effect_param(RID p_fx,const String& p_effect, const String& p_param, const Variant& p_pvalue) { } /*MISC*/ bool RasterizerIPhone::is_texture(const RID& p_rid) const { return texture_owner.owns(p_rid); } bool RasterizerIPhone::is_material(const RID& p_rid) const { return material_owner.owns(p_rid); } bool RasterizerIPhone::is_mesh(const RID& p_rid) const { return mesh_owner.owns(p_rid); } bool RasterizerIPhone::is_multimesh(const RID& p_rid) const { return false; } bool RasterizerIPhone::is_poly(const RID& p_rid) const { return poly_owner.owns(p_rid); } bool RasterizerIPhone::is_particles(const RID &p_beam) const { return false; } bool RasterizerIPhone::is_beam(const RID &p_beam) const { return false; } bool RasterizerIPhone::is_light(const RID& p_rid) const { return light_owner.owns(p_rid); } bool RasterizerIPhone::is_light_instance(const RID& p_rid) const { return light_instance_owner.owns(p_rid); } bool RasterizerIPhone::is_particles_instance(const RID& p_rid) const { return false; } bool RasterizerIPhone::is_skeleton(const RID& p_rid) const { return skeleton_owner.owns(p_rid); } bool RasterizerIPhone::is_fx(const RID& p_rid) const { return fx_owner.owns(p_rid); } bool RasterizerIPhone::is_shader(const RID& p_rid) const { return false; } void RasterizerIPhone::free(const RID& p_rid) const { if (texture_owner.owns(p_rid)) { // delete the texture Texture *texture = texture_owner.get(p_rid); glDeleteTextures( 1,&texture->tex_id ); texture_owner.free(p_rid); memdelete(texture); } else if (material_owner.owns(p_rid)) { Material *material = material_owner.get( p_rid ); ERR_FAIL_COND(!material); material_owner.free(p_rid); memdelete(material); } else if (mesh_owner.owns(p_rid)) { Mesh *mesh = mesh_owner.get(p_rid); ERR_FAIL_COND(!mesh); for (int i=0;isurfaces.size();i++) { Surface *surface = mesh->surfaces[i]; if (surface->array_local != 0) { memfree(surface->array_local); }; if (surface->index_array_local != 0) { memfree(surface->index_array_local); }; if (surface->vertex_id) glDeleteBuffers(1,&surface->vertex_id); if (surface->index_id) glDeleteBuffers(1,&surface->index_id); memdelete( surface ); }; mesh->surfaces.clear(); mesh_owner.free(p_rid); memdelete(mesh); } else if (skeleton_owner.owns(p_rid)) { Skeleton *skeleton = skeleton_owner.get( p_rid ); ERR_FAIL_COND(!skeleton) skeleton_owner.free(p_rid); memdelete(skeleton); } else if (light_owner.owns(p_rid)) { Light *light = light_owner.get( p_rid ); ERR_FAIL_COND(!light) light_owner.free(p_rid); memdelete(light); } else if (light_instance_owner.owns(p_rid)) { LightInstance *light_instance = light_instance_owner.get( p_rid ); ERR_FAIL_COND(!light_instance); light_instance_owner.free(p_rid); memdelete( light_instance ); } else if (fx_owner.owns(p_rid)) { FX *fx = fx_owner.get( p_rid ); ERR_FAIL_COND(!fx); fx_owner.free(p_rid); memdelete( fx ); }; } void RasterizerIPhone::init() { glEnable(GL_DEPTH_TEST); glDepthFunc(GL_LEQUAL); glFrontFace(GL_CW); glEnable(GL_TEXTURE_2D); } void RasterizerIPhone::finish() { } int RasterizerIPhone::get_render_info(VS::RenderInfo p_info) { return false; } RasterizerIPhone::RasterizerIPhone() { frame = 0; }; RasterizerIPhone::~RasterizerIPhone() { }; #endif