#include "lightmapper_rd.h" #include "core/math/geometry.h" #include "core/project_settings.h" #include "lm_blendseams.glsl.gen.h" #include "lm_compute.glsl.gen.h" #include "lm_raster.glsl.gen.h" #include "servers/rendering/rendering_device_binds.h" //uncomment this if you want to see textures from all the process saved //#define DEBUG_TEXTURES void LightmapperRD::add_mesh(const MeshData &p_mesh) { ERR_FAIL_COND(p_mesh.albedo_on_uv2.is_null() || p_mesh.albedo_on_uv2->empty()); ERR_FAIL_COND(p_mesh.emission_on_uv2.is_null() || p_mesh.emission_on_uv2->empty()); ERR_FAIL_COND(p_mesh.albedo_on_uv2->get_width() != p_mesh.emission_on_uv2->get_width()); ERR_FAIL_COND(p_mesh.albedo_on_uv2->get_height() != p_mesh.emission_on_uv2->get_height()); ERR_FAIL_COND(p_mesh.points.size() == 0); MeshInstance mi; mi.data = p_mesh; mesh_instances.push_back(mi); } void LightmapperRD::add_directional_light(bool p_static, const Vector3 &p_direction, const Color &p_color, float p_energy, float p_angular_distance) { Light l; l.type = LIGHT_TYPE_DIRECTIONAL; l.direction[0] = p_direction.x; l.direction[1] = p_direction.y; l.direction[2] = p_direction.z; l.color[0] = p_color.r; l.color[1] = p_color.g; l.color[2] = p_color.b; l.energy = p_energy; l.static_bake = p_static; l.size = p_angular_distance; lights.push_back(l); } void LightmapperRD::add_omni_light(bool p_static, const Vector3 &p_position, const Color &p_color, float p_energy, float p_range, float p_attenuation, float p_size) { Light l; l.type = LIGHT_TYPE_OMNI; l.position[0] = p_position.x; l.position[1] = p_position.y; l.position[2] = p_position.z; l.range = p_range; l.attenuation = p_attenuation; l.color[0] = p_color.r; l.color[1] = p_color.g; l.color[2] = p_color.b; l.energy = p_energy; l.static_bake = p_static; l.size = p_size; lights.push_back(l); } void LightmapperRD::add_spot_light(bool p_static, const Vector3 &p_position, const Vector3 p_direction, const Color &p_color, float p_energy, float p_range, float p_attenuation, float p_spot_angle, float p_spot_attenuation, float p_size) { Light l; l.type = LIGHT_TYPE_SPOT; l.position[0] = p_position.x; l.position[1] = p_position.y; l.position[2] = p_position.z; l.direction[0] = p_direction.x; l.direction[1] = p_direction.y; l.direction[2] = p_direction.z; l.range = p_range; l.attenuation = p_attenuation; l.spot_angle = Math::deg2rad(p_spot_angle); l.spot_attenuation = p_spot_attenuation; l.color[0] = p_color.r; l.color[1] = p_color.g; l.color[2] = p_color.b; l.energy = p_energy; l.static_bake = p_static; l.size = p_size; lights.push_back(l); } void LightmapperRD::add_probe(const Vector3 &p_position) { Probe probe; probe.position[0] = p_position.x; probe.position[1] = p_position.y; probe.position[2] = p_position.z; probe.position[3] = 0; probe_positions.push_back(probe); } void LightmapperRD::_plot_triangle_into_triangle_index_list(int p_size, const Vector3i &p_ofs, const AABB &p_bounds, const Vector3 p_points[3], uint32_t p_triangle_index, LocalVector &triangles, uint32_t p_grid_size) { int half_size = p_size / 2; for (int i = 0; i < 8; i++) { AABB aabb = p_bounds; aabb.size *= 0.5; Vector3i n = p_ofs; if (i & 1) { aabb.position.x += aabb.size.x; n.x += half_size; } if (i & 2) { aabb.position.y += aabb.size.y; n.y += half_size; } if (i & 4) { aabb.position.z += aabb.size.z; n.z += half_size; } { Vector3 qsize = aabb.size * 0.5; //quarter size, for fast aabb test if (!Geometry::triangle_box_overlap(aabb.position + qsize, qsize, p_points)) { //does not fit in child, go on continue; } } if (half_size == 1) { //got to the end TriangleSort ts; ts.cell_index = n.x + (n.y * p_grid_size) + (n.z * p_grid_size * p_grid_size); ts.triangle_index = p_triangle_index; triangles.push_back(ts); } else { _plot_triangle_into_triangle_index_list(half_size, n, aabb, p_points, p_triangle_index, triangles, p_grid_size); } } } Lightmapper::BakeError LightmapperRD::_blit_meshes_into_atlas(int p_max_texture_size, Vector> &albedo_images, Vector> &emission_images, AABB &bounds, Size2i &atlas_size, int &atlas_slices, BakeStepFunc p_step_function, void *p_bake_userdata) { Vector sizes; for (int m_i = 0; m_i < mesh_instances.size(); m_i++) { MeshInstance &mi = mesh_instances.write[m_i]; Size2i s = Size2i(mi.data.albedo_on_uv2->get_width(), mi.data.albedo_on_uv2->get_height()); sizes.push_back(s); atlas_size.width = MAX(atlas_size.width, s.width); atlas_size.height = MAX(atlas_size.height, s.height); } int max = nearest_power_of_2_templated(atlas_size.width); max = MAX(max, nearest_power_of_2_templated(atlas_size.height)); if (max > p_max_texture_size) { return BAKE_ERROR_LIGHTMAP_TOO_SMALL; } if (p_step_function) { p_step_function(0.1, TTR("Determining optimal atlas size"), p_bake_userdata, true); } atlas_size = Size2i(max, max); Size2i best_atlas_size; int best_atlas_slices = 0; int best_atlas_memory = 0x7FFFFFFF; Vector best_atlas_offsets; //determine best texture array atlas size by bruteforce fitting while (atlas_size.x <= p_max_texture_size && atlas_size.y <= p_max_texture_size) { Vector source_sizes = sizes; Vector source_indices; source_indices.resize(source_sizes.size()); for (int i = 0; i < source_indices.size(); i++) { source_indices.write[i] = i; } Vector atlas_offsets; atlas_offsets.resize(source_sizes.size()); int slices = 0; while (source_sizes.size() > 0) { Vector offsets = Geometry::partial_pack_rects(source_sizes, atlas_size); Vector new_indices; Vector new_sources; for (int i = 0; i < offsets.size(); i++) { Vector3i ofs = offsets[i]; int sidx = source_indices[i]; if (ofs.z > 0) { //valid ofs.z = slices; atlas_offsets.write[sidx] = ofs; } else { new_indices.push_back(sidx); new_sources.push_back(source_sizes[i]); } } source_sizes = new_sources; source_indices = new_indices; slices++; } int mem_used = atlas_size.x * atlas_size.y * slices; if (mem_used < best_atlas_memory) { best_atlas_size = atlas_size; best_atlas_offsets = atlas_offsets; best_atlas_slices = slices; best_atlas_memory = mem_used; } if (atlas_size.width == atlas_size.height) { atlas_size.width *= 2; } else { atlas_size.height *= 2; } } atlas_size = best_atlas_size; atlas_slices = best_atlas_slices; // apply the offsets and slice to all images, and also blit albedo and emission albedo_images.resize(atlas_slices); emission_images.resize(atlas_slices); if (p_step_function) { p_step_function(0.2, TTR("Blitting albedo and emission"), p_bake_userdata, true); } for (int i = 0; i < atlas_slices; i++) { Ref albedo; albedo.instance(); albedo->create(atlas_size.width, atlas_size.height, false, Image::FORMAT_RGBA8); albedo->set_as_black(); albedo_images.write[i] = albedo; Ref emission; emission.instance(); emission->create(atlas_size.width, atlas_size.height, false, Image::FORMAT_RGBAH); emission->set_as_black(); emission_images.write[i] = emission; } //assign uv positions for (int m_i = 0; m_i < mesh_instances.size(); m_i++) { MeshInstance &mi = mesh_instances.write[m_i]; mi.offset.x = best_atlas_offsets[m_i].x; mi.offset.y = best_atlas_offsets[m_i].y; mi.slice = best_atlas_offsets[m_i].z; albedo_images.write[mi.slice]->blit_rect(mi.data.albedo_on_uv2, Rect2(Vector2(), Size2i(mi.data.albedo_on_uv2->get_width(), mi.data.albedo_on_uv2->get_height())), mi.offset); emission_images.write[mi.slice]->blit_rect(mi.data.emission_on_uv2, Rect2(Vector2(), Size2i(mi.data.emission_on_uv2->get_width(), mi.data.emission_on_uv2->get_height())), mi.offset); } return BAKE_OK; } void LightmapperRD::_create_acceleration_structures(RenderingDevice *rd, Size2i atlas_size, int atlas_slices, AABB &bounds, int grid_size, Vector &probe_positions, GenerateProbes p_generate_probes, Vector &slice_triangle_count, Vector &slice_seam_count, RID &vertex_buffer, RID &triangle_buffer, RID &box_buffer, RID &lights_buffer, RID &triangle_cell_indices_buffer, RID &probe_positions_buffer, RID &grid_texture, RID &grid_texture_sdf, RID &seams_buffer, BakeStepFunc p_step_function, void *p_bake_userdata) { HashMap vertex_map; //fill triangles array and vertex array LocalVector triangles; LocalVector vertex_array; LocalVector box_array; LocalVector seams; slice_triangle_count.resize(atlas_slices); slice_seam_count.resize(atlas_slices); for (int i = 0; i < atlas_slices; i++) { slice_triangle_count.write[i] = 0; slice_seam_count.write[i] = 0; } bounds = AABB(); for (int m_i = 0; m_i < mesh_instances.size(); m_i++) { if (p_step_function) { float p = float(m_i + 1) / mesh_instances.size() * 0.1; p_step_function(0.3 + p, vformat(TTR("Plotting mesh into acceleration structure %d/%d"), m_i + 1, mesh_instances.size()), p_bake_userdata, false); } HashMap edges; MeshInstance &mi = mesh_instances.write[m_i]; Vector2 uv_scale = Vector2(mi.data.albedo_on_uv2->get_width(), mi.data.albedo_on_uv2->get_height()) / Vector2(atlas_size); Vector2 uv_offset = Vector2(mi.offset) / Vector2(atlas_size); if (m_i == 0) { bounds.position = mi.data.points[0]; } for (int i = 0; i < mi.data.points.size(); i += 3) { Vector3 vtxs[3] = { mi.data.points[i + 0], mi.data.points[i + 1], mi.data.points[i + 2] }; Vector2 uvs[3] = { mi.data.uv2[i + 0] * uv_scale + uv_offset, mi.data.uv2[i + 1] * uv_scale + uv_offset, mi.data.uv2[i + 2] * uv_scale + uv_offset }; Vector3 normal[3] = { mi.data.normal[i + 0], mi.data.normal[i + 1], mi.data.normal[i + 2] }; AABB taabb; Triangle t; t.slice = mi.slice; for (int k = 0; k < 3; k++) { bounds.expand_to(vtxs[k]); Vertex v; v.position[0] = vtxs[k].x; v.position[1] = vtxs[k].y; v.position[2] = vtxs[k].z; v.uv[0] = uvs[k].x; v.uv[1] = uvs[k].y; v.normal_xy[0] = normal[k].x; v.normal_xy[1] = normal[k].y; v.normal_z = normal[k].z; uint32_t *indexptr = vertex_map.getptr(v); if (indexptr) { t.indices[k] = *indexptr; } else { uint32_t new_index = vertex_map.size(); t.indices[k] = new_index; vertex_map[v] = new_index; vertex_array.push_back(v); } if (k == 0) { taabb.position = vtxs[k]; } else { taabb.expand_to(vtxs[k]); } } //compute seams that will need to be blended later for (int k = 0; k < 3; k++) { int n = (k + 1) % 3; Edge edge(vtxs[k], vtxs[n], normal[k], normal[n]); Vector2i edge_indices(t.indices[k], t.indices[n]); EdgeUV2 uv2(uvs[k], uvs[n], edge_indices); if (edge.b == edge.a) { continue; //degenerate, somehow } if (edge.b < edge.a) { SWAP(edge.a, edge.b); SWAP(edge.na, edge.nb); SWAP(uv2.a, uv2.b); SWAP(edge_indices.x, edge_indices.y); } EdgeUV2 *euv2 = edges.getptr(edge); if (!euv2) { edges[edge] = uv2; } else { if (*euv2 == uv2) { continue; // seam shared UV space, no need to blend } if (euv2->seam_found) { continue; //bad geometry } Seam seam; seam.a = edge_indices; seam.b = euv2->indices; seam.slice = mi.slice; seams.push_back(seam); slice_seam_count.write[mi.slice]++; euv2->seam_found = true; } } Box box; box.min_bounds[0] = taabb.position.x; box.min_bounds[1] = taabb.position.y; box.min_bounds[2] = taabb.position.z; box.max_bounds[0] = taabb.position.x + MAX(taabb.size.x, 0.0001); box.max_bounds[1] = taabb.position.y + MAX(taabb.size.y, 0.0001); box.max_bounds[2] = taabb.position.z + MAX(taabb.size.z, 0.0001); box.pad0 = box.pad1 = 0; //make valgrind not complain box_array.push_back(box); triangles.push_back(t); slice_triangle_count.write[t.slice]++; } } //also consider probe positions for bounds for (int i = 0; i < probe_positions.size(); i++) { Vector3 pp(probe_positions[i].position[0], probe_positions[i].position[1], probe_positions[i].position[2]); bounds.expand_to(pp); } bounds.grow_by(0.1); //grow a bit to avoid numerical error triangles.sort(); //sort by slice seams.sort(); if (p_step_function) { p_step_function(0.4, TTR("Optimizing acceleration structure"), p_bake_userdata, true); } //fill list of triangles in grid LocalVector triangle_sort; for (uint32_t i = 0; i < triangles.size(); i++) { const Triangle &t = triangles[i]; Vector3 face[3] = { Vector3(vertex_array[t.indices[0]].position[0], vertex_array[t.indices[0]].position[1], vertex_array[t.indices[0]].position[2]), Vector3(vertex_array[t.indices[1]].position[0], vertex_array[t.indices[1]].position[1], vertex_array[t.indices[1]].position[2]), Vector3(vertex_array[t.indices[2]].position[0], vertex_array[t.indices[2]].position[1], vertex_array[t.indices[2]].position[2]) }; _plot_triangle_into_triangle_index_list(grid_size, Vector3i(), bounds, face, i, triangle_sort, grid_size); } //sort it triangle_sort.sort(); Vector triangle_indices; triangle_indices.resize(triangle_sort.size()); Vector grid_indices; grid_indices.resize(grid_size * grid_size * grid_size * 2); zeromem(grid_indices.ptrw(), grid_indices.size() * sizeof(uint32_t)); Vector solid; solid.resize(grid_size * grid_size * grid_size); zeromem(solid.ptrw(), solid.size() * sizeof(bool)); { uint32_t *tiw = triangle_indices.ptrw(); uint32_t last_cell = 0xFFFFFFFF; uint32_t *giw = grid_indices.ptrw(); bool *solidw = solid.ptrw(); for (uint32_t i = 0; i < triangle_sort.size(); i++) { uint32_t cell = triangle_sort[i].cell_index; if (cell != last_cell) { //cell changed, update pointer to indices giw[cell * 2 + 1] = i; last_cell = cell; solidw[cell] = true; } tiw[i] = triangle_sort[i].triangle_index; giw[cell * 2]++; //update counter last_cell = cell; } } #if 0 for (int i = 0; i < grid_size; i++) { for (int j = 0; j < grid_size; j++) { for (int k = 0; k < grid_size; k++) { uint32_t index = i * (grid_size * grid_size) + j * grid_size + k; grid_indices.write[index * 2] = float(i) / grid_size * 255; grid_indices.write[index * 2 + 1] = float(j) / grid_size * 255; } } } #endif #if 0 for (int i = 0; i < grid_size; i++) { Vector grid_usage; grid_usage.resize(grid_size * grid_size); for (int j = 0; j < grid_usage.size(); j++) { uint32_t ofs = i * grid_size * grid_size + j; uint32_t count = grid_indices[ofs * 2]; grid_usage.write[j] = count > 0 ? 255 : 0; } Ref img; img.instance(); img->create(grid_size, grid_size, false, Image::FORMAT_L8, grid_usage); img->save_png("res://grid_layer_" + itos(1000 + i).substr(1, 3) + ".png"); } #endif if (p_step_function) { p_step_function(0.45, TTR("Generating Signed Distance Field"), p_bake_userdata, true); } //generate SDF for raytracing Vector euclidean_pos = Geometry::generate_edf(solid, Vector3i(grid_size, grid_size, grid_size), false); Vector euclidean_neg = Geometry::generate_edf(solid, Vector3i(grid_size, grid_size, grid_size), true); Vector sdf8 = Geometry::generate_sdf8(euclidean_pos, euclidean_neg); /*****************************/ /*** CREATE GPU STRUCTURES ***/ /*****************************/ lights.sort(); Vector seam_buffer_vec; seam_buffer_vec.resize(seams.size() * 2); for (uint32_t i = 0; i < seams.size(); i++) { seam_buffer_vec.write[i * 2 + 0] = seams[i].a; seam_buffer_vec.write[i * 2 + 1] = seams[i].b; } { //buffers Vector vb = vertex_array.to_byte_array(); vertex_buffer = rd->storage_buffer_create(vb.size(), vb); Vector tb = triangles.to_byte_array(); triangle_buffer = rd->storage_buffer_create(tb.size(), tb); Vector bb = box_array.to_byte_array(); box_buffer = rd->storage_buffer_create(bb.size(), bb); Vector tib = triangle_indices.to_byte_array(); triangle_cell_indices_buffer = rd->storage_buffer_create(tib.size(), tib); Vector lb = lights.to_byte_array(); if (lb.size() == 0) { lb.resize(sizeof(Light)); //even if no lights, the buffer must exist } lights_buffer = rd->storage_buffer_create(lb.size(), lb); Vector sb = seam_buffer_vec.to_byte_array(); if (sb.size() == 0) { sb.resize(sizeof(Vector2i) * 2); //even if no seams, the buffer must exist } seams_buffer = rd->storage_buffer_create(sb.size(), sb); Vector pb = probe_positions.to_byte_array(); if (pb.size() == 0) { pb.resize(sizeof(Probe)); } probe_positions_buffer = rd->storage_buffer_create(pb.size(), pb); } { //grid RD::TextureFormat tf; tf.width = grid_size; tf.height = grid_size; tf.depth = grid_size; tf.type = RD::TEXTURE_TYPE_3D; tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT; Vector> texdata; texdata.resize(1); //grid and indices tf.format = RD::DATA_FORMAT_R32G32_UINT; texdata.write[0] = grid_indices.to_byte_array(); grid_texture = rd->texture_create(tf, RD::TextureView(), texdata); //sdf tf.format = RD::DATA_FORMAT_R8_SNORM; texdata.write[0] = sdf8.to_byte_array(); grid_texture_sdf = rd->texture_create(tf, RD::TextureView(), texdata); } } void LightmapperRD::_raster_geometry(RenderingDevice *rd, Size2i atlas_size, int atlas_slices, int grid_size, AABB bounds, float p_bias, Vector slice_triangle_count, RID position_tex, RID unocclude_tex, RID normal_tex, RID raster_depth_buffer, RID rasterize_shader, RID raster_base_uniform) { Vector framebuffers; for (int i = 0; i < atlas_slices; i++) { RID slice_pos_tex = rd->texture_create_shared_from_slice(RD::TextureView(), position_tex, i, 0); RID slice_unoc_tex = rd->texture_create_shared_from_slice(RD::TextureView(), unocclude_tex, i, 0); RID slice_norm_tex = rd->texture_create_shared_from_slice(RD::TextureView(), normal_tex, i, 0); Vector fb; fb.push_back(slice_pos_tex); fb.push_back(slice_norm_tex); fb.push_back(slice_unoc_tex); fb.push_back(raster_depth_buffer); framebuffers.push_back(rd->framebuffer_create(fb)); } RD::PipelineDepthStencilState ds; ds.enable_depth_test = true; ds.enable_depth_write = true; ds.depth_compare_operator = RD::COMPARE_OP_LESS; //so it does render same pixel twice RID raster_pipeline = rd->render_pipeline_create(rasterize_shader, rd->framebuffer_get_format(framebuffers[0]), RD::INVALID_FORMAT_ID, RD::RENDER_PRIMITIVE_TRIANGLES, RD::PipelineRasterizationState(), RD::PipelineMultisampleState(), ds, RD::PipelineColorBlendState::create_disabled(3), 0); RID raster_pipeline_wire; { RD::PipelineRasterizationState rw; rw.wireframe = true; raster_pipeline_wire = rd->render_pipeline_create(rasterize_shader, rd->framebuffer_get_format(framebuffers[0]), RD::INVALID_FORMAT_ID, RD::RENDER_PRIMITIVE_TRIANGLES, rw, RD::PipelineMultisampleState(), ds, RD::PipelineColorBlendState::create_disabled(3), 0); } uint32_t triangle_offset = 0; Vector clear_colors; clear_colors.push_back(Color(0, 0, 0, 0)); clear_colors.push_back(Color(0, 0, 0, 0)); clear_colors.push_back(Color(0, 0, 0, 0)); for (int i = 0; i < atlas_slices; i++) { RasterPushConstant raster_push_constant; raster_push_constant.atlas_size[0] = atlas_size.x; raster_push_constant.atlas_size[1] = atlas_size.y; raster_push_constant.base_triangle = triangle_offset; raster_push_constant.to_cell_offset[0] = bounds.position.x; raster_push_constant.to_cell_offset[1] = bounds.position.y; raster_push_constant.to_cell_offset[2] = bounds.position.z; raster_push_constant.bias = p_bias; raster_push_constant.to_cell_size[0] = (1.0 / bounds.size.x) * float(grid_size); raster_push_constant.to_cell_size[1] = (1.0 / bounds.size.y) * float(grid_size); raster_push_constant.to_cell_size[2] = (1.0 / bounds.size.z) * float(grid_size); raster_push_constant.grid_size[0] = grid_size; raster_push_constant.grid_size[1] = grid_size; raster_push_constant.grid_size[2] = grid_size; raster_push_constant.uv_offset[0] = 0; raster_push_constant.uv_offset[1] = 0; RD::DrawListID draw_list = rd->draw_list_begin(framebuffers[i], RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_DISCARD, clear_colors); //draw opaque rd->draw_list_bind_render_pipeline(draw_list, raster_pipeline); rd->draw_list_bind_uniform_set(draw_list, raster_base_uniform, 0); rd->draw_list_set_push_constant(draw_list, &raster_push_constant, sizeof(RasterPushConstant)); rd->draw_list_draw(draw_list, false, 1, slice_triangle_count[i] * 3); //draw wire rd->draw_list_bind_render_pipeline(draw_list, raster_pipeline_wire); rd->draw_list_bind_uniform_set(draw_list, raster_base_uniform, 0); rd->draw_list_set_push_constant(draw_list, &raster_push_constant, sizeof(RasterPushConstant)); rd->draw_list_draw(draw_list, false, 1, slice_triangle_count[i] * 3); rd->draw_list_end(); triangle_offset += slice_triangle_count[i]; } } LightmapperRD::BakeError LightmapperRD::bake(BakeQuality p_quality, bool p_use_denoiser, int p_bounces, float p_bias, int p_max_texture_size, bool p_bake_sh, GenerateProbes p_generate_probes, const Ref &p_environment_panorama, const Basis &p_environment_transform, BakeStepFunc p_step_function, void *p_bake_userdata) { if (p_step_function) { p_step_function(0.0, TTR("Begin Bake"), p_bake_userdata, true); } bake_textures.clear(); int grid_size = 128; /* STEP 1: Fetch material textures and compute the bounds */ AABB bounds; Size2i atlas_size; int atlas_slices; Vector> albedo_images; Vector> emission_images; BakeError bake_error = _blit_meshes_into_atlas(p_max_texture_size, albedo_images, emission_images, bounds, atlas_size, atlas_slices, p_step_function, p_bake_userdata); if (bake_error != BAKE_OK) { return bake_error; } #ifdef DEBUG_TEXTURES for (int i = 0; i < atlas_slices; i++) { albedo_images[i]->save_png("res://0_albedo_" + itos(i) + ".png"); emission_images[i]->save_png("res://0_emission_" + itos(i) + ".png"); } #endif RenderingDevice *rd = RenderingDevice::get_singleton()->create_local_device(); RID albedo_array_tex; RID emission_array_tex; RID normal_tex; RID position_tex; RID unocclude_tex; RID light_source_tex; RID light_dest_tex; RID light_accum_tex; RID light_accum_tex2; RID light_primary_dynamic_tex; RID light_environment_tex; #define FREE_TEXTURES \ rd->free(albedo_array_tex); \ rd->free(emission_array_tex); \ rd->free(normal_tex); \ rd->free(position_tex); \ rd->free(unocclude_tex); \ rd->free(light_source_tex); \ rd->free(light_accum_tex2); \ rd->free(light_accum_tex); \ rd->free(light_primary_dynamic_tex); \ rd->free(light_environment_tex); { // create all textures Vector> albedo_data; Vector> emission_data; for (int i = 0; i < atlas_slices; i++) { albedo_data.push_back(albedo_images[i]->get_data()); emission_data.push_back(emission_images[i]->get_data()); } RD::TextureFormat tf; tf.width = atlas_size.width; tf.height = atlas_size.height; tf.array_layers = atlas_slices; tf.type = RD::TEXTURE_TYPE_2D_ARRAY; tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT; tf.format = RD::DATA_FORMAT_R8G8B8A8_UNORM; albedo_array_tex = rd->texture_create(tf, RD::TextureView(), albedo_data); tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT; emission_array_tex = rd->texture_create(tf, RD::TextureView(), emission_data); //this will be rastered to tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT | RD::TEXTURE_USAGE_STORAGE_BIT; normal_tex = rd->texture_create(tf, RD::TextureView()); tf.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT; position_tex = rd->texture_create(tf, RD::TextureView()); unocclude_tex = rd->texture_create(tf, RD::TextureView()); tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT; tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT; light_source_tex = rd->texture_create(tf, RD::TextureView()); rd->texture_clear(light_source_tex, Color(0, 0, 0, 0), 0, 1, 0, atlas_slices); light_primary_dynamic_tex = rd->texture_create(tf, RD::TextureView()); rd->texture_clear(light_primary_dynamic_tex, Color(0, 0, 0, 0), 0, 1, 0, atlas_slices); if (p_bake_sh) { tf.array_layers *= 4; } light_accum_tex = rd->texture_create(tf, RD::TextureView()); rd->texture_clear(light_accum_tex, Color(0, 0, 0, 0), 0, 1, 0, tf.array_layers); light_dest_tex = rd->texture_create(tf, RD::TextureView()); rd->texture_clear(light_dest_tex, Color(0, 0, 0, 0), 0, 1, 0, tf.array_layers); light_accum_tex2 = light_dest_tex; //env { Ref panorama_tex; if (p_environment_panorama.is_valid()) { panorama_tex = p_environment_panorama; panorama_tex->convert(Image::FORMAT_RGBAF); } else { panorama_tex.instance(); panorama_tex->create(8, 8, false, Image::FORMAT_RGBAF); for (int i = 0; i < 8; i++) { for (int j = 0; j < 8; j++) { panorama_tex->set_pixel(i, j, Color(0, 0, 0, 1)); } } } RD::TextureFormat tfp; tfp.width = panorama_tex->get_width(); tfp.height = panorama_tex->get_height(); tfp.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT; tfp.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT; Vector> tdata; tdata.push_back(panorama_tex->get_data()); light_environment_tex = rd->texture_create(tfp, RD::TextureView(), tdata); #ifdef DEBUG_TEXTURES panorama_tex->convert(Image::FORMAT_RGB8); panorama_tex->save_png("res://0_panorama.png"); #endif } } /* STEP 2: create the acceleration structure for the GPU*/ Vector slice_triangle_count; RID vertex_buffer; RID triangle_buffer; RID box_buffer; RID lights_buffer; RID triangle_cell_indices_buffer; RID grid_texture; RID grid_texture_sdf; RID seams_buffer; RID probe_positions_buffer; Vector slice_seam_count; #define FREE_BUFFERS \ rd->free(vertex_buffer); \ rd->free(triangle_buffer); \ rd->free(box_buffer); \ rd->free(lights_buffer); \ rd->free(triangle_cell_indices_buffer); \ rd->free(grid_texture); \ rd->free(grid_texture_sdf); \ rd->free(seams_buffer); \ rd->free(probe_positions_buffer); _create_acceleration_structures(rd, atlas_size, atlas_slices, bounds, grid_size, probe_positions, p_generate_probes, slice_triangle_count, slice_seam_count, vertex_buffer, triangle_buffer, box_buffer, lights_buffer, triangle_cell_indices_buffer, probe_positions_buffer, grid_texture, grid_texture_sdf, seams_buffer, p_step_function, p_bake_userdata); if (p_step_function) { p_step_function(0.47, TTR("Preparing shaders"), p_bake_userdata, true); } //shaders Ref raster_shader; raster_shader.instance(); Error err = raster_shader->parse_versions_from_text(lm_raster_shader_glsl); if (err != OK) { raster_shader->print_errors("raster_shader"); FREE_TEXTURES FREE_BUFFERS memdelete(rd); } ERR_FAIL_COND_V(err != OK, BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES); RID rasterize_shader = rd->shader_create_from_bytecode(raster_shader->get_bytecode()); ERR_FAIL_COND_V(rasterize_shader.is_null(), BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES); //this is a bug check, though, should not happen RID sampler; { RD::SamplerState s; s.mag_filter = RD::SAMPLER_FILTER_LINEAR; s.min_filter = RD::SAMPLER_FILTER_LINEAR; s.max_lod = 0; sampler = rd->sampler_create(s); } Vector base_uniforms; { { RD::Uniform u; u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u.binding = 1; u.ids.push_back(vertex_buffer); base_uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u.binding = 2; u.ids.push_back(triangle_buffer); base_uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u.binding = 3; u.ids.push_back(box_buffer); base_uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u.binding = 4; u.ids.push_back(triangle_cell_indices_buffer); base_uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u.binding = 5; u.ids.push_back(lights_buffer); base_uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u.binding = 6; u.ids.push_back(seams_buffer); base_uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u.binding = 7; u.ids.push_back(probe_positions_buffer); base_uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 8; u.ids.push_back(grid_texture); base_uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 9; u.ids.push_back(grid_texture_sdf); base_uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 10; u.ids.push_back(albedo_array_tex); base_uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 11; u.ids.push_back(emission_array_tex); base_uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_SAMPLER; u.binding = 12; u.ids.push_back(sampler); base_uniforms.push_back(u); } } RID raster_base_uniform = rd->uniform_set_create(base_uniforms, rasterize_shader, 0); RID raster_depth_buffer; { RD::TextureFormat tf; tf.width = atlas_size.width; tf.height = atlas_size.height; tf.depth = 1; tf.type = RD::TEXTURE_TYPE_2D; tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT; tf.format = RD::DATA_FORMAT_D32_SFLOAT; raster_depth_buffer = rd->texture_create(tf, RD::TextureView()); } rd->submit(); rd->sync(); /* STEP 3: Raster the geometry to UV2 coords in the atlas textures GPU*/ _raster_geometry(rd, atlas_size, atlas_slices, grid_size, bounds, p_bias, slice_triangle_count, position_tex, unocclude_tex, normal_tex, raster_depth_buffer, rasterize_shader, raster_base_uniform); #ifdef DEBUG_TEXTURES for (int i = 0; i < atlas_slices; i++) { Vector s = rd->texture_get_data(position_tex, i); Ref img; img.instance(); img->create(atlas_size.width, atlas_size.height, false, Image::FORMAT_RGBAF, s); img->convert(Image::FORMAT_RGBA8); img->save_png("res://1_position_" + itos(i) + ".png"); s = rd->texture_get_data(normal_tex, i); img->create(atlas_size.width, atlas_size.height, false, Image::FORMAT_RGBAH, s); img->convert(Image::FORMAT_RGBA8); img->save_png("res://1_normal_" + itos(i) + ".png"); } #endif #define FREE_RASTER_RESOURCES \ rd->free(rasterize_shader); \ rd->free(sampler); \ rd->free(raster_depth_buffer); /* Plot direct light */ Ref compute_shader; compute_shader.instance(); err = compute_shader->parse_versions_from_text(lm_compute_shader_glsl, p_bake_sh ? "\n#define USE_SH_LIGHTMAPS\n" : ""); if (err != OK) { FREE_TEXTURES FREE_BUFFERS FREE_RASTER_RESOURCES memdelete(rd); compute_shader->print_errors("compute_shader"); } ERR_FAIL_COND_V(err != OK, BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES); //unoccluder RID compute_shader_unocclude = rd->shader_create_from_bytecode(compute_shader->get_bytecode("unocclude")); ERR_FAIL_COND_V(compute_shader_unocclude.is_null(), BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES); // internal check, should not happen RID compute_shader_unocclude_pipeline = rd->compute_pipeline_create(compute_shader_unocclude); //direct light RID compute_shader_primary = rd->shader_create_from_bytecode(compute_shader->get_bytecode("primary")); ERR_FAIL_COND_V(compute_shader_primary.is_null(), BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES); // internal check, should not happen RID compute_shader_primary_pipeline = rd->compute_pipeline_create(compute_shader_primary); //indirect light RID compute_shader_secondary = rd->shader_create_from_bytecode(compute_shader->get_bytecode("secondary")); ERR_FAIL_COND_V(compute_shader_secondary.is_null(), BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES); //internal check, should not happen RID compute_shader_secondary_pipeline = rd->compute_pipeline_create(compute_shader_secondary); //dilate RID compute_shader_dilate = rd->shader_create_from_bytecode(compute_shader->get_bytecode("dilate")); ERR_FAIL_COND_V(compute_shader_dilate.is_null(), BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES); //internal check, should not happen RID compute_shader_dilate_pipeline = rd->compute_pipeline_create(compute_shader_dilate); //dilate RID compute_shader_light_probes = rd->shader_create_from_bytecode(compute_shader->get_bytecode("light_probes")); ERR_FAIL_COND_V(compute_shader_light_probes.is_null(), BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES); //internal check, should not happen RID compute_shader_light_probes_pipeline = rd->compute_pipeline_create(compute_shader_light_probes); RID compute_base_uniform_set = rd->uniform_set_create(base_uniforms, compute_shader_primary, 0); #define FREE_COMPUTE_RESOURCES \ rd->free(compute_shader_unocclude); \ rd->free(compute_shader_primary); \ rd->free(compute_shader_secondary); \ rd->free(compute_shader_dilate); \ rd->free(compute_shader_light_probes); PushConstant push_constant; { //set defaults push_constant.atlas_size[0] = atlas_size.width; push_constant.atlas_size[1] = atlas_size.height; push_constant.world_size[0] = bounds.size.x; push_constant.world_size[1] = bounds.size.y; push_constant.world_size[2] = bounds.size.z; push_constant.to_cell_offset[0] = bounds.position.x; push_constant.to_cell_offset[1] = bounds.position.y; push_constant.to_cell_offset[2] = bounds.position.z; push_constant.bias = p_bias; push_constant.to_cell_size[0] = (1.0 / bounds.size.x) * float(grid_size); push_constant.to_cell_size[1] = (1.0 / bounds.size.y) * float(grid_size); push_constant.to_cell_size[2] = (1.0 / bounds.size.z) * float(grid_size); push_constant.light_count = lights.size(); push_constant.grid_size = grid_size; push_constant.atlas_slice = 0; push_constant.region_ofs[0] = 0; push_constant.region_ofs[1] = 0; push_constant.environment_xform[0] = p_environment_transform.elements[0][0]; push_constant.environment_xform[1] = p_environment_transform.elements[1][0]; push_constant.environment_xform[2] = p_environment_transform.elements[2][0]; push_constant.environment_xform[3] = 0; push_constant.environment_xform[4] = p_environment_transform.elements[0][1]; push_constant.environment_xform[5] = p_environment_transform.elements[1][1]; push_constant.environment_xform[6] = p_environment_transform.elements[2][1]; push_constant.environment_xform[7] = 0; push_constant.environment_xform[8] = p_environment_transform.elements[0][2]; push_constant.environment_xform[9] = p_environment_transform.elements[1][2]; push_constant.environment_xform[10] = p_environment_transform.elements[2][2]; push_constant.environment_xform[11] = 0; } Vector3i group_size((atlas_size.x - 1) / 8 + 1, (atlas_size.y - 1) / 8 + 1, 1); rd->submit(); rd->sync(); if (p_step_function) { p_step_function(0.49, TTR("Un-occluding geometry"), p_bake_userdata, true); } /* UNOCCLUDE */ { Vector uniforms; { { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 0; u.ids.push_back(position_tex); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 1; u.ids.push_back(unocclude_tex); //will be unused uniforms.push_back(u); } } RID unocclude_uniform_set = rd->uniform_set_create(uniforms, compute_shader_unocclude, 1); RD::ComputeListID compute_list = rd->compute_list_begin(); rd->compute_list_bind_compute_pipeline(compute_list, compute_shader_unocclude_pipeline); rd->compute_list_bind_uniform_set(compute_list, compute_base_uniform_set, 0); rd->compute_list_bind_uniform_set(compute_list, unocclude_uniform_set, 1); for (int i = 0; i < atlas_slices; i++) { push_constant.atlas_slice = i; rd->compute_list_set_push_constant(compute_list, &push_constant, sizeof(PushConstant)); rd->compute_list_dispatch(compute_list, group_size.x, group_size.y, group_size.z); //no barrier, let them run all together } rd->compute_list_end(); //done } if (p_step_function) { p_step_function(0.5, TTR("Plot direct lighting"), p_bake_userdata, true); } /* PRIMARY (direct) LIGHT PASS */ { Vector uniforms; { { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 0; u.ids.push_back(light_source_tex); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 1; u.ids.push_back(light_dest_tex); //will be unused uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 2; u.ids.push_back(position_tex); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 3; u.ids.push_back(normal_tex); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 4; u.ids.push_back(light_accum_tex); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 5; u.ids.push_back(light_primary_dynamic_tex); uniforms.push_back(u); } } RID light_uniform_set = rd->uniform_set_create(uniforms, compute_shader_primary, 1); RD::ComputeListID compute_list = rd->compute_list_begin(); rd->compute_list_bind_compute_pipeline(compute_list, compute_shader_primary_pipeline); rd->compute_list_bind_uniform_set(compute_list, compute_base_uniform_set, 0); rd->compute_list_bind_uniform_set(compute_list, light_uniform_set, 1); for (int i = 0; i < atlas_slices; i++) { push_constant.atlas_slice = i; rd->compute_list_set_push_constant(compute_list, &push_constant, sizeof(PushConstant)); rd->compute_list_dispatch(compute_list, group_size.x, group_size.y, group_size.z); //no barrier, let them run all together } rd->compute_list_end(); //done } #ifdef DEBUG_TEXTURES for (int i = 0; i < atlas_slices; i++) { Vector s = rd->texture_get_data(light_source_tex, i); Ref img; img.instance(); img->create(atlas_size.width, atlas_size.height, false, Image::FORMAT_RGBAH, s); img->convert(Image::FORMAT_RGBA8); img->save_png("res://2_light_primary_" + itos(i) + ".png"); } #endif /* SECONDARY (indirect) LIGHT PASS(ES) */ if (p_step_function) { p_step_function(0.6, TTR("Integrate indirect lighting"), p_bake_userdata, true); } if (p_bounces > 0) { Vector uniforms; { { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 0; u.ids.push_back(light_dest_tex); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 1; u.ids.push_back(light_source_tex); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 2; u.ids.push_back(position_tex); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 3; u.ids.push_back(normal_tex); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 4; u.ids.push_back(light_accum_tex); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 5; u.ids.push_back(unocclude_tex); //reuse unocclude tex uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 6; u.ids.push_back(light_environment_tex); //reuse unocclude tex uniforms.push_back(u); } } RID secondary_uniform_set[2]; secondary_uniform_set[0] = rd->uniform_set_create(uniforms, compute_shader_secondary, 1); uniforms.write[0].ids.write[0] = light_source_tex; uniforms.write[1].ids.write[0] = light_dest_tex; secondary_uniform_set[1] = rd->uniform_set_create(uniforms, compute_shader_secondary, 1); switch (p_quality) { case BAKE_QUALITY_LOW: { push_constant.ray_count = GLOBAL_GET("rendering/gpu_lightmapper/quality/low_quality_ray_count"); } break; case BAKE_QUALITY_MEDIUM: { push_constant.ray_count = GLOBAL_GET("rendering/gpu_lightmapper/quality/medium_quality_ray_count"); } break; case BAKE_QUALITY_HIGH: { push_constant.ray_count = GLOBAL_GET("rendering/gpu_lightmapper/quality/high_quality_ray_count"); } break; case BAKE_QUALITY_ULTRA: { push_constant.ray_count = GLOBAL_GET("rendering/gpu_lightmapper/quality/ultra_quality_ray_count"); } break; } push_constant.ray_count = CLAMP(push_constant.ray_count, 16, 8192); int max_region_size = nearest_power_of_2_templated(int(GLOBAL_GET("rendering/gpu_lightmapper/performance/region_size"))); int max_rays = GLOBAL_GET("rendering/gpu_lightmapper/performance/max_rays_per_pass"); int x_regions = (atlas_size.width - 1) / max_region_size + 1; int y_regions = (atlas_size.height - 1) / max_region_size + 1; int ray_iterations = (push_constant.ray_count - 1) / max_rays + 1; rd->submit(); rd->sync(); for (int b = 0; b < p_bounces; b++) { int count = 0; if (b > 0) { SWAP(light_source_tex, light_dest_tex); SWAP(secondary_uniform_set[0], secondary_uniform_set[1]); } for (int s = 0; s < atlas_slices; s++) { push_constant.atlas_slice = s; for (int i = 0; i < x_regions; i++) { for (int j = 0; j < y_regions; j++) { int x = i * max_region_size; int y = j * max_region_size; int w = MIN((i + 1) * max_region_size, atlas_size.width) - x; int h = MIN((j + 1) * max_region_size, atlas_size.height) - y; push_constant.region_ofs[0] = x; push_constant.region_ofs[1] = y; group_size = Vector3i((w - 1) / 8 + 1, (h - 1) / 8 + 1, 1); for (int k = 0; k < ray_iterations; k++) { RD::ComputeListID compute_list = rd->compute_list_begin(); rd->compute_list_bind_compute_pipeline(compute_list, compute_shader_secondary_pipeline); rd->compute_list_bind_uniform_set(compute_list, compute_base_uniform_set, 0); rd->compute_list_bind_uniform_set(compute_list, secondary_uniform_set[0], 1); push_constant.ray_from = k * max_rays; push_constant.ray_to = MIN((k + 1) * max_rays, int32_t(push_constant.ray_count)); rd->compute_list_set_push_constant(compute_list, &push_constant, sizeof(PushConstant)); rd->compute_list_dispatch(compute_list, group_size.x, group_size.y, group_size.z); rd->compute_list_end(); //done rd->submit(); rd->sync(); count++; if (p_step_function) { int total = (atlas_slices * x_regions * y_regions * ray_iterations); int percent = count * 100 / total; float p = float(count) / total * 0.1; p_step_function(0.6 + p, vformat(TTR("Bounce %d/%d: Integrate indirect lighting %d%%"), b + 1, p_bounces, percent), p_bake_userdata, false); } } } } } } } /* LIGHPROBES */ RID light_probe_buffer; if (probe_positions.size()) { light_probe_buffer = rd->storage_buffer_create(sizeof(float) * 4 * 9 * probe_positions.size()); if (p_step_function) { p_step_function(0.7, TTR("Baking lightprobes"), p_bake_userdata, true); } Vector uniforms; { { RD::Uniform u; u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u.binding = 0; u.ids.push_back(light_probe_buffer); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 1; u.ids.push_back(light_dest_tex); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 2; u.ids.push_back(light_primary_dynamic_tex); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 3; u.ids.push_back(light_environment_tex); uniforms.push_back(u); } } RID light_probe_uniform_set = rd->uniform_set_create(uniforms, compute_shader_light_probes, 1); switch (p_quality) { case BAKE_QUALITY_LOW: { push_constant.ray_count = GLOBAL_GET("rendering/gpu_lightmapper/quality/low_quality_probe_ray_count"); } break; case BAKE_QUALITY_MEDIUM: { push_constant.ray_count = GLOBAL_GET("rendering/gpu_lightmapper/quality/medium_quality_probe_ray_count"); } break; case BAKE_QUALITY_HIGH: { push_constant.ray_count = GLOBAL_GET("rendering/gpu_lightmapper/quality/high_quality_probe_ray_count"); } break; case BAKE_QUALITY_ULTRA: { push_constant.ray_count = GLOBAL_GET("rendering/gpu_lightmapper/quality/ultra_quality_probe_ray_count"); } break; } push_constant.atlas_size[0] = probe_positions.size(); push_constant.ray_count = CLAMP(push_constant.ray_count, 16, 8192); int max_rays = GLOBAL_GET("rendering/gpu_lightmapper/performance/max_rays_per_probe_pass"); int ray_iterations = (push_constant.ray_count - 1) / max_rays + 1; for (int i = 0; i < ray_iterations; i++) { RD::ComputeListID compute_list = rd->compute_list_begin(); rd->compute_list_bind_compute_pipeline(compute_list, compute_shader_light_probes_pipeline); rd->compute_list_bind_uniform_set(compute_list, compute_base_uniform_set, 0); rd->compute_list_bind_uniform_set(compute_list, light_probe_uniform_set, 1); push_constant.ray_from = i * max_rays; push_constant.ray_to = MIN((i + 1) * max_rays, int32_t(push_constant.ray_count)); rd->compute_list_set_push_constant(compute_list, &push_constant, sizeof(PushConstant)); rd->compute_list_dispatch(compute_list, (probe_positions.size() - 1) / 64 + 1, 1, 1); rd->compute_list_end(); //done rd->submit(); rd->sync(); if (p_step_function) { int percent = i * 100 / ray_iterations; float p = float(i) / ray_iterations * 0.1; p_step_function(0.7 + p, vformat(TTR("Integrating light probes %d%%"), percent), p_bake_userdata, false); } } push_constant.atlas_size[0] = atlas_size.x; //restore } #if 0 for (int i = 0; i < probe_positions.size(); i++) { Ref img; img.instance(); img->create(6, 4, false, Image::FORMAT_RGB8); for (int j = 0; j < 6; j++) { Vector s = rd->texture_get_data(lightprobe_tex, i * 6 + j); Ref img2; img2.instance(); img2->create(2, 2, false, Image::FORMAT_RGBAF, s); img2->convert(Image::FORMAT_RGB8); img->blit_rect(img2, Rect2(0, 0, 2, 2), Point2((j % 3) * 2, (j / 3) * 2)); } img->save_png("res://3_light_probe_" + itos(i) + ".png"); } #endif /* DENOISE */ if (p_use_denoiser) { if (p_step_function) { p_step_function(0.8, TTR("Denoising"), p_bake_userdata, true); } Ref denoiser = LightmapDenoiser::create(); if (denoiser.is_valid()) { for (int i = 0; i < atlas_slices * (p_bake_sh ? 4 : 1); i++) { Vector s = rd->texture_get_data(light_accum_tex, i); Ref img; img.instance(); img->create(atlas_size.width, atlas_size.height, false, Image::FORMAT_RGBAH, s); Ref denoised = denoiser->denoise_image(img); if (denoised != img) { denoised->convert(Image::FORMAT_RGBAH); Vector ds = denoised->get_data(); denoised.unref(); //avoid copy on write { //restore alpha uint32_t count = s.size() / 2; //uint16s const uint16_t *src = (const uint16_t *)s.ptr(); uint16_t *dst = (uint16_t *)ds.ptrw(); for (uint32_t j = 0; j < count; j += 4) { dst[j + 3] = src[j + 3]; } } rd->texture_update(light_accum_tex, i, ds, true); } } } } #ifdef DEBUG_TEXTURES for (int i = 0; i < atlas_slices * (p_bake_sh ? 4 : 1); i++) { Vector s = rd->texture_get_data(light_accum_tex, i); Ref img; img.instance(); img->create(atlas_size.width, atlas_size.height, false, Image::FORMAT_RGBAH, s); img->convert(Image::FORMAT_RGBA8); img->save_png("res://4_light_secondary_" + itos(i) + ".png"); } #endif /* DILATE LIGHTMAP */ { SWAP(light_accum_tex, light_accum_tex2); Vector uniforms; { { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 0; u.ids.push_back(light_accum_tex); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 1; u.ids.push_back(light_accum_tex2); uniforms.push_back(u); } } RID dilate_uniform_set = rd->uniform_set_create(uniforms, compute_shader_dilate, 1); RD::ComputeListID compute_list = rd->compute_list_begin(); rd->compute_list_bind_compute_pipeline(compute_list, compute_shader_dilate_pipeline); rd->compute_list_bind_uniform_set(compute_list, compute_base_uniform_set, 0); rd->compute_list_bind_uniform_set(compute_list, dilate_uniform_set, 1); push_constant.region_ofs[0] = 0; push_constant.region_ofs[1] = 0; group_size = Vector3i((atlas_size.x - 1) / 8 + 1, (atlas_size.y - 1) / 8 + 1, 1); //restore group size for (int i = 0; i < atlas_slices * (p_bake_sh ? 4 : 1); i++) { push_constant.atlas_slice = i; rd->compute_list_set_push_constant(compute_list, &push_constant, sizeof(PushConstant)); rd->compute_list_dispatch(compute_list, group_size.x, group_size.y, group_size.z); //no barrier, let them run all together } rd->compute_list_end(); } #ifdef DEBUG_TEXTURES for (int i = 0; i < atlas_slices * (p_bake_sh ? 4 : 1); i++) { Vector s = rd->texture_get_data(light_accum_tex, i); Ref img; img.instance(); img->create(atlas_size.width, atlas_size.height, false, Image::FORMAT_RGBAH, s); img->convert(Image::FORMAT_RGBA8); img->save_png("res://5_dilated_" + itos(i) + ".png"); } #endif /* BLEND SEAMS */ //shaders Ref blendseams_shader; blendseams_shader.instance(); err = blendseams_shader->parse_versions_from_text(lm_blendseams_shader_glsl); if (err != OK) { FREE_TEXTURES FREE_BUFFERS FREE_RASTER_RESOURCES FREE_COMPUTE_RESOURCES memdelete(rd); blendseams_shader->print_errors("blendseams_shader"); } ERR_FAIL_COND_V(err != OK, BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES); RID blendseams_line_raster_shader = rd->shader_create_from_bytecode(blendseams_shader->get_bytecode("lines")); ERR_FAIL_COND_V(blendseams_line_raster_shader.is_null(), BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES); RID blendseams_triangle_raster_shader = rd->shader_create_from_bytecode(blendseams_shader->get_bytecode("triangles")); ERR_FAIL_COND_V(blendseams_triangle_raster_shader.is_null(), BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES); #define FREE_BLENDSEAMS_RESOURCES \ rd->free(blendseams_line_raster_shader); \ rd->free(blendseams_triangle_raster_shader); { //pre copy for (int i = 0; i < atlas_slices * (p_bake_sh ? 4 : 1); i++) { rd->texture_copy(light_accum_tex, light_accum_tex2, Vector3(), Vector3(), Vector3(atlas_size.width, atlas_size.height, 1), 0, 0, i, i, true); } Vector framebuffers; for (int i = 0; i < atlas_slices * (p_bake_sh ? 4 : 1); i++) { RID slice_tex = rd->texture_create_shared_from_slice(RD::TextureView(), light_accum_tex, i, 0); Vector fb; fb.push_back(slice_tex); fb.push_back(raster_depth_buffer); framebuffers.push_back(rd->framebuffer_create(fb)); } Vector uniforms; { { RD::Uniform u; u.type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 0; u.ids.push_back(light_accum_tex2); uniforms.push_back(u); } } RID blendseams_raster_uniform = rd->uniform_set_create(uniforms, blendseams_line_raster_shader, 1); bool debug = false; RD::PipelineColorBlendState bs = RD::PipelineColorBlendState::create_blend(1); bs.attachments.write[0].src_alpha_blend_factor = RD::BLEND_FACTOR_ZERO; bs.attachments.write[0].dst_alpha_blend_factor = RD::BLEND_FACTOR_ONE; RD::PipelineDepthStencilState ds; ds.enable_depth_test = true; ds.enable_depth_write = true; ds.depth_compare_operator = RD::COMPARE_OP_LESS; //so it does not render same pixel twice, this avoids wrong blending RID blendseams_line_raster_pipeline = rd->render_pipeline_create(blendseams_line_raster_shader, rd->framebuffer_get_format(framebuffers[0]), RD::INVALID_FORMAT_ID, RD::RENDER_PRIMITIVE_LINES, RD::PipelineRasterizationState(), RD::PipelineMultisampleState(), ds, bs, 0); RID blendseams_triangle_raster_pipeline = rd->render_pipeline_create(blendseams_triangle_raster_shader, rd->framebuffer_get_format(framebuffers[0]), RD::INVALID_FORMAT_ID, RD::RENDER_PRIMITIVE_TRIANGLES, RD::PipelineRasterizationState(), RD::PipelineMultisampleState(), ds, bs, 0); uint32_t seam_offset = 0; uint32_t triangle_offset = 0; Vector clear_colors; clear_colors.push_back(Color(0, 0, 0, 1)); for (int i = 0; i < atlas_slices; i++) { int subslices = (p_bake_sh ? 4 : 1); for (int k = 0; k < subslices; k++) { RasterSeamsPushConstant seams_push_constant; seams_push_constant.slice = uint32_t(i * subslices + k); seams_push_constant.debug = debug; RD::DrawListID draw_list = rd->draw_list_begin(framebuffers[i], RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_DISCARD, clear_colors); rd->draw_list_bind_uniform_set(draw_list, raster_base_uniform, 0); rd->draw_list_bind_uniform_set(draw_list, blendseams_raster_uniform, 1); const int uv_offset_count = 9; static const Vector3 uv_offsets[uv_offset_count] = { Vector3(0, 0, 0.5), //using zbuffer, so go inwards-outwards Vector3(0, 1, 0.2), Vector3(0, -1, 0.2), Vector3(1, 0, 0.2), Vector3(-1, 0, 0.2), Vector3(-1, -1, 0.1), Vector3(1, -1, 0.1), Vector3(1, 1, 0.1), Vector3(-1, 1, 0.1), }; /* step 1 use lines to blend the edges */ { seams_push_constant.base_index = seam_offset; rd->draw_list_bind_render_pipeline(draw_list, blendseams_line_raster_pipeline); seams_push_constant.uv_offset[0] = uv_offsets[0].x / float(atlas_size.width); seams_push_constant.uv_offset[1] = uv_offsets[0].y / float(atlas_size.height); seams_push_constant.blend = uv_offsets[0].z; rd->draw_list_set_push_constant(draw_list, &seams_push_constant, sizeof(RasterSeamsPushConstant)); rd->draw_list_draw(draw_list, false, 1, slice_seam_count[i] * 4); } /* step 2 use triangles to mask the interior */ { seams_push_constant.base_index = triangle_offset; rd->draw_list_bind_render_pipeline(draw_list, blendseams_triangle_raster_pipeline); seams_push_constant.blend = 0; //do not draw them, just fill the z-buffer so its used as a mask rd->draw_list_set_push_constant(draw_list, &seams_push_constant, sizeof(RasterSeamsPushConstant)); rd->draw_list_draw(draw_list, false, 1, slice_triangle_count[i] * 3); } /* step 3 blend around the triangle */ rd->draw_list_bind_render_pipeline(draw_list, blendseams_line_raster_pipeline); for (int j = 1; j < uv_offset_count; j++) { seams_push_constant.base_index = seam_offset; seams_push_constant.uv_offset[0] = uv_offsets[j].x / float(atlas_size.width); seams_push_constant.uv_offset[1] = uv_offsets[j].y / float(atlas_size.height); seams_push_constant.blend = uv_offsets[0].z; rd->draw_list_set_push_constant(draw_list, &seams_push_constant, sizeof(RasterSeamsPushConstant)); rd->draw_list_draw(draw_list, false, 1, slice_seam_count[i] * 4); } rd->draw_list_end(); } seam_offset += slice_seam_count[i]; triangle_offset += slice_triangle_count[i]; } } #ifdef DEBUG_TEXTURES for (int i = 0; i < atlas_slices * (p_bake_sh ? 4 : 1); i++) { Vector s = rd->texture_get_data(light_accum_tex, i); Ref img; img.instance(); img->create(atlas_size.width, atlas_size.height, false, Image::FORMAT_RGBAH, s); img->convert(Image::FORMAT_RGBA8); img->save_png("res://5_blendseams" + itos(i) + ".png"); } #endif if (p_step_function) { p_step_function(0.9, TTR("Retrieving textures"), p_bake_userdata, true); } for (int i = 0; i < atlas_slices * (p_bake_sh ? 4 : 1); i++) { Vector s = rd->texture_get_data(light_accum_tex, i); Ref img; img.instance(); img->create(atlas_size.width, atlas_size.height, false, Image::FORMAT_RGBAH, s); img->convert(Image::FORMAT_RGBH); //remove alpha bake_textures.push_back(img); } if (probe_positions.size() > 0) { probe_values.resize(probe_positions.size() * 9); Vector probe_data = rd->buffer_get_data(light_probe_buffer); copymem(probe_values.ptrw(), probe_data.ptr(), probe_data.size()); rd->free(light_probe_buffer); #ifdef DEBUG_TEXTURES { Ref img2; img2.instance(); img2->create(probe_values.size(), 1, false, Image::FORMAT_RGBAF, probe_data); img2->save_png("res://6_lightprobes.png"); } #endif } FREE_TEXTURES FREE_BUFFERS FREE_RASTER_RESOURCES FREE_COMPUTE_RESOURCES FREE_BLENDSEAMS_RESOURCES memdelete(rd); return BAKE_OK; } int LightmapperRD::get_bake_texture_count() const { return bake_textures.size(); } Ref LightmapperRD::get_bake_texture(int p_index) const { ERR_FAIL_INDEX_V(p_index, bake_textures.size(), Ref()); return bake_textures[p_index]; } int LightmapperRD::get_bake_mesh_count() const { return mesh_instances.size(); } Variant LightmapperRD::get_bake_mesh_userdata(int p_index) const { ERR_FAIL_INDEX_V(p_index, mesh_instances.size(), Variant()); return mesh_instances[p_index].data.userdata; } Rect2 LightmapperRD::get_bake_mesh_uv_scale(int p_index) const { ERR_FAIL_COND_V(bake_textures.size() == 0, Rect2()); Rect2 uv_ofs; Vector2 atlas_size = Vector2(bake_textures[0]->get_width(), bake_textures[0]->get_height()); uv_ofs.position = Vector2(mesh_instances[p_index].offset) / atlas_size; uv_ofs.size = Vector2(mesh_instances[p_index].data.albedo_on_uv2->get_width(), mesh_instances[p_index].data.albedo_on_uv2->get_height()) / atlas_size; return uv_ofs; } int LightmapperRD::get_bake_mesh_texture_slice(int p_index) const { ERR_FAIL_INDEX_V(p_index, mesh_instances.size(), Variant()); return mesh_instances[p_index].slice; } int LightmapperRD::get_bake_probe_count() const { return probe_positions.size(); } Vector3 LightmapperRD::get_bake_probe_point(int p_probe) const { ERR_FAIL_INDEX_V(p_probe, probe_positions.size(), Variant()); return Vector3(probe_positions[p_probe].position[0], probe_positions[p_probe].position[1], probe_positions[p_probe].position[2]); } Vector LightmapperRD::get_bake_probe_sh(int p_probe) const { ERR_FAIL_INDEX_V(p_probe, probe_positions.size(), Vector()); Vector ret; ret.resize(9); copymem(ret.ptrw(), &probe_values[p_probe * 9], sizeof(Color) * 9); return ret; } LightmapperRD::LightmapperRD() { }