/*************************************************************************/ /* import_utils.h */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #ifndef IMPORT_UTILS_FBX_IMPORTER_H #define IMPORT_UTILS_FBX_IMPORTER_H #include "core/io/image_loader.h" #include "data/import_state.h" #include "fbx_parser/FBXDocument.h" #include #define CONVERT_FBX_TIME(time) static_cast(time) / 46186158000LL /** * Import Utils * Conversion tools / glue code to convert from FBX to Godot */ class ImportUtils { public: /// Convert a vector from degrees to radians. static Vector3 deg2rad(const Vector3 &p_rotation); /// Convert a vector from radians to degrees. static Vector3 rad2deg(const Vector3 &p_rotation); /// Converts rotation order vector (in rad) to quaternion. static Basis EulerToBasis(FBXDocParser::Model::RotOrder mode, const Vector3 &p_rotation); /// Converts rotation order vector (in rad) to quaternion. static Quat EulerToQuaternion(FBXDocParser::Model::RotOrder mode, const Vector3 &p_rotation); /// Converts basis into rotation order vector (in rad). static Vector3 BasisToEuler(FBXDocParser::Model::RotOrder mode, const Basis &p_rotation); /// Converts quaternion into rotation order vector (in rad). static Vector3 QuaternionToEuler(FBXDocParser::Model::RotOrder mode, const Quat &p_rotation); static void debug_xform(String name, const Transform &t) { print_verbose(name + " " + t.origin + " rotation: " + (t.basis.get_euler() * (180 / Math_PI))); } static String FBXNodeToName(const std::string &name) { // strip Model:: prefix, avoiding ambiguities (i.e. don't strip if // this causes ambiguities, well possible between empty identifiers, // such as "Model::" and ""). Make sure the behaviour is consistent // across multiple calls to FixNodeName(). // We must remove this from the name // Some bones have this // SubDeformer:: // Meshes, Joints have this, some other IK elements too. // Model:: String node_name = String(name.c_str()); if (node_name.substr(0, 7) == "Model::") { node_name = node_name.substr(7, node_name.length() - 7); return node_name.replace(":", ""); } if (node_name.substr(0, 13) == "SubDeformer::") { node_name = node_name.substr(13, node_name.length() - 13); return node_name.replace(":", ""); } if (node_name.substr(0, 11) == "AnimStack::") { node_name = node_name.substr(11, node_name.length() - 11); return node_name.replace(":", ""); } if (node_name.substr(0, 15) == "AnimCurveNode::") { node_name = node_name.substr(15, node_name.length() - 15); return node_name.replace(":", ""); } if (node_name.substr(0, 11) == "AnimCurve::") { node_name = node_name.substr(11, node_name.length() - 11); return node_name.replace(":", ""); } if (node_name.substr(0, 10) == "Geometry::") { node_name = node_name.substr(10, node_name.length() - 10); return node_name.replace(":", ""); } if (node_name.substr(0, 10) == "Material::") { node_name = node_name.substr(10, node_name.length() - 10); return node_name.replace(":", ""); } if (node_name.substr(0, 9) == "Texture::") { node_name = node_name.substr(9, node_name.length() - 9); return node_name.replace(":", ""); } return node_name.replace(":", ""); } static std::string FBXAnimMeshName(const std::string &name) { if (name.length()) { size_t indexOf = name.find_first_of("::"); if (indexOf != std::string::npos && indexOf < name.size() - 2) { return name.substr(indexOf + 2); } } return name.length() ? name : "AnimMesh"; } static Vector3 safe_import_vector3(const Vector3 &p_vec) { Vector3 vector = p_vec; if (Math::is_equal_approx(0, vector.x)) { vector.x = 0; } if (Math::is_equal_approx(0, vector.y)) { vector.y = 0; } if (Math::is_equal_approx(0, vector.z)) { vector.z = 0; } return vector; } static void debug_xform(String name, const Basis &t) { //print_verbose(name + " rotation: " + (t.get_euler() * (180 / Math_PI))); } static Vector3 FixAxisConversions(Vector3 input) { return Vector3(input.x, input.y, input.z); } static void AlignMeshAxes(std::vector &vertex_data) { for (size_t x = 0; x < vertex_data.size(); x++) { vertex_data[x] = FixAxisConversions(vertex_data[x]); } } struct AssetImportFbx { enum ETimeMode { TIME_MODE_DEFAULT = 0, TIME_MODE_120 = 1, TIME_MODE_100 = 2, TIME_MODE_60 = 3, TIME_MODE_50 = 4, TIME_MODE_48 = 5, TIME_MODE_30 = 6, TIME_MODE_30_DROP = 7, TIME_MODE_NTSC_DROP_FRAME = 8, TIME_MODE_NTSC_FULL_FRAME = 9, TIME_MODE_PAL = 10, TIME_MODE_CINEMA = 11, TIME_MODE_1000 = 12, TIME_MODE_CINEMA_ND = 13, TIME_MODE_CUSTOM = 14, TIME_MODE_TIME_MODE_COUNT = 15 }; enum UpAxis { UP_VECTOR_AXIS_X = 1, UP_VECTOR_AXIS_Y = 2, UP_VECTOR_AXIS_Z = 3 }; enum FrontAxis { FRONT_PARITY_EVEN = 1, FRONT_PARITY_ODD = 2, }; enum CoordAxis { COORD_RIGHT = 0, COORD_LEFT = 1 }; }; /** Get fbx fps for time mode meta data */ static float get_fbx_fps(int32_t time_mode) { switch (time_mode) { case AssetImportFbx::TIME_MODE_DEFAULT: return 24; case AssetImportFbx::TIME_MODE_120: return 120; case AssetImportFbx::TIME_MODE_100: return 100; case AssetImportFbx::TIME_MODE_60: return 60; case AssetImportFbx::TIME_MODE_50: return 50; case AssetImportFbx::TIME_MODE_48: return 48; case AssetImportFbx::TIME_MODE_30: return 30; case AssetImportFbx::TIME_MODE_30_DROP: return 30; case AssetImportFbx::TIME_MODE_NTSC_DROP_FRAME: return 29.9700262f; case AssetImportFbx::TIME_MODE_NTSC_FULL_FRAME: return 29.9700262f; case AssetImportFbx::TIME_MODE_PAL: return 25; case AssetImportFbx::TIME_MODE_CINEMA: return 24; case AssetImportFbx::TIME_MODE_1000: return 1000; case AssetImportFbx::TIME_MODE_CINEMA_ND: return 23.976f; case AssetImportFbx::TIME_MODE_CUSTOM: return -1; } return 0; } static float get_fbx_fps(const FBXDocParser::FileGlobalSettings *FBXSettings) { int time_mode = FBXSettings->TimeMode(); // get the animation FPS float frames_per_second = get_fbx_fps(time_mode); // handle animation custom FPS time. if (time_mode == ImportUtils::AssetImportFbx::TIME_MODE_CUSTOM) { print_verbose("FBX Animation has custom FPS setting"); frames_per_second = FBXSettings->CustomFrameRate(); // not our problem this is the modeller, we can print as an error so they can fix the source. if (frames_per_second == 0) { print_error("Custom animation time in file is set to 0 value, animation won't play, please edit your file to correct the FPS value"); } } return frames_per_second; } /** * Find hardcoded textures from assimp which could be in many different directories */ /** * set_texture_mapping_mode * Helper to check the mapping mode of the texture (repeat, clamp and mirror) */ // static void set_texture_mapping_mode(aiTextureMapMode *map_mode, Ref texture) { // ERR_FAIL_COND(texture.is_null()); // ERR_FAIL_COND(map_mode == nullptr); // aiTextureMapMode tex_mode = map_mode[0]; // int32_t flags = Texture::FLAGS_DEFAULT; // if (tex_mode == aiTextureMapMode_Wrap) { // //Default // } else if (tex_mode == aiTextureMapMode_Clamp) { // flags = flags & ~Texture::FLAG_REPEAT; // } else if (tex_mode == aiTextureMapMode_Mirror) { // flags = flags | Texture::FLAG_MIRRORED_REPEAT; // } // texture->set_flags(flags); // } /** * Load or load from cache image :) * We need to upgrade this in the later version :) should not be hard */ //static Ref load_image(ImportState &state, const aiScene *p_scene, String p_path){ // Map >::Element *match = state.path_to_image_cache.find(p_path); // // if our cache contains this image then don't bother // if (match) { // return match->get(); // } // Vector split_path = p_path.get_basename().split("*"); // if (split_path.size() == 2) { // size_t texture_idx = split_path[1].to_int(); // ERR_FAIL_COND_V(texture_idx >= p_scene->mNumTextures, Ref()); // aiTexture *tex = p_scene->mTextures[texture_idx]; // String filename = AssimpUtils::get_raw_string_from_assimp(tex->mFilename); // filename = filename.get_file(); // print_verbose("Open Asset Import: Loading embedded texture " + filename); // if (tex->mHeight == 0) { // if (tex->CheckFormat("png")) { // Ref img = Image::_png_mem_loader_func((uint8_t *)tex->pcData, tex->mWidth); // ERR_FAIL_COND_V(img.is_null(), Ref()); // state.path_to_image_cache.insert(p_path, img); // return img; // } else if (tex->CheckFormat("jpg")) { // Ref img = Image::_jpg_mem_loader_func((uint8_t *)tex->pcData, tex->mWidth); // ERR_FAIL_COND_V(img.is_null(), Ref()); // state.path_to_image_cache.insert(p_path, img); // return img; // } else if (tex->CheckFormat("dds")) { // ERR_FAIL_COND_V_MSG(true, Ref(), "Open Asset Import: Embedded dds not implemented"); // } // } else { // Ref img; // img.instance(); // PoolByteArray arr; // uint32_t size = tex->mWidth * tex->mHeight; // arr.resize(size); // memcpy(arr.write().ptr(), tex->pcData, size); // ERR_FAIL_COND_V(arr.size() % 4 != 0, Ref()); // //ARGB8888 to RGBA8888 // for (int32_t i = 0; i < arr.size() / 4; i++) { // arr.write().ptr()[(4 * i) + 3] = arr[(4 * i) + 0]; // arr.write().ptr()[(4 * i) + 0] = arr[(4 * i) + 1]; // arr.write().ptr()[(4 * i) + 1] = arr[(4 * i) + 2]; // arr.write().ptr()[(4 * i) + 2] = arr[(4 * i) + 3]; // } // img->create(tex->mWidth, tex->mHeight, true, Image::FORMAT_RGBA8, arr); // ERR_FAIL_COND_V(img.is_null(), Ref()); // state.path_to_image_cache.insert(p_path, img); // return img; // } // return Ref(); // } else { // Ref texture = ResourceLoader::load(p_path); // ERR_FAIL_COND_V(texture.is_null(), Ref()); // Ref image = texture->get_image(); // ERR_FAIL_COND_V(image.is_null(), Ref()); // state.path_to_image_cache.insert(p_path, image); // return image; // } // return Ref(); //} // /* create texture from assimp data, if found in path */ // static bool CreateAssimpTexture( // AssimpImporter::ImportState &state, // aiString texture_path, // String &filename, // String &path, // AssimpImageData &image_state) { // filename = get_raw_string_from_assimp(texture_path); // path = state.path.get_base_dir().plus_file(filename.replace("\\", "/")); // bool found = false; // find_texture_path(state.path, path, found); // if (found) { // image_state.raw_image = AssimpUtils::load_image(state, state.assimp_scene, path); // if (image_state.raw_image.is_valid()) { // image_state.texture.instance(); // image_state.texture->create_from_image(image_state.raw_image); // image_state.texture->set_storage(ImageTexture::STORAGE_COMPRESS_LOSSY); // return true; // } // } // return false; // } // /** GetAssimpTexture // * Designed to retrieve textures for you // */ // static bool GetAssimpTexture( // AssimpImporter::ImportState &state, // aiMaterial *ai_material, // aiTextureType texture_type, // String &filename, // String &path, // AssimpImageData &image_state) { // aiString ai_filename = aiString(); // if (AI_SUCCESS == ai_material->GetTexture(texture_type, 0, &ai_filename, nullptr, nullptr, nullptr, nullptr, image_state.map_mode)) { // return CreateAssimpTexture(state, ai_filename, filename, path, image_state); // } // return false; // } }; // Apply the transforms so the basis will have scale 1. Transform get_unscaled_transform(const Transform &p_initial, real_t p_scale); /// Uses the Newell's method to compute any polygon normal. /// The polygon must be at least size of 3 or bigger. Vector3 get_poly_normal(const std::vector &p_vertices); #endif // IMPORT_UTILS_FBX_IMPORTER_H