/*************************************************************************/ /* csg.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2019 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2019 Godot Engine contributors (cf. AUTHORS.md) */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "csg.h" #include "core/math/face3.h" #include "core/math/geometry.h" #include "core/os/os.h" #include "core/sort_array.h" #include "thirdparty/misc/triangulator.h" void CSGBrush::clear() { faces.clear(); } void CSGBrush::build_from_faces(const PoolVector<Vector3> &p_vertices, const PoolVector<Vector2> &p_uvs, const PoolVector<bool> &p_smooth, const PoolVector<Ref<Material> > &p_materials, const PoolVector<bool> &p_invert_faces) { clear(); int vc = p_vertices.size(); ERR_FAIL_COND((vc % 3) != 0) PoolVector<Vector3>::Read rv = p_vertices.read(); int uvc = p_uvs.size(); PoolVector<Vector2>::Read ruv = p_uvs.read(); int sc = p_smooth.size(); PoolVector<bool>::Read rs = p_smooth.read(); int mc = p_materials.size(); PoolVector<Ref<Material> >::Read rm = p_materials.read(); int ic = p_invert_faces.size(); PoolVector<bool>::Read ri = p_invert_faces.read(); Map<Ref<Material>, int> material_map; faces.resize(p_vertices.size() / 3); for (int i = 0; i < faces.size(); i++) { Face &f = faces.write[i]; f.vertices[0] = rv[i * 3 + 0]; f.vertices[1] = rv[i * 3 + 1]; f.vertices[2] = rv[i * 3 + 2]; if (uvc == vc) { f.uvs[0] = ruv[i * 3 + 0]; f.uvs[1] = ruv[i * 3 + 1]; f.uvs[2] = ruv[i * 3 + 2]; } if (sc == vc / 3) { f.smooth = rs[i]; } else { f.smooth = false; } if (ic == vc / 3) { f.invert = ri[i]; } else { f.invert = false; } if (mc == vc / 3) { Ref<Material> mat = rm[i]; if (mat.is_valid()) { const Map<Ref<Material>, int>::Element *E = material_map.find(mat); if (E) { f.material = E->get(); } else { f.material = material_map.size(); material_map[mat] = f.material; } } else { f.material = -1; } } } materials.resize(material_map.size()); for (Map<Ref<Material>, int>::Element *E = material_map.front(); E; E = E->next()) { materials.write[E->get()] = E->key(); } _regen_face_aabbs(); } void CSGBrush::_regen_face_aabbs() { for (int i = 0; i < faces.size(); i++) { faces.write[i].aabb.position = faces[i].vertices[0]; faces.write[i].aabb.expand_to(faces[i].vertices[1]); faces.write[i].aabb.expand_to(faces[i].vertices[2]); faces.write[i].aabb.grow_by(faces[i].aabb.get_longest_axis_size() * 0.001); //make it a tad bigger to avoid num precision erros } } void CSGBrush::copy_from(const CSGBrush &p_brush, const Transform &p_xform) { faces = p_brush.faces; materials = p_brush.materials; for (int i = 0; i < faces.size(); i++) { for (int j = 0; j < 3; j++) { faces.write[i].vertices[j] = p_xform.xform(p_brush.faces[i].vertices[j]); } } _regen_face_aabbs(); } //////////////////////// void CSGBrushOperation::BuildPoly::create(const CSGBrush *p_brush, int p_face, MeshMerge &mesh_merge, bool p_for_B) { //creates the initial face that will be used for clipping against the other faces Vector3 va[3] = { p_brush->faces[p_face].vertices[0], p_brush->faces[p_face].vertices[1], p_brush->faces[p_face].vertices[2], }; plane = Plane(va[0], va[1], va[2]); to_world.origin = va[0]; to_world.basis.set_axis(2, plane.normal); to_world.basis.set_axis(0, (va[1] - va[2]).normalized()); to_world.basis.set_axis(1, to_world.basis.get_axis(0).cross(to_world.basis.get_axis(2)).normalized()); to_poly = to_world.affine_inverse(); face_index = p_face; for (int i = 0; i < 3; i++) { Point p; Vector3 localp = to_poly.xform(va[i]); p.point.x = localp.x; p.point.y = localp.y; p.uv = p_brush->faces[p_face].uvs[i]; points.push_back(p); ///edge Edge e; e.points[0] = i; e.points[1] = (i + 1) % 3; e.outer = true; edges.push_back(e); } smooth = p_brush->faces[p_face].smooth; invert = p_brush->faces[p_face].invert; if (p_brush->faces[p_face].material != -1) { material = p_brush->materials[p_brush->faces[p_face].material]; } base_edges = 3; } static Vector2 interpolate_uv(const Vector2 &p_vertex_a, const Vector2 &p_vertex_b, const Vector2 &p_vertex_c, const Vector2 &p_uv_a, const Vector2 &p_uv_c) { float len_a_c = (p_vertex_c - p_vertex_a).length(); if (len_a_c < CMP_EPSILON) { return p_uv_a; } float len_a_b = (p_vertex_b - p_vertex_a).length(); float c = len_a_b / len_a_c; return p_uv_a.linear_interpolate(p_uv_c, c); } static Vector2 interpolate_triangle_uv(const Vector2 &p_pos, const Vector2 *p_vtx, const Vector2 *p_uv) { if (p_pos.distance_squared_to(p_vtx[0]) < CMP_EPSILON2) { return p_uv[0]; } if (p_pos.distance_squared_to(p_vtx[1]) < CMP_EPSILON2) { return p_uv[1]; } if (p_pos.distance_squared_to(p_vtx[2]) < CMP_EPSILON2) { return p_uv[2]; } Vector2 v0 = p_vtx[1] - p_vtx[0]; Vector2 v1 = p_vtx[2] - p_vtx[0]; Vector2 v2 = p_pos - p_vtx[0]; float d00 = v0.dot(v0); float d01 = v0.dot(v1); float d11 = v1.dot(v1); float d20 = v2.dot(v0); float d21 = v2.dot(v1); float denom = (d00 * d11 - d01 * d01); if (denom == 0) { return p_uv[0]; } float v = (d11 * d20 - d01 * d21) / denom; float w = (d00 * d21 - d01 * d20) / denom; float u = 1.0f - v - w; return p_uv[0] * u + p_uv[1] * v + p_uv[2] * w; } void CSGBrushOperation::BuildPoly::_clip_segment(const CSGBrush *p_brush, int p_face, const Vector2 *segment, MeshMerge &mesh_merge, bool p_for_B) { //keep track of what was inserted Vector<int> inserted_points; //keep track of point indices for what was inserted, allowing reuse of points. int segment_idx[2] = { -1, -1 }; //check if edge and poly share a vertex, of so, assign it to segment_idx for (int i = 0; i < points.size(); i++) { for (int j = 0; j < 2; j++) { if (Math::is_zero_approx(segment[j].distance_to(points[i].point))) { segment_idx[j] = i; inserted_points.push_back(i); break; } } } //check if both segment points are shared with other vertices if (segment_idx[0] != -1 && segment_idx[1] != -1) { if (segment_idx[0] == segment_idx[1]) { return; //segment was too tiny, both mapped to same point } bool found = false; //check if the segment already exists for (int i = 0; i < edges.size(); i++) { if ( (edges[i].points[0] == segment_idx[0] && edges[i].points[1] == segment_idx[1]) || (edges[i].points[0] == segment_idx[1] && edges[i].points[1] == segment_idx[0])) { found = true; break; } } if (found) { //it does already exist, do nothing return; } //directly add the new segment Edge new_edge; new_edge.points[0] = segment_idx[0]; new_edge.points[1] = segment_idx[1]; edges.push_back(new_edge); return; } //check edge by edge against the segment points to see if intersects for (int i = 0; i < base_edges; i++) { //if a point is shared with one of the edge points, then this edge must not be tested, as it will result in a numerical precision error. bool edge_valid = true; for (int j = 0; j < 2; j++) { if (edges[i].points[0] == segment_idx[0] || edges[i].points[1] == segment_idx[1] || edges[i].points[0] == segment_idx[1] || edges[i].points[1] == segment_idx[0]) { edge_valid = false; //segment has this point, can't check against this break; } } if (!edge_valid) //already hit a point in this edge, so don't test it continue; //see if either points are within the edge isntead of crossing it Vector2 res; bool found = false; int assign_segment_id = -1; for (int j = 0; j < 2; j++) { Vector2 edgeseg[2] = { points[edges[i].points[0]].point, points[edges[i].points[1]].point }; Vector2 closest = Geometry::get_closest_point_to_segment_2d(segment[j], edgeseg); if (Math::is_zero_approx(closest.distance_to(segment[j]))) { //point rest of this edge res = closest; found = true; assign_segment_id = j; } } //test if the point crosses the edge if (!found && Geometry::segment_intersects_segment_2d(segment[0], segment[1], points[edges[i].points[0]].point, points[edges[i].points[1]].point, &res)) { //point does cross the edge found = true; } //check whether an intersection against the segment happened if (found) { //It did! so first, must slice the segment Point new_point; new_point.point = res; //make sure to interpolate UV too new_point.uv = interpolate_uv(points[edges[i].points[0]].point, new_point.point, points[edges[i].points[1]].point, points[edges[i].points[0]].uv, points[edges[i].points[1]].uv); int point_idx = points.size(); points.push_back(new_point); //split the edge in 2 Edge new_edge; new_edge.points[0] = edges[i].points[0]; new_edge.points[1] = point_idx; new_edge.outer = edges[i].outer; edges.write[i].points[0] = point_idx; edges.insert(i, new_edge); i++; //skip newly inserted edge base_edges++; //will need an extra one in the base triangle if (assign_segment_id >= 0) { //point did split a segment, so make sure to remember this segment_idx[assign_segment_id] = point_idx; } inserted_points.push_back(point_idx); } } //final step: after cutting the original triangle, try to see if we can still insert //this segment //if already inserted two points, just use them for a segment if (inserted_points.size() >= 2) { //should never be >2 on non-manifold geometry, but cope with error //two points were inserted, create the new edge Edge new_edge; new_edge.points[0] = inserted_points[0]; new_edge.points[1] = inserted_points[1]; edges.push_back(new_edge); return; } // One or no points were inserted (besides splitting), so try to see if extra points can be placed inside the triangle. // This needs to be done here, after the previous tests were exhausted for (int i = 0; i < 2; i++) { if (segment_idx[i] != -1) continue; //already assigned to something, so skip //check whether one of the segment endpoints is inside the triangle. If it is, this points needs to be inserted if (Geometry::is_point_in_triangle(segment[i], points[0].point, points[1].point, points[2].point)) { Point new_point; new_point.point = segment[i]; Vector2 point3[3] = { points[0].point, points[1].point, points[2].point }; Vector2 uv3[3] = { points[0].uv, points[1].uv, points[2].uv }; new_point.uv = interpolate_triangle_uv(new_point.point, point3, uv3); int point_idx = points.size(); points.push_back(new_point); inserted_points.push_back(point_idx); } } //check again whether two points were inserted, if so then create the new edge if (inserted_points.size() >= 2) { //should never be >2 on non-manifold geometry, but cope with error Edge new_edge; new_edge.points[0] = inserted_points[0]; new_edge.points[1] = inserted_points[1]; edges.push_back(new_edge); } } void CSGBrushOperation::BuildPoly::clip(const CSGBrush *p_brush, int p_face, MeshMerge &mesh_merge, bool p_for_B) { //Clip function.. find triangle points that will be mapped to the plane and form a segment Vector2 segment[3]; //2D int src_points = 0; for (int i = 0; i < 3; i++) { Vector3 p = p_brush->faces[p_face].vertices[i]; if (plane.has_point(p)) { Vector3 pp = plane.project(p); pp = to_poly.xform(pp); segment[src_points++] = Vector2(pp.x, pp.y); } else { Vector3 q = p_brush->faces[p_face].vertices[(i + 1) % 3]; if (plane.has_point(q)) continue; //next point is in plane, will be added eventually if (plane.is_point_over(p) == plane.is_point_over(q)) continue; // both on same side of the plane, don't add Vector3 res; if (plane.intersects_segment(p, q, &res)) { res = to_poly.xform(res); segment[src_points++] = Vector2(res.x, res.y); } } } //all above or all below, nothing to do. Should not happen though since a precheck was done before. if (src_points == 0) return; //just one point in plane is not worth doing anything if (src_points == 1) return; //transform A points to 2D if (Math::is_zero_approx(segment[0].distance_to(segment[1]))) return; //too small _clip_segment(p_brush, p_face, segment, mesh_merge, p_for_B); } void CSGBrushOperation::_collision_callback(const CSGBrush *A, int p_face_a, Map<int, BuildPoly> &build_polys_a, const CSGBrush *B, int p_face_b, Map<int, BuildPoly> &build_polys_b, MeshMerge &mesh_merge) { //construct a frame of reference for both transforms, in order to do intersection test Vector3 va[3] = { A->faces[p_face_a].vertices[0], A->faces[p_face_a].vertices[1], A->faces[p_face_a].vertices[2], }; Vector3 vb[3] = { B->faces[p_face_b].vertices[0], B->faces[p_face_b].vertices[1], B->faces[p_face_b].vertices[2], }; { //check if either is a degenerate if (Math::is_zero_approx(va[0].distance_to(va[1])) || Math::is_zero_approx(va[0].distance_to(va[2])) || Math::is_zero_approx(va[1].distance_to(va[2]))) return; if (Math::is_zero_approx(vb[0].distance_to(vb[1])) || Math::is_zero_approx(vb[0].distance_to(vb[2])) || Math::is_zero_approx(vb[1].distance_to(vb[2]))) return; } { //check if points are the same int equal_count = 0; for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { if (va[i].distance_to(vb[j]) < mesh_merge.vertex_snap) { equal_count++; break; } } } //if 2 or 3 points are the same, there is no point in doing anything. They can't //be clipped either, so add both. if (equal_count == 2 || equal_count == 3) { return; } } // do a quick pre-check for no-intersection using the SAT theorem { //b under or over a plane int over_count = 0, in_plane_count = 0, under_count = 0; Plane plane_a(va[0], va[1], va[2]); if (plane_a.normal == Vector3()) { return; //degenerate } for (int i = 0; i < 3; i++) { if (plane_a.has_point(vb[i])) in_plane_count++; else if (plane_a.is_point_over(vb[i])) over_count++; else under_count++; } if (over_count == 0 || under_count == 0) return; //no intersection, something needs to be under AND over //a under or over b plane over_count = 0; under_count = 0; in_plane_count = 0; Plane plane_b(vb[0], vb[1], vb[2]); if (plane_b.normal == Vector3()) return; //degenerate for (int i = 0; i < 3; i++) { if (plane_b.has_point(va[i])) in_plane_count++; else if (plane_b.is_point_over(va[i])) over_count++; else under_count++; } if (over_count == 0 || under_count == 0) return; //no intersection, something needs to be under AND over //edge pairs (cross product combinations), see SAT theorem for (int i = 0; i < 3; i++) { Vector3 axis_a = (va[i] - va[(i + 1) % 3]).normalized(); for (int j = 0; j < 3; j++) { Vector3 axis_b = (vb[j] - vb[(j + 1) % 3]).normalized(); Vector3 sep_axis = axis_a.cross(axis_b); if (sep_axis == Vector3()) continue; //colineal sep_axis.normalize(); real_t min_a = 1e20, max_a = -1e20; real_t min_b = 1e20, max_b = -1e20; for (int k = 0; k < 3; k++) { real_t d = sep_axis.dot(va[k]); min_a = MIN(min_a, d); max_a = MAX(max_a, d); d = sep_axis.dot(vb[k]); min_b = MIN(min_b, d); max_b = MAX(max_b, d); } min_b -= (max_a - min_a) * 0.5; max_b += (max_a - min_a) * 0.5; real_t dmin = min_b - (min_a + max_a) * 0.5; real_t dmax = max_b - (min_a + max_a) * 0.5; if (dmin > CMP_EPSILON || dmax < -CMP_EPSILON) { return; //does not contain zero, so they don't overlap } } } } //if we are still here, it means they most likely intersect, so create BuildPolys if they don't exist BuildPoly *poly_a = NULL; if (!build_polys_a.has(p_face_a)) { BuildPoly bp; bp.create(A, p_face_a, mesh_merge, false); build_polys_a[p_face_a] = bp; } poly_a = &build_polys_a[p_face_a]; BuildPoly *poly_b = NULL; if (!build_polys_b.has(p_face_b)) { BuildPoly bp; bp.create(B, p_face_b, mesh_merge, true); build_polys_b[p_face_b] = bp; } poly_b = &build_polys_b[p_face_b]; //clip each other, this could be improved by using vertex unique IDs (more vertices may be shared instead of using snap) poly_a->clip(B, p_face_b, mesh_merge, false); poly_b->clip(A, p_face_a, mesh_merge, true); } void CSGBrushOperation::_add_poly_points(const BuildPoly &p_poly, int p_edge, int p_from_point, int p_to_point, const Vector<Vector<int> > &vertex_process, Vector<bool> &edge_process, Vector<PolyPoints> &r_poly) { //this function follows the polygon points counter clockwise and adds them. It creates lists of unique polygons //every time an unused edge is found, it's pushed to a stack and continues from there. List<EdgeSort> edge_stack; { EdgeSort es; es.angle = 0; //won't be checked here es.edge = p_edge; es.prev_point = p_from_point; es.edge_point = p_to_point; edge_stack.push_back(es); } //attempt to empty the stack. while (edge_stack.size()) { EdgeSort e = edge_stack.front()->get(); edge_stack.pop_front(); if (edge_process[e.edge]) { //nothing to do here continue; } Vector<int> points; points.push_back(e.prev_point); int prev_point = e.prev_point; int to_point = e.edge_point; int current_edge = e.edge; edge_process.write[e.edge] = true; //mark as processed int limit = p_poly.points.size() * 4; //avoid infinite recursion while (to_point != e.prev_point && limit) { Vector2 segment[2] = { p_poly.points[prev_point].point, p_poly.points[to_point].point }; //construct a basis transform from the segment, which will be used to check the angle Transform2D t2d; t2d[0] = (segment[1] - segment[0]).normalized(); //use as Y t2d[1] = Vector2(-t2d[0].y, t2d[0].x); // use as tangent t2d[2] = segment[1]; //origin if (t2d.basis_determinant() == 0) break; //abort poly t2d.affine_invert(); //push all edges found here, they will be sorted by minimum angle later. Vector<EdgeSort> next_edges; for (int i = 0; i < vertex_process[to_point].size(); i++) { int edge = vertex_process[to_point][i]; int opposite_point = p_poly.edges[edge].points[0] == to_point ? p_poly.edges[edge].points[1] : p_poly.edges[edge].points[0]; if (opposite_point == prev_point) continue; //not going back EdgeSort e2; Vector2 local_vec = t2d.xform(p_poly.points[opposite_point].point); e2.angle = -local_vec.angle(); //negate so we can sort by minimum angle e2.edge = edge; e2.edge_point = opposite_point; e2.prev_point = to_point; next_edges.push_back(e2); } //finally, sort by minimum angle next_edges.sort(); int next_point = -1; int next_edge = -1; for (int i = 0; i < next_edges.size(); i++) { if (i == 0) { //minimum angle found is the next point next_point = next_edges[i].edge_point; next_edge = next_edges[i].edge; } else { //the rest are pushed to the stack IF they were not processed yet. if (!edge_process[next_edges[i].edge]) { edge_stack.push_back(next_edges[i]); } } } if (next_edge == -1) { //did not find anything, may be a dead-end edge (this should normally not happen) //just flip the direction and go back next_point = prev_point; next_edge = current_edge; } points.push_back(to_point); prev_point = to_point; to_point = next_point; edge_process.write[next_edge] = true; //mark this edge as processed current_edge = next_edge; limit--; } //if more than 2 points were added to the polygon, add it to the list of polygons. if (points.size() > 2) { PolyPoints pp; pp.points = points; r_poly.push_back(pp); } } } void CSGBrushOperation::_add_poly_outline(const BuildPoly &p_poly, int p_from_point, int p_to_point, const Vector<Vector<int> > &vertex_process, Vector<int> &r_outline) { //this is the opposite of the function above. It adds polygon outlines instead. //this is used for triangulating holes. //no stack is used here because only the bigger outline is interesting. r_outline.push_back(p_from_point); int prev_point = p_from_point; int to_point = p_to_point; int limit = p_poly.points.size() * 4; //avoid infinite recursion while (to_point != p_from_point && limit) { Vector2 segment[2] = { p_poly.points[prev_point].point, p_poly.points[to_point].point }; //again create a transform to compute the angle. Transform2D t2d; t2d[0] = (segment[1] - segment[0]).normalized(); //use as Y t2d[1] = Vector2(-t2d[0].y, t2d[0].x); // use as tangent t2d[2] = segment[1]; //origin if (t2d.basis_determinant() == 0) break; //abort poly t2d.affine_invert(); float max_angle = 0; int next_point_angle = -1; for (int i = 0; i < vertex_process[to_point].size(); i++) { int edge = vertex_process[to_point][i]; int opposite_point = p_poly.edges[edge].points[0] == to_point ? p_poly.edges[edge].points[1] : p_poly.edges[edge].points[0]; if (opposite_point == prev_point) continue; //not going back float angle = -t2d.xform(p_poly.points[opposite_point].point).angle(); if (next_point_angle == -1 || angle > max_angle) { //same as before but use greater to check. max_angle = angle; next_point_angle = opposite_point; } } if (next_point_angle == -1) { //go back because no route found next_point_angle = prev_point; } r_outline.push_back(to_point); prev_point = to_point; to_point = next_point_angle; limit--; } } void CSGBrushOperation::_merge_poly(MeshMerge &mesh, int p_face_idx, const BuildPoly &p_poly, bool p_from_b) { //finally, merge the 2D polygon back to 3D Vector<Vector<int> > vertex_process; Vector<bool> edge_process; vertex_process.resize(p_poly.points.size()); edge_process.resize(p_poly.edges.size()); //none processed by default for (int i = 0; i < edge_process.size(); i++) { edge_process.write[i] = false; } //put edges in points, so points can go through them for (int i = 0; i < p_poly.edges.size(); i++) { vertex_process.write[p_poly.edges[i].points[0]].push_back(i); vertex_process.write[p_poly.edges[i].points[1]].push_back(i); } Vector<PolyPoints> polys; //process points that were not processed for (int i = 0; i < edge_process.size(); i++) { if (edge_process[i]) continue; //already processed int intersect_poly = -1; if (i > 0) { //this is disconnected, so it's clearly a hole. lets find where it belongs Vector2 ref_point = p_poly.points[p_poly.edges[i].points[0]].point; for (int j = 0; j < polys.size(); j++) { //find a point outside poly Vector2 out_point(-1e20, -1e20); const PolyPoints &pp = polys[j]; for (int k = 0; k < pp.points.size(); k++) { Vector2 p = p_poly.points[pp.points[k]].point; out_point.x = MAX(out_point.x, p.x); out_point.y = MAX(out_point.y, p.y); } out_point += Vector2(0.12341234, 0.4123412); // move to a random place to avoid direct edge-point chances int intersections = 0; for (int k = 0; k < pp.points.size(); k++) { Vector2 p1 = p_poly.points[pp.points[k]].point; Vector2 p2 = p_poly.points[pp.points[(k + 1) % pp.points.size()]].point; if (Geometry::segment_intersects_segment_2d(ref_point, out_point, p1, p2, NULL)) { intersections++; } } if (intersections % 2 == 1) { //hole is inside this poly intersect_poly = j; break; } } } if (intersect_poly != -1) { //must add this as a hole Vector<int> outline; _add_poly_outline(p_poly, p_poly.edges[i].points[0], p_poly.edges[i].points[1], vertex_process, outline); if (outline.size() > 1) { polys.write[intersect_poly].holes.push_back(outline); } } _add_poly_points(p_poly, i, p_poly.edges[i].points[0], p_poly.edges[i].points[1], vertex_process, edge_process, polys); } //get rid of holes, not the most optiomal way, but also not a common case at all to be inoptimal for (int i = 0; i < polys.size(); i++) { if (!polys[i].holes.size()) continue; //repeat until no more holes are left to be merged while (polys[i].holes.size()) { //try to merge a hole with the outline bool added_hole = false; for (int j = 0; j < polys[i].holes.size(); j++) { //try hole vertices int with_outline_vertex = -1; int from_hole_vertex = -1; bool found = false; for (int k = 0; k < polys[i].holes[j].size(); k++) { int from_idx = polys[i].holes[j][k]; Vector2 from = p_poly.points[from_idx].point; //try a segment from hole vertex to outline vertices from_hole_vertex = k; bool valid = true; for (int l = 0; l < polys[i].points.size(); l++) { int to_idx = polys[i].points[l]; Vector2 to = p_poly.points[to_idx].point; with_outline_vertex = l; //try against outline (other points) first valid = true; for (int m = 0; m < polys[i].points.size(); m++) { int m_next = (m + 1) % polys[i].points.size(); if (m == with_outline_vertex || m_next == with_outline_vertex) //do not test with edges that share this point continue; if (Geometry::segment_intersects_segment_2d(from, to, p_poly.points[polys[i].points[m]].point, p_poly.points[polys[i].points[m_next]].point, NULL)) { valid = false; break; } } if (!valid) continue; //try against all holes including self for (int m = 0; m < polys[i].holes.size(); m++) { for (int n = 0; n < polys[i].holes[m].size(); n++) { int n_next = (n + 1) % polys[i].holes[m].size(); if (m == j && (n == from_hole_vertex || n_next == from_hole_vertex)) //contains vertex being tested from current hole, skip continue; if (Geometry::segment_intersects_segment_2d(from, to, p_poly.points[polys[i].holes[m][n]].point, p_poly.points[polys[i].holes[m][n_next]].point, NULL)) { valid = false; break; } } if (!valid) break; } if (valid) //all passed! exit loop break; else continue; //something went wrong, go on. } if (valid) { found = true; //if in the end this was valid, use it break; } } if (found) { //hook this hole with outline, and remove from list of holes //duplicate point int insert_at = with_outline_vertex; int point = polys[i].points[insert_at]; polys.write[i].points.insert(insert_at, point); insert_at++; //insert all others, outline should be backwards (must check) int holesize = polys[i].holes[j].size(); for (int k = 0; k <= holesize; k++) { int idx = (from_hole_vertex + k) % holesize; int point2 = polys[i].holes[j][idx]; polys.write[i].points.insert(insert_at, point2); insert_at++; } added_hole = true; polys.write[i].holes.remove(j); break; //got rid of hole, break and continue } } ERR_BREAK(!added_hole); } } //triangulate polygons for (int i = 0; i < polys.size(); i++) { Vector<Vector2> vertices; vertices.resize(polys[i].points.size()); for (int j = 0; j < vertices.size(); j++) { vertices.write[j] = p_poly.points[polys[i].points[j]].point; } Vector<int> indices = Geometry::triangulate_polygon(vertices); for (int j = 0; j < indices.size(); j += 3) { //obtain the vertex Vector3 face[3]; Vector2 uv[3]; float cp = Geometry::vec2_cross(p_poly.points[polys[i].points[indices[j + 0]]].point, p_poly.points[polys[i].points[indices[j + 1]]].point, p_poly.points[polys[i].points[indices[j + 2]]].point); if (Math::abs(cp) < CMP_EPSILON) continue; for (int k = 0; k < 3; k++) { Vector2 p = p_poly.points[polys[i].points[indices[j + k]]].point; face[k] = p_poly.to_world.xform(Vector3(p.x, p.y, 0)); uv[k] = p_poly.points[polys[i].points[indices[j + k]]].uv; } mesh.add_face(face[0], face[1], face[2], uv[0], uv[1], uv[2], p_poly.smooth, p_poly.invert, p_poly.material, p_from_b); } } } //use a limit to speed up bvh and limit the depth #define BVH_LIMIT 8 int CSGBrushOperation::MeshMerge::_create_bvh(BVH *p_bvh, BVH **p_bb, int p_from, int p_size, int p_depth, int &max_depth, int &max_alloc) { if (p_depth > max_depth) { max_depth = p_depth; } if (p_size <= BVH_LIMIT) { for (int i = 0; i < p_size - 1; i++) { p_bb[p_from + i]->next = p_bb[p_from + i + 1] - p_bvh; } return p_bb[p_from] - p_bvh; } else if (p_size == 0) { return -1; } AABB aabb; aabb = p_bb[p_from]->aabb; for (int i = 1; i < p_size; i++) { aabb.merge_with(p_bb[p_from + i]->aabb); } int li = aabb.get_longest_axis_index(); switch (li) { case Vector3::AXIS_X: { SortArray<BVH *, BVHCmpX> sort_x; sort_x.nth_element(0, p_size, p_size / 2, &p_bb[p_from]); //sort_x.sort(&p_bb[p_from],p_size); } break; case Vector3::AXIS_Y: { SortArray<BVH *, BVHCmpY> sort_y; sort_y.nth_element(0, p_size, p_size / 2, &p_bb[p_from]); //sort_y.sort(&p_bb[p_from],p_size); } break; case Vector3::AXIS_Z: { SortArray<BVH *, BVHCmpZ> sort_z; sort_z.nth_element(0, p_size, p_size / 2, &p_bb[p_from]); //sort_z.sort(&p_bb[p_from],p_size); } break; } int left = _create_bvh(p_bvh, p_bb, p_from, p_size / 2, p_depth + 1, max_depth, max_alloc); int right = _create_bvh(p_bvh, p_bb, p_from + p_size / 2, p_size - p_size / 2, p_depth + 1, max_depth, max_alloc); int index = max_alloc++; BVH *_new = &p_bvh[index]; _new->aabb = aabb; _new->center = aabb.position + aabb.size * 0.5; _new->face = -1; _new->left = left; _new->right = right; _new->next = -1; return index; } int CSGBrushOperation::MeshMerge::_bvh_count_intersections(BVH *bvhptr, int p_max_depth, int p_bvh_first, const Vector3 &p_begin, const Vector3 &p_end, int p_exclude) const { uint32_t *stack = (uint32_t *)alloca(sizeof(int) * p_max_depth); enum { TEST_AABB_BIT = 0, VISIT_LEFT_BIT = 1, VISIT_RIGHT_BIT = 2, VISIT_DONE_BIT = 3, VISITED_BIT_SHIFT = 29, NODE_IDX_MASK = (1 << VISITED_BIT_SHIFT) - 1, VISITED_BIT_MASK = ~NODE_IDX_MASK, }; int intersections = 0; int level = 0; const Vector3 *vertexptr = points.ptr(); const Face *facesptr = faces.ptr(); AABB segment_aabb; segment_aabb.position = p_begin; segment_aabb.expand_to(p_end); int pos = p_bvh_first; stack[0] = pos; while (true) { uint32_t node = stack[level] & NODE_IDX_MASK; const BVH &b = bvhptr[node]; bool done = false; switch (stack[level] >> VISITED_BIT_SHIFT) { case TEST_AABB_BIT: { if (b.face >= 0) { const BVH *bp = &b; while (bp) { bool valid = segment_aabb.intersects(bp->aabb) && bp->aabb.intersects_segment(p_begin, p_end); if (valid && p_exclude != bp->face) { const Face &s = facesptr[bp->face]; Face3 f3(vertexptr[s.points[0]], vertexptr[s.points[1]], vertexptr[s.points[2]]); Vector3 res; if (f3.intersects_segment(p_begin, p_end, &res)) { intersections++; } } if (bp->next != -1) { bp = &bvhptr[bp->next]; } else { bp = NULL; } } stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node; } else { bool valid = segment_aabb.intersects(b.aabb) && b.aabb.intersects_segment(p_begin, p_end); if (!valid) { stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node; } else { stack[level] = (VISIT_LEFT_BIT << VISITED_BIT_SHIFT) | node; } } continue; } case VISIT_LEFT_BIT: { stack[level] = (VISIT_RIGHT_BIT << VISITED_BIT_SHIFT) | node; stack[level + 1] = b.left | TEST_AABB_BIT; level++; continue; } case VISIT_RIGHT_BIT: { stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node; stack[level + 1] = b.right | TEST_AABB_BIT; level++; continue; } case VISIT_DONE_BIT: { if (level == 0) { done = true; break; } else level--; continue; } } if (done) break; } return intersections; } void CSGBrushOperation::MeshMerge::mark_inside_faces() { // mark faces that are inside. This helps later do the boolean ops when merging. // this approach is very brute force (with a bunch of optimizatios, such as BVH and pre AABB intersection test) AABB aabb; for (int i = 0; i < points.size(); i++) { if (i == 0) { aabb.position = points[i]; } else { aabb.expand_to(points[i]); } } float max_distance = aabb.size.length() * 1.2; Vector<BVH> bvhvec; bvhvec.resize(faces.size() * 3); //will never be larger than this (todo make better) BVH *bvh = bvhvec.ptrw(); AABB faces_a; AABB faces_b; bool first_a = true; bool first_b = true; for (int i = 0; i < faces.size(); i++) { bvh[i].left = -1; bvh[i].right = -1; bvh[i].face = i; bvh[i].aabb.position = points[faces[i].points[0]]; bvh[i].aabb.expand_to(points[faces[i].points[1]]); bvh[i].aabb.expand_to(points[faces[i].points[2]]); bvh[i].center = bvh[i].aabb.position + bvh[i].aabb.size * 0.5; bvh[i].next = -1; if (faces[i].from_b) { if (first_b) { faces_b = bvh[i].aabb; first_b = false; } else { faces_b.merge_with(bvh[i].aabb); } } else { if (first_a) { faces_a = bvh[i].aabb; first_a = false; } else { faces_a.merge_with(bvh[i].aabb); } } } AABB intersection_aabb = faces_a.intersection(faces_b); intersection_aabb.grow_by(intersection_aabb.get_longest_axis_size() * 0.01); //grow a little, avoid numerical error if (intersection_aabb.size == Vector3()) //AABB do not intersect, so neither do shapes. return; Vector<BVH *> bvhtrvec; bvhtrvec.resize(faces.size()); BVH **bvhptr = bvhtrvec.ptrw(); for (int i = 0; i < faces.size(); i++) { bvhptr[i] = &bvh[i]; } int max_depth = 0; int max_alloc = faces.size(); _create_bvh(bvh, bvhptr, 0, faces.size(), 1, max_depth, max_alloc); for (int i = 0; i < faces.size(); i++) { if (!intersection_aabb.intersects(bvh[i].aabb)) continue; //not in AABB intersection, so not in face intersection Vector3 center = points[faces[i].points[0]]; center += points[faces[i].points[1]]; center += points[faces[i].points[2]]; center /= 3.0; Plane plane(points[faces[i].points[0]], points[faces[i].points[1]], points[faces[i].points[2]]); Vector3 target = center + plane.normal * max_distance + Vector3(0.0001234, 0.000512, 0.00013423); //reduce chance of edge hits by doing a small increment int intersections = _bvh_count_intersections(bvh, max_depth, max_alloc - 1, center, target, i); if (intersections & 1) { faces.write[i].inside = true; } } } void CSGBrushOperation::MeshMerge::add_face(const Vector3 &p_a, const Vector3 &p_b, const Vector3 &p_c, const Vector2 &p_uv_a, const Vector2 &p_uv_b, const Vector2 &p_uv_c, bool p_smooth, bool p_invert, const Ref<Material> &p_material, bool p_from_b) { Vector3 src_points[3] = { p_a, p_b, p_c }; Vector2 src_uvs[3] = { p_uv_a, p_uv_b, p_uv_c }; int indices[3]; for (int i = 0; i < 3; i++) { VertexKey vk; vk.x = int((double(src_points[i].x) + double(vertex_snap) * 0.31234) / double(vertex_snap)); vk.y = int((double(src_points[i].y) + double(vertex_snap) * 0.31234) / double(vertex_snap)); vk.z = int((double(src_points[i].z) + double(vertex_snap) * 0.31234) / double(vertex_snap)); int res; if (snap_cache.lookup(vk, res)) { indices[i] = res; } else { indices[i] = points.size(); points.push_back(src_points[i]); snap_cache.set(vk, indices[i]); } } if (indices[0] == indices[2] || indices[0] == indices[1] || indices[1] == indices[2]) return; //not adding degenerate MeshMerge::Face face; face.from_b = p_from_b; face.inside = false; face.smooth = p_smooth; face.invert = p_invert; if (p_material.is_valid()) { if (!materials.has(p_material)) { face.material_idx = materials.size(); materials[p_material] = face.material_idx; } else { face.material_idx = materials[p_material]; } } else { face.material_idx = -1; } for (int k = 0; k < 3; k++) { face.points[k] = indices[k]; face.uvs[k] = src_uvs[k]; ; } faces.push_back(face); } void CSGBrushOperation::merge_brushes(Operation p_operation, const CSGBrush &p_A, const CSGBrush &p_B, CSGBrush &result, float p_snap) { CallbackData cd; cd.self = this; cd.A = &p_A; cd.B = &p_B; MeshMerge mesh_merge; mesh_merge.vertex_snap = p_snap; //check intersections between faces. Use AABB to speed up precheck //this generates list of buildpolys and clips them. //this was originally BVH optimized, but its not really worth it. for (int i = 0; i < p_A.faces.size(); i++) { cd.face_a = i; for (int j = 0; j < p_B.faces.size(); j++) { if (p_A.faces[i].aabb.intersects(p_B.faces[j].aabb)) { _collision_callback(&p_A, i, cd.build_polys_A, &p_B, j, cd.build_polys_B, mesh_merge); } } } //merge the already cliped polys back to 3D for (Map<int, BuildPoly>::Element *E = cd.build_polys_A.front(); E; E = E->next()) { _merge_poly(mesh_merge, E->key(), E->get(), false); } for (Map<int, BuildPoly>::Element *E = cd.build_polys_B.front(); E; E = E->next()) { _merge_poly(mesh_merge, E->key(), E->get(), true); } //merge the non clipped faces back for (int i = 0; i < p_A.faces.size(); i++) { if (cd.build_polys_A.has(i)) continue; //made from buildpoly, skipping Vector3 points[3]; Vector2 uvs[3]; for (int j = 0; j < 3; j++) { points[j] = p_A.faces[i].vertices[j]; uvs[j] = p_A.faces[i].uvs[j]; } Ref<Material> material; if (p_A.faces[i].material != -1) { material = p_A.materials[p_A.faces[i].material]; } mesh_merge.add_face(points[0], points[1], points[2], uvs[0], uvs[1], uvs[2], p_A.faces[i].smooth, p_A.faces[i].invert, material, false); } for (int i = 0; i < p_B.faces.size(); i++) { if (cd.build_polys_B.has(i)) continue; //made from buildpoly, skipping Vector3 points[3]; Vector2 uvs[3]; for (int j = 0; j < 3; j++) { points[j] = p_B.faces[i].vertices[j]; uvs[j] = p_B.faces[i].uvs[j]; } Ref<Material> material; if (p_B.faces[i].material != -1) { material = p_B.materials[p_B.faces[i].material]; } mesh_merge.add_face(points[0], points[1], points[2], uvs[0], uvs[1], uvs[2], p_B.faces[i].smooth, p_B.faces[i].invert, material, true); } //mark faces that ended up inside the intersection mesh_merge.mark_inside_faces(); //regen new brush to start filling it again result.clear(); switch (p_operation) { case OPERATION_UNION: { int outside_count = 0; for (int i = 0; i < mesh_merge.faces.size(); i++) { if (mesh_merge.faces[i].inside) continue; outside_count++; } result.faces.resize(outside_count); outside_count = 0; for (int i = 0; i < mesh_merge.faces.size(); i++) { if (mesh_merge.faces[i].inside) continue; for (int j = 0; j < 3; j++) { result.faces.write[outside_count].vertices[j] = mesh_merge.points[mesh_merge.faces[i].points[j]]; result.faces.write[outside_count].uvs[j] = mesh_merge.faces[i].uvs[j]; } result.faces.write[outside_count].smooth = mesh_merge.faces[i].smooth; result.faces.write[outside_count].invert = mesh_merge.faces[i].invert; result.faces.write[outside_count].material = mesh_merge.faces[i].material_idx; outside_count++; } result._regen_face_aabbs(); } break; case OPERATION_INTERSECTION: { int inside_count = 0; for (int i = 0; i < mesh_merge.faces.size(); i++) { if (!mesh_merge.faces[i].inside) continue; inside_count++; } result.faces.resize(inside_count); inside_count = 0; for (int i = 0; i < mesh_merge.faces.size(); i++) { if (!mesh_merge.faces[i].inside) continue; for (int j = 0; j < 3; j++) { result.faces.write[inside_count].vertices[j] = mesh_merge.points[mesh_merge.faces[i].points[j]]; result.faces.write[inside_count].uvs[j] = mesh_merge.faces[i].uvs[j]; } result.faces.write[inside_count].smooth = mesh_merge.faces[i].smooth; result.faces.write[inside_count].invert = mesh_merge.faces[i].invert; result.faces.write[inside_count].material = mesh_merge.faces[i].material_idx; inside_count++; } result._regen_face_aabbs(); } break; case OPERATION_SUBSTRACTION: { int face_count = 0; for (int i = 0; i < mesh_merge.faces.size(); i++) { if (mesh_merge.faces[i].from_b && !mesh_merge.faces[i].inside) continue; if (!mesh_merge.faces[i].from_b && mesh_merge.faces[i].inside) continue; face_count++; } result.faces.resize(face_count); face_count = 0; for (int i = 0; i < mesh_merge.faces.size(); i++) { if (mesh_merge.faces[i].from_b && !mesh_merge.faces[i].inside) continue; if (!mesh_merge.faces[i].from_b && mesh_merge.faces[i].inside) continue; for (int j = 0; j < 3; j++) { result.faces.write[face_count].vertices[j] = mesh_merge.points[mesh_merge.faces[i].points[j]]; result.faces.write[face_count].uvs[j] = mesh_merge.faces[i].uvs[j]; } if (mesh_merge.faces[i].from_b) { //invert facing of insides of B SWAP(result.faces.write[face_count].vertices[1], result.faces.write[face_count].vertices[2]); SWAP(result.faces.write[face_count].uvs[1], result.faces.write[face_count].uvs[2]); } result.faces.write[face_count].smooth = mesh_merge.faces[i].smooth; result.faces.write[face_count].invert = mesh_merge.faces[i].invert; result.faces.write[face_count].material = mesh_merge.faces[i].material_idx; face_count++; } result._regen_face_aabbs(); } break; } //updatelist of materials result.materials.resize(mesh_merge.materials.size()); for (const Map<Ref<Material>, int>::Element *E = mesh_merge.materials.front(); E; E = E->next()) { result.materials.write[E->get()] = E->key(); } }