/*************************************************************************/ /* space_bullet.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "space_bullet.h" #include "bullet_physics_server.h" #include "bullet_types_converter.h" #include "bullet_utilities.h" #include "constraint_bullet.h" #include "core/project_settings.h" #include "core/ustring.h" #include "godot_collision_configuration.h" #include "godot_collision_dispatcher.h" #include "rigid_body_bullet.h" #include "servers/physics_server.h" #include "soft_body_bullet.h" #include #include #include #include #include #include #include #include #include #include /** @author AndreaCatania */ BulletPhysicsDirectSpaceState::BulletPhysicsDirectSpaceState(SpaceBullet *p_space) : PhysicsDirectSpaceState(), space(p_space) {} int BulletPhysicsDirectSpaceState::intersect_point(const Vector3 &p_point, ShapeResult *r_results, int p_result_max, const Set &p_exclude, uint32_t p_collision_mask, bool p_collide_with_bodies, bool p_collide_with_areas) { if (p_result_max <= 0) return 0; btVector3 bt_point; G_TO_B(p_point, bt_point); btSphereShape sphere_point(0.001f); btCollisionObject collision_object_point; collision_object_point.setCollisionShape(&sphere_point); collision_object_point.setWorldTransform(btTransform(btQuaternion::getIdentity(), bt_point)); // Setup query GodotAllContactResultCallback btResult(&collision_object_point, r_results, p_result_max, &p_exclude, p_collide_with_bodies, p_collide_with_areas); btResult.m_collisionFilterGroup = 0; btResult.m_collisionFilterMask = p_collision_mask; space->dynamicsWorld->contactTest(&collision_object_point, btResult); // The results is already populated by GodotAllConvexResultCallback return btResult.m_count; } bool BulletPhysicsDirectSpaceState::intersect_ray(const Vector3 &p_from, const Vector3 &p_to, RayResult &r_result, const Set &p_exclude, uint32_t p_collision_mask, bool p_collide_with_bodies, bool p_collide_with_areas, bool p_pick_ray) { btVector3 btVec_from; btVector3 btVec_to; G_TO_B(p_from, btVec_from); G_TO_B(p_to, btVec_to); // setup query GodotClosestRayResultCallback btResult(btVec_from, btVec_to, &p_exclude, p_collide_with_bodies, p_collide_with_areas); btResult.m_collisionFilterGroup = 0; btResult.m_collisionFilterMask = p_collision_mask; btResult.m_pickRay = p_pick_ray; space->dynamicsWorld->rayTest(btVec_from, btVec_to, btResult); if (btResult.hasHit()) { B_TO_G(btResult.m_hitPointWorld, r_result.position); B_TO_G(btResult.m_hitNormalWorld.normalize(), r_result.normal); CollisionObjectBullet *gObj = static_cast(btResult.m_collisionObject->getUserPointer()); if (gObj) { r_result.shape = btResult.m_shapeId; r_result.rid = gObj->get_self(); r_result.collider_id = gObj->get_instance_id(); r_result.collider = 0 == r_result.collider_id ? NULL : ObjectDB::get_instance(r_result.collider_id); } else { WARN_PRINT("The raycast performed has hit a collision object that is not part of Godot scene, please check it."); } return true; } else { return false; } } int BulletPhysicsDirectSpaceState::intersect_shape(const RID &p_shape, const Transform &p_xform, float p_margin, ShapeResult *r_results, int p_result_max, const Set &p_exclude, uint32_t p_collision_mask, bool p_collide_with_bodies, bool p_collide_with_areas) { if (p_result_max <= 0) return 0; ShapeBullet *shape = space->get_physics_server()->get_shape_owner()->get(p_shape); btCollisionShape *btShape = shape->create_bt_shape(p_xform.basis.get_scale_abs(), p_margin); if (!btShape->isConvex()) { bulletdelete(btShape); ERR_PRINT("The shape is not a convex shape, then is not supported: shape type: " + itos(shape->get_type())); return 0; } btConvexShape *btConvex = static_cast(btShape); btTransform bt_xform; G_TO_B(p_xform, bt_xform); UNSCALE_BT_BASIS(bt_xform); btCollisionObject collision_object; collision_object.setCollisionShape(btConvex); collision_object.setWorldTransform(bt_xform); GodotAllContactResultCallback btQuery(&collision_object, r_results, p_result_max, &p_exclude, p_collide_with_bodies, p_collide_with_areas); btQuery.m_collisionFilterGroup = 0; btQuery.m_collisionFilterMask = p_collision_mask; btQuery.m_closestDistanceThreshold = 0; space->dynamicsWorld->contactTest(&collision_object, btQuery); bulletdelete(btConvex); return btQuery.m_count; } bool BulletPhysicsDirectSpaceState::cast_motion(const RID &p_shape, const Transform &p_xform, const Vector3 &p_motion, float p_margin, float &r_closest_safe, float &r_closest_unsafe, const Set &p_exclude, uint32_t p_collision_mask, bool p_collide_with_bodies, bool p_collide_with_areas, ShapeRestInfo *r_info) { ShapeBullet *shape = space->get_physics_server()->get_shape_owner()->get(p_shape); btCollisionShape *btShape = shape->create_bt_shape(p_xform.basis.get_scale(), p_margin); if (!btShape->isConvex()) { bulletdelete(btShape); ERR_PRINT("The shape is not a convex shape, then is not supported: shape type: " + itos(shape->get_type())); return false; } btConvexShape *bt_convex_shape = static_cast(btShape); btVector3 bt_motion; G_TO_B(p_motion, bt_motion); btTransform bt_xform_from; G_TO_B(p_xform, bt_xform_from); UNSCALE_BT_BASIS(bt_xform_from); btTransform bt_xform_to(bt_xform_from); bt_xform_to.getOrigin() += bt_motion; GodotClosestConvexResultCallback btResult(bt_xform_from.getOrigin(), bt_xform_to.getOrigin(), &p_exclude, p_collide_with_bodies, p_collide_with_areas); btResult.m_collisionFilterGroup = 0; btResult.m_collisionFilterMask = p_collision_mask; space->dynamicsWorld->convexSweepTest(bt_convex_shape, bt_xform_from, bt_xform_to, btResult, space->dynamicsWorld->getDispatchInfo().m_allowedCcdPenetration); r_closest_unsafe = 1.0; r_closest_safe = 1.0; if (btResult.hasHit()) { const btScalar l = bt_motion.length(); r_closest_unsafe = btResult.m_closestHitFraction; r_closest_safe = MAX(r_closest_unsafe - (1 - ((l - 0.01) / l)), 0); if (r_info) { if (btCollisionObject::CO_RIGID_BODY == btResult.m_hitCollisionObject->getInternalType()) { B_TO_G(static_cast(btResult.m_hitCollisionObject)->getVelocityInLocalPoint(btResult.m_hitPointWorld), r_info->linear_velocity); } CollisionObjectBullet *collision_object = static_cast(btResult.m_hitCollisionObject->getUserPointer()); B_TO_G(btResult.m_hitPointWorld, r_info->point); B_TO_G(btResult.m_hitNormalWorld, r_info->normal); r_info->rid = collision_object->get_self(); r_info->collider_id = collision_object->get_instance_id(); r_info->shape = btResult.m_shapeId; } } bulletdelete(bt_convex_shape); return true; // Mean success } /// Returns the list of contacts pairs in this order: Local contact, other body contact bool BulletPhysicsDirectSpaceState::collide_shape(RID p_shape, const Transform &p_shape_xform, float p_margin, Vector3 *r_results, int p_result_max, int &r_result_count, const Set &p_exclude, uint32_t p_collision_mask, bool p_collide_with_bodies, bool p_collide_with_areas) { if (p_result_max <= 0) return 0; ShapeBullet *shape = space->get_physics_server()->get_shape_owner()->get(p_shape); btCollisionShape *btShape = shape->create_bt_shape(p_shape_xform.basis.get_scale_abs(), p_margin); if (!btShape->isConvex()) { bulletdelete(btShape); ERR_PRINT("The shape is not a convex shape, then is not supported: shape type: " + itos(shape->get_type())); return 0; } btConvexShape *btConvex = static_cast(btShape); btTransform bt_xform; G_TO_B(p_shape_xform, bt_xform); UNSCALE_BT_BASIS(bt_xform); btCollisionObject collision_object; collision_object.setCollisionShape(btConvex); collision_object.setWorldTransform(bt_xform); GodotContactPairContactResultCallback btQuery(&collision_object, r_results, p_result_max, &p_exclude, p_collide_with_bodies, p_collide_with_areas); btQuery.m_collisionFilterGroup = 0; btQuery.m_collisionFilterMask = p_collision_mask; btQuery.m_closestDistanceThreshold = 0; space->dynamicsWorld->contactTest(&collision_object, btQuery); r_result_count = btQuery.m_count; bulletdelete(btConvex); return btQuery.m_count; } bool BulletPhysicsDirectSpaceState::rest_info(RID p_shape, const Transform &p_shape_xform, float p_margin, ShapeRestInfo *r_info, const Set &p_exclude, uint32_t p_collision_mask, bool p_collide_with_bodies, bool p_collide_with_areas) { ShapeBullet *shape = space->get_physics_server()->get_shape_owner()->get(p_shape); btCollisionShape *btShape = shape->create_bt_shape(p_shape_xform.basis.get_scale_abs(), p_margin); if (!btShape->isConvex()) { bulletdelete(btShape); ERR_PRINT("The shape is not a convex shape, then is not supported: shape type: " + itos(shape->get_type())); return 0; } btConvexShape *btConvex = static_cast(btShape); btTransform bt_xform; G_TO_B(p_shape_xform, bt_xform); UNSCALE_BT_BASIS(bt_xform); btCollisionObject collision_object; collision_object.setCollisionShape(btConvex); collision_object.setWorldTransform(bt_xform); GodotRestInfoContactResultCallback btQuery(&collision_object, r_info, &p_exclude, p_collide_with_bodies, p_collide_with_areas); btQuery.m_collisionFilterGroup = 0; btQuery.m_collisionFilterMask = p_collision_mask; btQuery.m_closestDistanceThreshold = 0; space->dynamicsWorld->contactTest(&collision_object, btQuery); bulletdelete(btConvex); if (btQuery.m_collided) { if (btCollisionObject::CO_RIGID_BODY == btQuery.m_rest_info_collision_object->getInternalType()) { B_TO_G(static_cast(btQuery.m_rest_info_collision_object)->getVelocityInLocalPoint(btQuery.m_rest_info_bt_point), r_info->linear_velocity); } B_TO_G(btQuery.m_rest_info_bt_point, r_info->point); } return btQuery.m_collided; } Vector3 BulletPhysicsDirectSpaceState::get_closest_point_to_object_volume(RID p_object, const Vector3 p_point) const { RigidCollisionObjectBullet *rigid_object = space->get_physics_server()->get_rigid_collisin_object(p_object); ERR_FAIL_COND_V(!rigid_object, Vector3()); btVector3 out_closest_point(0, 0, 0); btScalar out_distance = 1e20; btVector3 bt_point; G_TO_B(p_point, bt_point); btSphereShape point_shape(0.); btCollisionShape *shape; btConvexShape *convex_shape; btTransform child_transform; btTransform body_transform(rigid_object->get_bt_collision_object()->getWorldTransform()); btGjkPairDetector::ClosestPointInput input; input.m_transformA.getBasis().setIdentity(); input.m_transformA.setOrigin(bt_point); bool shapes_found = false; for (int i = rigid_object->get_shape_count() - 1; 0 <= i; --i) { shape = rigid_object->get_bt_shape(i); if (shape->isConvex()) { child_transform = rigid_object->get_bt_shape_transform(i); convex_shape = static_cast(shape); input.m_transformB = body_transform * child_transform; btPointCollector result; btGjkPairDetector gjk_pair_detector(&point_shape, convex_shape, space->gjk_simplex_solver, space->gjk_epa_pen_solver); gjk_pair_detector.getClosestPoints(input, result, 0); if (out_distance > result.m_distance) { out_distance = result.m_distance; out_closest_point = result.m_pointInWorld; } } shapes_found = true; } if (shapes_found) { Vector3 out; B_TO_G(out_closest_point, out); return out; } else { // no shapes found, use distance to origin. return rigid_object->get_transform().get_origin(); } } SpaceBullet::SpaceBullet() : broadphase(NULL), collisionConfiguration(NULL), dispatcher(NULL), solver(NULL), dynamicsWorld(NULL), soft_body_world_info(NULL), ghostPairCallback(NULL), godotFilterCallback(NULL), gravityDirection(0, -1, 0), gravityMagnitude(10), contactDebugCount(0), delta_time(0.) { create_empty_world(GLOBAL_DEF("physics/3d/active_soft_world", true)); direct_access = memnew(BulletPhysicsDirectSpaceState(this)); } SpaceBullet::~SpaceBullet() { memdelete(direct_access); destroy_world(); } void SpaceBullet::flush_queries() { const btCollisionObjectArray &colObjArray = dynamicsWorld->getCollisionObjectArray(); for (int i = colObjArray.size() - 1; 0 <= i; --i) { static_cast(colObjArray[i]->getUserPointer())->dispatch_callbacks(); } } void SpaceBullet::step(real_t p_delta_time) { delta_time = p_delta_time; dynamicsWorld->stepSimulation(p_delta_time, 0, 0); } void SpaceBullet::set_param(PhysicsServer::AreaParameter p_param, const Variant &p_value) { assert(dynamicsWorld); switch (p_param) { case PhysicsServer::AREA_PARAM_GRAVITY: gravityMagnitude = p_value; update_gravity(); break; case PhysicsServer::AREA_PARAM_GRAVITY_VECTOR: gravityDirection = p_value; update_gravity(); break; case PhysicsServer::AREA_PARAM_LINEAR_DAMP: case PhysicsServer::AREA_PARAM_ANGULAR_DAMP: break; // No damp case PhysicsServer::AREA_PARAM_PRIORITY: // Priority is always 0, the lower break; case PhysicsServer::AREA_PARAM_GRAVITY_IS_POINT: case PhysicsServer::AREA_PARAM_GRAVITY_DISTANCE_SCALE: case PhysicsServer::AREA_PARAM_GRAVITY_POINT_ATTENUATION: break; default: WARN_PRINT("This set parameter (" + itos(p_param) + ") is ignored, the SpaceBullet doesn't support it."); break; } } Variant SpaceBullet::get_param(PhysicsServer::AreaParameter p_param) { switch (p_param) { case PhysicsServer::AREA_PARAM_GRAVITY: return gravityMagnitude; case PhysicsServer::AREA_PARAM_GRAVITY_VECTOR: return gravityDirection; case PhysicsServer::AREA_PARAM_LINEAR_DAMP: case PhysicsServer::AREA_PARAM_ANGULAR_DAMP: return 0; // No damp case PhysicsServer::AREA_PARAM_PRIORITY: return 0; // Priority is always 0, the lower case PhysicsServer::AREA_PARAM_GRAVITY_IS_POINT: return false; case PhysicsServer::AREA_PARAM_GRAVITY_DISTANCE_SCALE: return 0; case PhysicsServer::AREA_PARAM_GRAVITY_POINT_ATTENUATION: return 0; default: WARN_PRINT("This get parameter (" + itos(p_param) + ") is ignored, the SpaceBullet doesn't support it."); return Variant(); } } void SpaceBullet::set_param(PhysicsServer::SpaceParameter p_param, real_t p_value) { switch (p_param) { case PhysicsServer::SPACE_PARAM_CONTACT_RECYCLE_RADIUS: case PhysicsServer::SPACE_PARAM_CONTACT_MAX_SEPARATION: case PhysicsServer::SPACE_PARAM_BODY_MAX_ALLOWED_PENETRATION: case PhysicsServer::SPACE_PARAM_BODY_LINEAR_VELOCITY_SLEEP_THRESHOLD: case PhysicsServer::SPACE_PARAM_BODY_ANGULAR_VELOCITY_SLEEP_THRESHOLD: case PhysicsServer::SPACE_PARAM_BODY_TIME_TO_SLEEP: case PhysicsServer::SPACE_PARAM_BODY_ANGULAR_VELOCITY_DAMP_RATIO: case PhysicsServer::SPACE_PARAM_CONSTRAINT_DEFAULT_BIAS: default: WARN_PRINT("This set parameter (" + itos(p_param) + ") is ignored, the SpaceBullet doesn't support it."); break; } } real_t SpaceBullet::get_param(PhysicsServer::SpaceParameter p_param) { switch (p_param) { case PhysicsServer::SPACE_PARAM_CONTACT_RECYCLE_RADIUS: case PhysicsServer::SPACE_PARAM_CONTACT_MAX_SEPARATION: case PhysicsServer::SPACE_PARAM_BODY_MAX_ALLOWED_PENETRATION: case PhysicsServer::SPACE_PARAM_BODY_LINEAR_VELOCITY_SLEEP_THRESHOLD: case PhysicsServer::SPACE_PARAM_BODY_ANGULAR_VELOCITY_SLEEP_THRESHOLD: case PhysicsServer::SPACE_PARAM_BODY_TIME_TO_SLEEP: case PhysicsServer::SPACE_PARAM_BODY_ANGULAR_VELOCITY_DAMP_RATIO: case PhysicsServer::SPACE_PARAM_CONSTRAINT_DEFAULT_BIAS: default: WARN_PRINT("The SpaceBullet doesn't support this get parameter (" + itos(p_param) + "), 0 is returned."); return 0.f; } } void SpaceBullet::add_area(AreaBullet *p_area) { areas.push_back(p_area); dynamicsWorld->addCollisionObject(p_area->get_bt_ghost(), p_area->get_collision_layer(), p_area->get_collision_mask()); } void SpaceBullet::remove_area(AreaBullet *p_area) { areas.erase(p_area); dynamicsWorld->removeCollisionObject(p_area->get_bt_ghost()); } void SpaceBullet::reload_collision_filters(AreaBullet *p_area) { btGhostObject *ghost_object = p_area->get_bt_ghost(); btBroadphaseProxy *ghost_proxy = ghost_object->getBroadphaseHandle(); ghost_proxy->m_collisionFilterGroup = p_area->get_collision_layer(); ghost_proxy->m_collisionFilterMask = p_area->get_collision_mask(); dynamicsWorld->refreshBroadphaseProxy(ghost_object); } void SpaceBullet::add_rigid_body(RigidBodyBullet *p_body) { if (p_body->is_static()) { dynamicsWorld->addCollisionObject(p_body->get_bt_rigid_body(), p_body->get_collision_layer(), p_body->get_collision_mask()); } else { dynamicsWorld->addRigidBody(p_body->get_bt_rigid_body(), p_body->get_collision_layer(), p_body->get_collision_mask()); p_body->scratch_space_override_modificator(); } } void SpaceBullet::remove_rigid_body(RigidBodyBullet *p_body) { if (p_body->is_static()) { dynamicsWorld->removeCollisionObject(p_body->get_bt_rigid_body()); } else { dynamicsWorld->removeRigidBody(p_body->get_bt_rigid_body()); } } void SpaceBullet::reload_collision_filters(RigidBodyBullet *p_body) { btRigidBody *rigid_body = p_body->get_bt_rigid_body(); btBroadphaseProxy *body_proxy = rigid_body->getBroadphaseProxy(); body_proxy->m_collisionFilterGroup = p_body->get_collision_layer(); body_proxy->m_collisionFilterMask = p_body->get_collision_mask(); dynamicsWorld->refreshBroadphaseProxy(rigid_body); } void SpaceBullet::add_soft_body(SoftBodyBullet *p_body) { if (is_using_soft_world()) { if (p_body->get_bt_soft_body()) { p_body->get_bt_soft_body()->m_worldInfo = get_soft_body_world_info(); static_cast(dynamicsWorld)->addSoftBody(p_body->get_bt_soft_body(), p_body->get_collision_layer(), p_body->get_collision_mask()); } } else { ERR_PRINT("This soft body can't be added to non soft world"); } } void SpaceBullet::remove_soft_body(SoftBodyBullet *p_body) { if (is_using_soft_world()) { if (p_body->get_bt_soft_body()) { static_cast(dynamicsWorld)->removeSoftBody(p_body->get_bt_soft_body()); p_body->get_bt_soft_body()->m_worldInfo = NULL; } } } void SpaceBullet::reload_collision_filters(SoftBodyBullet *p_body) { // This is necessary to change collision filter remove_soft_body(p_body); add_soft_body(p_body); } void SpaceBullet::add_constraint(ConstraintBullet *p_constraint, bool disableCollisionsBetweenLinkedBodies) { p_constraint->set_space(this); dynamicsWorld->addConstraint(p_constraint->get_bt_constraint(), disableCollisionsBetweenLinkedBodies); } void SpaceBullet::remove_constraint(ConstraintBullet *p_constraint) { dynamicsWorld->removeConstraint(p_constraint->get_bt_constraint()); } int SpaceBullet::get_num_collision_objects() const { return dynamicsWorld->getNumCollisionObjects(); } void SpaceBullet::remove_all_collision_objects() { for (int i = dynamicsWorld->getNumCollisionObjects() - 1; 0 <= i; --i) { btCollisionObject *btObj = dynamicsWorld->getCollisionObjectArray()[i]; CollisionObjectBullet *colObj = static_cast(btObj->getUserPointer()); colObj->set_space(NULL); } } void onBulletPreTickCallback(btDynamicsWorld *p_dynamicsWorld, btScalar timeStep) { static_cast(p_dynamicsWorld->getWorldUserInfo())->flush_queries(); } void onBulletTickCallback(btDynamicsWorld *p_dynamicsWorld, btScalar timeStep) { const btCollisionObjectArray &colObjArray = p_dynamicsWorld->getCollisionObjectArray(); // Notify all Collision objects the collision checker is started for (int i = colObjArray.size() - 1; 0 <= i; --i) { static_cast(colObjArray[i]->getUserPointer())->on_collision_checker_start(); } SpaceBullet *sb = static_cast(p_dynamicsWorld->getWorldUserInfo()); sb->check_ghost_overlaps(); sb->check_body_collision(); for (int i = colObjArray.size() - 1; 0 <= i; --i) { static_cast(colObjArray[i]->getUserPointer())->on_collision_checker_end(); } } BulletPhysicsDirectSpaceState *SpaceBullet::get_direct_state() { return direct_access; } btScalar calculateGodotCombinedRestitution(const btCollisionObject *body0, const btCollisionObject *body1) { return CLAMP(body0->getRestitution() + body1->getRestitution(), 0, 1); } btScalar calculateGodotCombinedFriction(const btCollisionObject *body0, const btCollisionObject *body1) { return ABS(MIN(body0->getFriction(), body1->getFriction())); } void SpaceBullet::create_empty_world(bool p_create_soft_world) { gjk_epa_pen_solver = bulletnew(btGjkEpaPenetrationDepthSolver); gjk_simplex_solver = bulletnew(btVoronoiSimplexSolver); void *world_mem; if (p_create_soft_world) { world_mem = malloc(sizeof(btSoftRigidDynamicsWorld)); } else { world_mem = malloc(sizeof(btDiscreteDynamicsWorld)); } ERR_FAIL_COND_MSG(!world_mem, "Out of memory."); if (p_create_soft_world) { collisionConfiguration = bulletnew(GodotSoftCollisionConfiguration(static_cast(world_mem))); } else { collisionConfiguration = bulletnew(GodotCollisionConfiguration(static_cast(world_mem))); } dispatcher = bulletnew(GodotCollisionDispatcher(collisionConfiguration)); broadphase = bulletnew(btDbvtBroadphase); solver = bulletnew(btSequentialImpulseConstraintSolver); if (p_create_soft_world) { dynamicsWorld = new (world_mem) btSoftRigidDynamicsWorld(dispatcher, broadphase, solver, collisionConfiguration); soft_body_world_info = bulletnew(btSoftBodyWorldInfo); } else { dynamicsWorld = new (world_mem) btDiscreteDynamicsWorld(dispatcher, broadphase, solver, collisionConfiguration); } ghostPairCallback = bulletnew(btGhostPairCallback); godotFilterCallback = bulletnew(GodotFilterCallback); gCalculateCombinedRestitutionCallback = &calculateGodotCombinedRestitution; gCalculateCombinedFrictionCallback = &calculateGodotCombinedFriction; gContactAddedCallback = &godotContactAddedCallback; dynamicsWorld->setWorldUserInfo(this); dynamicsWorld->setInternalTickCallback(onBulletPreTickCallback, this, true); dynamicsWorld->setInternalTickCallback(onBulletTickCallback, this, false); dynamicsWorld->getBroadphase()->getOverlappingPairCache()->setInternalGhostPairCallback(ghostPairCallback); // Setup ghost check dynamicsWorld->getPairCache()->setOverlapFilterCallback(godotFilterCallback); if (soft_body_world_info) { soft_body_world_info->m_broadphase = broadphase; soft_body_world_info->m_dispatcher = dispatcher; soft_body_world_info->m_sparsesdf.Initialize(); } update_gravity(); } void SpaceBullet::destroy_world() { /// The world elements (like: Collision Objects, Constraints, Shapes) are managed by godot dynamicsWorld->getBroadphase()->getOverlappingPairCache()->setInternalGhostPairCallback(NULL); dynamicsWorld->getPairCache()->setOverlapFilterCallback(NULL); bulletdelete(ghostPairCallback); bulletdelete(godotFilterCallback); // Deallocate world dynamicsWorld->~btDiscreteDynamicsWorld(); free(dynamicsWorld); dynamicsWorld = NULL; bulletdelete(solver); bulletdelete(broadphase); bulletdelete(dispatcher); bulletdelete(collisionConfiguration); bulletdelete(soft_body_world_info); bulletdelete(gjk_simplex_solver); bulletdelete(gjk_epa_pen_solver); } void SpaceBullet::check_ghost_overlaps() { /// Algorithm support variables btCollisionShape *other_body_shape; btConvexShape *area_shape; btGjkPairDetector::ClosestPointInput gjk_input; AreaBullet *area; int x(-1), i(-1), y(-1), z(-1), indexOverlap(-1); /// For each areas for (x = areas.size() - 1; 0 <= x; --x) { area = areas[x]; btVector3 area_scale(area->get_bt_body_scale()); if (!area->is_monitoring()) continue; /// 1. Reset all states for (i = area->overlappingObjects.size() - 1; 0 <= i; --i) { AreaBullet::OverlappingObjectData &otherObj = area->overlappingObjects.write[i]; // This check prevent the overwrite of ENTER state // if this function is called more times before dispatchCallbacks if (otherObj.state != AreaBullet::OVERLAP_STATE_ENTER) { otherObj.state = AreaBullet::OVERLAP_STATE_DIRTY; } } /// 2. Check all overlapping objects using GJK const btAlignedObjectArray ghostOverlaps = area->get_bt_ghost()->getOverlappingPairs(); // For each overlapping for (i = ghostOverlaps.size() - 1; 0 <= i; --i) { bool hasOverlap = false; btCollisionObject *overlapped_bt_co = ghostOverlaps[i]; RigidCollisionObjectBullet *otherObject = static_cast(overlapped_bt_co->getUserPointer()); btVector3 other_body_scale(otherObject->get_bt_body_scale()); if (!area->is_transform_changed() && !otherObject->is_transform_changed()) { hasOverlap = -1 != area->find_overlapping_object(otherObject); goto collision_found; } if (overlapped_bt_co->getUserIndex() == CollisionObjectBullet::TYPE_AREA) { if (!static_cast(overlapped_bt_co->getUserPointer())->is_monitorable()) continue; } else if (overlapped_bt_co->getUserIndex() != CollisionObjectBullet::TYPE_RIGID_BODY) continue; // For each area shape for (y = area->get_shape_count() - 1; 0 <= y; --y) { if (!area->get_bt_shape(y)->isConvex()) continue; btTransform area_shape_treansform(area->get_bt_shape_transform(y)); area_shape_treansform.getOrigin() *= area_scale; gjk_input.m_transformA = area->get_transform__bullet() * area_shape_treansform; area_shape = static_cast(area->get_bt_shape(y)); // For each other object shape for (z = otherObject->get_shape_count() - 1; 0 <= z; --z) { other_body_shape = static_cast(otherObject->get_bt_shape(z)); if (other_body_shape->isConcave()) continue; btTransform other_shape_transform(otherObject->get_bt_shape_transform(z)); other_shape_transform.getOrigin() *= other_body_scale; gjk_input.m_transformB = otherObject->get_transform__bullet() * other_shape_transform; if (other_body_shape->isConvex()) { btPointCollector result; btGjkPairDetector gjk_pair_detector( area_shape, static_cast(other_body_shape), gjk_simplex_solver, gjk_epa_pen_solver); gjk_pair_detector.getClosestPoints(gjk_input, result, 0); if (0 >= result.m_distance) { hasOverlap = true; goto collision_found; } } else { btCollisionObjectWrapper obA(NULL, area_shape, area->get_bt_ghost(), gjk_input.m_transformA, -1, y); btCollisionObjectWrapper obB(NULL, other_body_shape, otherObject->get_bt_collision_object(), gjk_input.m_transformB, -1, z); btCollisionAlgorithm *algorithm = dispatcher->findAlgorithm(&obA, &obB, NULL, BT_CONTACT_POINT_ALGORITHMS); if (!algorithm) continue; GodotDeepPenetrationContactResultCallback contactPointResult(&obA, &obB); algorithm->processCollision(&obA, &obB, dynamicsWorld->getDispatchInfo(), &contactPointResult); algorithm->~btCollisionAlgorithm(); dispatcher->freeCollisionAlgorithm(algorithm); if (contactPointResult.hasHit()) { hasOverlap = true; goto collision_found; } } } // ~For each other object shape } // ~For each area shape collision_found: if (!hasOverlap) continue; indexOverlap = area->find_overlapping_object(otherObject); if (-1 == indexOverlap) { // Not found area->add_overlap(otherObject); } else { // Found area->put_overlap_as_inside(indexOverlap); } } /// 3. Remove not overlapping for (i = area->overlappingObjects.size() - 1; 0 <= i; --i) { // If the overlap has DIRTY state it means that it's no more overlapping if (area->overlappingObjects[i].state == AreaBullet::OVERLAP_STATE_DIRTY) { area->put_overlap_as_exit(i); } } } } void SpaceBullet::check_body_collision() { #ifdef DEBUG_ENABLED reset_debug_contact_count(); #endif const int numManifolds = dynamicsWorld->getDispatcher()->getNumManifolds(); for (int i = 0; i < numManifolds; ++i) { btPersistentManifold *contactManifold = dynamicsWorld->getDispatcher()->getManifoldByIndexInternal(i); // I know this static cast is a bit risky. But I'm checking its type just after it. // This allow me to avoid a lot of other cast and checks RigidBodyBullet *bodyA = static_cast(contactManifold->getBody0()->getUserPointer()); RigidBodyBullet *bodyB = static_cast(contactManifold->getBody1()->getUserPointer()); if (CollisionObjectBullet::TYPE_RIGID_BODY == bodyA->getType() && CollisionObjectBullet::TYPE_RIGID_BODY == bodyB->getType()) { if (!bodyA->can_add_collision() && !bodyB->can_add_collision()) { continue; } const int numContacts = contactManifold->getNumContacts(); /// Since I don't need report all contacts for these objects, /// So report only the first #define REPORT_ALL_CONTACTS 0 #if REPORT_ALL_CONTACTS for (int j = 0; j < numContacts; j++) { btManifoldPoint &pt = contactManifold->getContactPoint(j); #else if (numContacts) { btManifoldPoint &pt = contactManifold->getContactPoint(0); #endif if ( pt.getDistance() <= 0.0 || bodyA->was_colliding(bodyB) || bodyB->was_colliding(bodyA)) { Vector3 collisionWorldPosition; Vector3 collisionLocalPosition; Vector3 normalOnB; float appliedImpulse = pt.m_appliedImpulse; B_TO_G(pt.m_normalWorldOnB, normalOnB); if (bodyA->can_add_collision()) { B_TO_G(pt.getPositionWorldOnB(), collisionWorldPosition); /// pt.m_localPointB Doesn't report the exact point in local space B_TO_G(pt.getPositionWorldOnB() - contactManifold->getBody1()->getWorldTransform().getOrigin(), collisionLocalPosition); bodyA->add_collision_object(bodyB, collisionWorldPosition, collisionLocalPosition, normalOnB, appliedImpulse, pt.m_index1, pt.m_index0); } if (bodyB->can_add_collision()) { B_TO_G(pt.getPositionWorldOnA(), collisionWorldPosition); /// pt.m_localPointA Doesn't report the exact point in local space B_TO_G(pt.getPositionWorldOnA() - contactManifold->getBody0()->getWorldTransform().getOrigin(), collisionLocalPosition); bodyB->add_collision_object(bodyA, collisionWorldPosition, collisionLocalPosition, normalOnB * -1, appliedImpulse * -1, pt.m_index0, pt.m_index1); } #ifdef DEBUG_ENABLED if (is_debugging_contacts()) { add_debug_contact(collisionWorldPosition); } #endif } } } } } void SpaceBullet::update_gravity() { btVector3 btGravity; G_TO_B(gravityDirection * gravityMagnitude, btGravity); //dynamicsWorld->setGravity(btGravity); dynamicsWorld->setGravity(btVector3(0, 0, 0)); if (soft_body_world_info) { soft_body_world_info->m_gravity = btGravity; } } /// IMPORTANT: Please don't turn it ON this is not managed correctly!! /// I'm leaving this here just for future tests. /// Debug motion and normal vector drawing #define debug_test_motion 0 #define RECOVERING_MOVEMENT_SCALE 0.4 #define RECOVERING_MOVEMENT_CYCLES 4 #if debug_test_motion #include "scene/3d/immediate_geometry.h" static ImmediateGeometry *motionVec(NULL); static ImmediateGeometry *normalLine(NULL); static Ref red_mat; static Ref blue_mat; #endif bool SpaceBullet::test_body_motion(RigidBodyBullet *p_body, const Transform &p_from, const Vector3 &p_motion, bool p_infinite_inertia, PhysicsServer::MotionResult *r_result, bool p_exclude_raycast_shapes) { #if debug_test_motion /// Yes I know this is not good, but I've used it as fast debugging hack. /// I'm leaving it here just for speedup the other eventual debugs if (!normalLine) { motionVec = memnew(ImmediateGeometry); normalLine = memnew(ImmediateGeometry); SceneTree::get_singleton()->get_current_scene()->add_child(motionVec); SceneTree::get_singleton()->get_current_scene()->add_child(normalLine); motionVec->set_as_toplevel(true); normalLine->set_as_toplevel(true); red_mat = Ref(memnew(SpatialMaterial)); red_mat->set_flag(SpatialMaterial::FLAG_UNSHADED, true); red_mat->set_line_width(20.0); red_mat->set_feature(SpatialMaterial::FEATURE_TRANSPARENT, true); red_mat->set_flag(SpatialMaterial::FLAG_ALBEDO_FROM_VERTEX_COLOR, true); red_mat->set_flag(SpatialMaterial::FLAG_SRGB_VERTEX_COLOR, true); red_mat->set_albedo(Color(1, 0, 0, 1)); motionVec->set_material_override(red_mat); blue_mat = Ref(memnew(SpatialMaterial)); blue_mat->set_flag(SpatialMaterial::FLAG_UNSHADED, true); blue_mat->set_line_width(20.0); blue_mat->set_feature(SpatialMaterial::FEATURE_TRANSPARENT, true); blue_mat->set_flag(SpatialMaterial::FLAG_ALBEDO_FROM_VERTEX_COLOR, true); blue_mat->set_flag(SpatialMaterial::FLAG_SRGB_VERTEX_COLOR, true); blue_mat->set_albedo(Color(0, 0, 1, 1)); normalLine->set_material_override(blue_mat); } #endif btTransform body_transform; G_TO_B(p_from, body_transform); UNSCALE_BT_BASIS(body_transform); btVector3 initial_recover_motion(0, 0, 0); { /// Phase one - multi shapes depenetration using margin for (int t(RECOVERING_MOVEMENT_CYCLES); 0 < t; --t) { if (!recover_from_penetration(p_body, body_transform, RECOVERING_MOVEMENT_SCALE, p_infinite_inertia, initial_recover_motion)) { break; } } // Add recover movement in order to make it safe body_transform.getOrigin() += initial_recover_motion; } btVector3 motion; G_TO_B(p_motion, motion); { // Phase two - sweep test, from a secure position without margin const int shape_count(p_body->get_shape_count()); #if debug_test_motion Vector3 sup_line; B_TO_G(body_safe_position.getOrigin(), sup_line); motionVec->clear(); motionVec->begin(Mesh::PRIMITIVE_LINES, NULL); motionVec->add_vertex(sup_line); motionVec->add_vertex(sup_line + p_motion * 10); motionVec->end(); #endif for (int shIndex = 0; shIndex < shape_count && !motion.fuzzyZero(); ++shIndex) { if (p_body->is_shape_disabled(shIndex)) { continue; } if (!p_body->get_bt_shape(shIndex)->isConvex()) { // Skip no convex shape continue; } if (p_exclude_raycast_shapes && p_body->get_bt_shape(shIndex)->getShapeType() == CUSTOM_CONVEX_SHAPE_TYPE) { // Skip rayshape in order to implement custom separation process continue; } btConvexShape *convex_shape_test(static_cast(p_body->get_bt_shape(shIndex))); btTransform shape_world_from = body_transform * p_body->get_kinematic_utilities()->shapes[shIndex].transform; btTransform shape_world_to(shape_world_from); shape_world_to.getOrigin() += motion; GodotKinClosestConvexResultCallback btResult(shape_world_from.getOrigin(), shape_world_to.getOrigin(), p_body, p_infinite_inertia); btResult.m_collisionFilterGroup = p_body->get_collision_layer(); btResult.m_collisionFilterMask = p_body->get_collision_mask(); dynamicsWorld->convexSweepTest(convex_shape_test, shape_world_from, shape_world_to, btResult, dynamicsWorld->getDispatchInfo().m_allowedCcdPenetration); if (btResult.hasHit()) { /// Since for each sweep test I fix the motion of new shapes in base the recover result, /// if another shape will hit something it means that has a deepest penetration respect the previous shape motion *= btResult.m_closestHitFraction; } } body_transform.getOrigin() += motion; } bool has_penetration = false; { /// Phase three - contact test with margin btVector3 __rec(0, 0, 0); RecoverResult r_recover_result; has_penetration = recover_from_penetration(p_body, body_transform, 1, p_infinite_inertia, __rec, &r_recover_result); // Parse results if (r_result) { B_TO_G(motion + initial_recover_motion + __rec, r_result->motion); if (has_penetration) { const btRigidBody *btRigid = static_cast(r_recover_result.other_collision_object); CollisionObjectBullet *collisionObject = static_cast(btRigid->getUserPointer()); B_TO_G(motion, r_result->remainder); // is the remaining movements r_result->remainder = p_motion - r_result->remainder; B_TO_G(r_recover_result.pointWorld, r_result->collision_point); B_TO_G(r_recover_result.normal, r_result->collision_normal); B_TO_G(btRigid->getVelocityInLocalPoint(r_recover_result.pointWorld - btRigid->getWorldTransform().getOrigin()), r_result->collider_velocity); // It calculates velocity at point and assign it using special function Bullet_to_Godot r_result->collider = collisionObject->get_self(); r_result->collider_id = collisionObject->get_instance_id(); r_result->collider_shape = r_recover_result.other_compound_shape_index; r_result->collision_local_shape = r_recover_result.local_shape_most_recovered; #if debug_test_motion Vector3 sup_line2; B_TO_G(motion, sup_line2); normalLine->clear(); normalLine->begin(Mesh::PRIMITIVE_LINES, NULL); normalLine->add_vertex(r_result->collision_point); normalLine->add_vertex(r_result->collision_point + r_result->collision_normal * 10); normalLine->end(); #endif } else { r_result->remainder = Vector3(); } } } return has_penetration; } int SpaceBullet::test_ray_separation(RigidBodyBullet *p_body, const Transform &p_transform, bool p_infinite_inertia, Vector3 &r_recover_motion, PhysicsServer::SeparationResult *r_results, int p_result_max, float p_margin) { btTransform body_transform; G_TO_B(p_transform, body_transform); UNSCALE_BT_BASIS(body_transform); btVector3 recover_motion(0, 0, 0); int rays_found = 0; int rays_found_this_round = 0; for (int t(RECOVERING_MOVEMENT_CYCLES); 0 < t; --t) { PhysicsServer::SeparationResult *next_results = &r_results[rays_found]; rays_found_this_round = recover_from_penetration_ray(p_body, body_transform, RECOVERING_MOVEMENT_SCALE, p_infinite_inertia, p_result_max - rays_found, recover_motion, next_results); rays_found += rays_found_this_round; if (rays_found_this_round == 0) { body_transform.getOrigin() += recover_motion; break; } } B_TO_G(recover_motion, r_recover_motion); return rays_found; } struct RecoverPenetrationBroadPhaseCallback : public btBroadphaseAabbCallback { private: btDbvtVolume bounds; const btCollisionObject *self_collision_object; uint32_t collision_layer; uint32_t collision_mask; struct CompoundLeafCallback : btDbvt::ICollide { private: RecoverPenetrationBroadPhaseCallback *parent_callback; btCollisionObject *collision_object; public: CompoundLeafCallback(RecoverPenetrationBroadPhaseCallback *p_parent_callback, btCollisionObject *p_collision_object) : parent_callback(p_parent_callback), collision_object(p_collision_object) { } void Process(const btDbvtNode *leaf) { BroadphaseResult result; result.collision_object = collision_object; result.compound_child_index = leaf->dataAsInt; parent_callback->results.push_back(result); } }; public: struct BroadphaseResult { btCollisionObject *collision_object; int compound_child_index; }; Vector results; public: RecoverPenetrationBroadPhaseCallback(const btCollisionObject *p_self_collision_object, uint32_t p_collision_layer, uint32_t p_collision_mask, btVector3 p_aabb_min, btVector3 p_aabb_max) : self_collision_object(p_self_collision_object), collision_layer(p_collision_layer), collision_mask(p_collision_mask) { bounds = btDbvtVolume::FromMM(p_aabb_min, p_aabb_max); } virtual ~RecoverPenetrationBroadPhaseCallback() {} virtual bool process(const btBroadphaseProxy *proxy) { btCollisionObject *co = static_cast(proxy->m_clientObject); if (co->getInternalType() <= btCollisionObject::CO_RIGID_BODY) { if (self_collision_object != proxy->m_clientObject && GodotFilterCallback::test_collision_filters(collision_layer, collision_mask, proxy->m_collisionFilterGroup, proxy->m_collisionFilterMask)) { if (co->getCollisionShape()->isCompound()) { const btCompoundShape *cs = static_cast(co->getCollisionShape()); if (cs->getNumChildShapes() > 1) { const btDbvt *tree = cs->getDynamicAabbTree(); ERR_FAIL_COND_V(tree == NULL, true); // Transform bounds into compound shape local space const btTransform other_in_compound_space = co->getWorldTransform().inverse(); const btMatrix3x3 abs_b = other_in_compound_space.getBasis().absolute(); const btVector3 local_center = other_in_compound_space(bounds.Center()); const btVector3 local_extent = bounds.Extents().dot3(abs_b[0], abs_b[1], abs_b[2]); const btVector3 local_aabb_min = local_center - local_extent; const btVector3 local_aabb_max = local_center + local_extent; const btDbvtVolume local_bounds = btDbvtVolume::FromMM(local_aabb_min, local_aabb_max); // Test collision against compound child shapes using its AABB tree CompoundLeafCallback compound_leaf_callback(this, co); tree->collideTV(tree->m_root, local_bounds, compound_leaf_callback); } else { // If there's only a single child shape then there's no need to search any more, we know which child overlaps BroadphaseResult result; result.collision_object = co; result.compound_child_index = 0; results.push_back(result); } } else { BroadphaseResult result; result.collision_object = co; result.compound_child_index = -1; results.push_back(result); } return true; } } return false; } }; bool SpaceBullet::recover_from_penetration(RigidBodyBullet *p_body, const btTransform &p_body_position, btScalar p_recover_movement_scale, bool p_infinite_inertia, btVector3 &r_delta_recover_movement, RecoverResult *r_recover_result) { // Calculate the cumulative AABB of all shapes of the kinematic body btVector3 aabb_min, aabb_max; bool shapes_found = false; for (int kinIndex = p_body->get_kinematic_utilities()->shapes.size() - 1; 0 <= kinIndex; --kinIndex) { const RigidBodyBullet::KinematicShape &kin_shape(p_body->get_kinematic_utilities()->shapes[kinIndex]); if (!kin_shape.is_active()) { continue; } if (kin_shape.shape->getShapeType() == CUSTOM_CONVEX_SHAPE_TYPE) { // Skip rayshape in order to implement custom separation process continue; } btTransform shape_transform = p_body_position * kin_shape.transform; shape_transform.getOrigin() += r_delta_recover_movement; btVector3 shape_aabb_min, shape_aabb_max; kin_shape.shape->getAabb(shape_transform, shape_aabb_min, shape_aabb_max); if (!shapes_found) { aabb_min = shape_aabb_min; aabb_max = shape_aabb_max; shapes_found = true; } else { aabb_min.setX((aabb_min.x() < shape_aabb_min.x()) ? aabb_min.x() : shape_aabb_min.x()); aabb_min.setY((aabb_min.y() < shape_aabb_min.y()) ? aabb_min.y() : shape_aabb_min.y()); aabb_min.setZ((aabb_min.z() < shape_aabb_min.z()) ? aabb_min.z() : shape_aabb_min.z()); aabb_max.setX((aabb_max.x() > shape_aabb_max.x()) ? aabb_max.x() : shape_aabb_max.x()); aabb_max.setY((aabb_max.y() > shape_aabb_max.y()) ? aabb_max.y() : shape_aabb_max.y()); aabb_max.setZ((aabb_max.z() > shape_aabb_max.z()) ? aabb_max.z() : shape_aabb_max.z()); } } // If there are no shapes then there is no penetration either if (!shapes_found) { return false; } // Perform broadphase test RecoverPenetrationBroadPhaseCallback recover_broad_result(p_body->get_bt_collision_object(), p_body->get_collision_layer(), p_body->get_collision_mask(), aabb_min, aabb_max); dynamicsWorld->getBroadphase()->aabbTest(aabb_min, aabb_max, recover_broad_result); bool penetration = false; // Perform narrowphase per shape for (int kinIndex = p_body->get_kinematic_utilities()->shapes.size() - 1; 0 <= kinIndex; --kinIndex) { const RigidBodyBullet::KinematicShape &kin_shape(p_body->get_kinematic_utilities()->shapes[kinIndex]); if (!kin_shape.is_active()) { continue; } if (kin_shape.shape->getShapeType() == CUSTOM_CONVEX_SHAPE_TYPE) { // Skip rayshape in order to implement custom separation process continue; } btTransform shape_transform = p_body_position * kin_shape.transform; shape_transform.getOrigin() += r_delta_recover_movement; for (int i = recover_broad_result.results.size() - 1; 0 <= i; --i) { btCollisionObject *otherObject = recover_broad_result.results[i].collision_object; if (p_infinite_inertia && !otherObject->isStaticOrKinematicObject()) { otherObject->activate(); // Force activation of hitten rigid, soft body continue; } else if (!p_body->get_bt_collision_object()->checkCollideWith(otherObject) || !otherObject->checkCollideWith(p_body->get_bt_collision_object())) continue; if (otherObject->getCollisionShape()->isCompound()) { const btCompoundShape *cs = static_cast(otherObject->getCollisionShape()); int shape_idx = recover_broad_result.results[i].compound_child_index; ERR_FAIL_COND_V(shape_idx < 0 || shape_idx >= cs->getNumChildShapes(), false); if (cs->getChildShape(shape_idx)->isConvex()) { if (RFP_convex_convex_test(kin_shape.shape, static_cast(cs->getChildShape(shape_idx)), otherObject, kinIndex, shape_idx, shape_transform, otherObject->getWorldTransform() * cs->getChildTransform(shape_idx), p_recover_movement_scale, r_delta_recover_movement, r_recover_result)) { penetration = true; } } else { if (RFP_convex_world_test(kin_shape.shape, cs->getChildShape(shape_idx), p_body->get_bt_collision_object(), otherObject, kinIndex, shape_idx, shape_transform, otherObject->getWorldTransform() * cs->getChildTransform(shape_idx), p_recover_movement_scale, r_delta_recover_movement, r_recover_result)) { penetration = true; } } } else if (otherObject->getCollisionShape()->isConvex()) { /// Execute GJK test against object shape if (RFP_convex_convex_test(kin_shape.shape, static_cast(otherObject->getCollisionShape()), otherObject, kinIndex, 0, shape_transform, otherObject->getWorldTransform(), p_recover_movement_scale, r_delta_recover_movement, r_recover_result)) { penetration = true; } } else { if (RFP_convex_world_test(kin_shape.shape, otherObject->getCollisionShape(), p_body->get_bt_collision_object(), otherObject, kinIndex, 0, shape_transform, otherObject->getWorldTransform(), p_recover_movement_scale, r_delta_recover_movement, r_recover_result)) { penetration = true; } } } } return penetration; } bool SpaceBullet::RFP_convex_convex_test(const btConvexShape *p_shapeA, const btConvexShape *p_shapeB, btCollisionObject *p_objectB, int p_shapeId_A, int p_shapeId_B, const btTransform &p_transformA, const btTransform &p_transformB, btScalar p_recover_movement_scale, btVector3 &r_delta_recover_movement, RecoverResult *r_recover_result) { // Initialize GJK input btGjkPairDetector::ClosestPointInput gjk_input; gjk_input.m_transformA = p_transformA; gjk_input.m_transformB = p_transformB; // Perform GJK test btPointCollector result; btGjkPairDetector gjk_pair_detector(p_shapeA, p_shapeB, gjk_simplex_solver, gjk_epa_pen_solver); gjk_pair_detector.getClosestPoints(gjk_input, result, 0); if (0 > result.m_distance) { // Has penetration r_delta_recover_movement += result.m_normalOnBInWorld * (result.m_distance * -1 * p_recover_movement_scale); if (r_recover_result) { if (result.m_distance < r_recover_result->penetration_distance) { r_recover_result->hasPenetration = true; r_recover_result->local_shape_most_recovered = p_shapeId_A; r_recover_result->other_collision_object = p_objectB; r_recover_result->other_compound_shape_index = p_shapeId_B; r_recover_result->penetration_distance = result.m_distance; r_recover_result->pointWorld = result.m_pointInWorld; r_recover_result->normal = result.m_normalOnBInWorld; } } return true; } return false; } bool SpaceBullet::RFP_convex_world_test(const btConvexShape *p_shapeA, const btCollisionShape *p_shapeB, btCollisionObject *p_objectA, btCollisionObject *p_objectB, int p_shapeId_A, int p_shapeId_B, const btTransform &p_transformA, const btTransform &p_transformB, btScalar p_recover_movement_scale, btVector3 &r_delta_recover_movement, RecoverResult *r_recover_result) { /// Contact test btTransform tA(p_transformA); btCollisionObjectWrapper obA(NULL, p_shapeA, p_objectA, tA, -1, p_shapeId_A); btCollisionObjectWrapper obB(NULL, p_shapeB, p_objectB, p_transformB, -1, p_shapeId_B); btCollisionAlgorithm *algorithm = dispatcher->findAlgorithm(&obA, &obB, NULL, BT_CONTACT_POINT_ALGORITHMS); if (algorithm) { GodotDeepPenetrationContactResultCallback contactPointResult(&obA, &obB); //discrete collision detection query algorithm->processCollision(&obA, &obB, dynamicsWorld->getDispatchInfo(), &contactPointResult); algorithm->~btCollisionAlgorithm(); dispatcher->freeCollisionAlgorithm(algorithm); if (contactPointResult.hasHit()) { r_delta_recover_movement += contactPointResult.m_pointNormalWorld * (contactPointResult.m_penetration_distance * -1 * p_recover_movement_scale); if (r_recover_result) { if (contactPointResult.m_penetration_distance < r_recover_result->penetration_distance) { r_recover_result->hasPenetration = true; r_recover_result->local_shape_most_recovered = p_shapeId_A; r_recover_result->other_collision_object = p_objectB; r_recover_result->other_compound_shape_index = p_shapeId_B; r_recover_result->penetration_distance = contactPointResult.m_penetration_distance; r_recover_result->pointWorld = contactPointResult.m_pointWorld; r_recover_result->normal = contactPointResult.m_pointNormalWorld; } } return true; } } return false; } int SpaceBullet::add_separation_result(PhysicsServer::SeparationResult *r_result, const SpaceBullet::RecoverResult &p_recover_result, int p_shape_id, const btCollisionObject *p_other_object) const { // optimize results (ignore non-colliding) if (p_recover_result.penetration_distance < 0.0) { const btRigidBody *btRigid = static_cast(p_other_object); CollisionObjectBullet *collisionObject = static_cast(p_other_object->getUserPointer()); r_result->collision_depth = p_recover_result.penetration_distance; B_TO_G(p_recover_result.pointWorld, r_result->collision_point); B_TO_G(p_recover_result.normal, r_result->collision_normal); B_TO_G(btRigid->getVelocityInLocalPoint(p_recover_result.pointWorld - btRigid->getWorldTransform().getOrigin()), r_result->collider_velocity); r_result->collision_local_shape = p_shape_id; r_result->collider_id = collisionObject->get_instance_id(); r_result->collider = collisionObject->get_self(); r_result->collider_shape = p_recover_result.other_compound_shape_index; return 1; } else { return 0; } } int SpaceBullet::recover_from_penetration_ray(RigidBodyBullet *p_body, const btTransform &p_body_position, btScalar p_recover_movement_scale, bool p_infinite_inertia, int p_result_max, btVector3 &r_delta_recover_movement, PhysicsServer::SeparationResult *r_results) { // Calculate the cumulative AABB of all shapes of the kinematic body btVector3 aabb_min, aabb_max; bool shapes_found = false; for (int kinIndex = p_body->get_kinematic_utilities()->shapes.size() - 1; 0 <= kinIndex; --kinIndex) { const RigidBodyBullet::KinematicShape &kin_shape(p_body->get_kinematic_utilities()->shapes[kinIndex]); if (!kin_shape.is_active()) { continue; } if (kin_shape.shape->getShapeType() != CUSTOM_CONVEX_SHAPE_TYPE) { continue; } btTransform shape_transform = p_body_position * kin_shape.transform; shape_transform.getOrigin() += r_delta_recover_movement; btVector3 shape_aabb_min, shape_aabb_max; kin_shape.shape->getAabb(shape_transform, shape_aabb_min, shape_aabb_max); if (!shapes_found) { aabb_min = shape_aabb_min; aabb_max = shape_aabb_max; shapes_found = true; } else { aabb_min.setX((aabb_min.x() < shape_aabb_min.x()) ? aabb_min.x() : shape_aabb_min.x()); aabb_min.setY((aabb_min.y() < shape_aabb_min.y()) ? aabb_min.y() : shape_aabb_min.y()); aabb_min.setZ((aabb_min.z() < shape_aabb_min.z()) ? aabb_min.z() : shape_aabb_min.z()); aabb_max.setX((aabb_max.x() > shape_aabb_max.x()) ? aabb_max.x() : shape_aabb_max.x()); aabb_max.setY((aabb_max.y() > shape_aabb_max.y()) ? aabb_max.y() : shape_aabb_max.y()); aabb_max.setZ((aabb_max.z() > shape_aabb_max.z()) ? aabb_max.z() : shape_aabb_max.z()); } } // If there are no shapes then there is no penetration either if (!shapes_found) { return 0; } // Perform broadphase test RecoverPenetrationBroadPhaseCallback recover_broad_result(p_body->get_bt_collision_object(), p_body->get_collision_layer(), p_body->get_collision_mask(), aabb_min, aabb_max); dynamicsWorld->getBroadphase()->aabbTest(aabb_min, aabb_max, recover_broad_result); int ray_count = 0; // Perform narrowphase per shape for (int kinIndex = p_body->get_kinematic_utilities()->shapes.size() - 1; 0 <= kinIndex; --kinIndex) { if (ray_count >= p_result_max) { break; } const RigidBodyBullet::KinematicShape &kin_shape(p_body->get_kinematic_utilities()->shapes[kinIndex]); if (!kin_shape.is_active()) { continue; } if (kin_shape.shape->getShapeType() != CUSTOM_CONVEX_SHAPE_TYPE) { continue; } btTransform shape_transform = p_body_position * kin_shape.transform; shape_transform.getOrigin() += r_delta_recover_movement; for (int i = recover_broad_result.results.size() - 1; 0 <= i; --i) { btCollisionObject *otherObject = recover_broad_result.results[i].collision_object; if (p_infinite_inertia && !otherObject->isStaticOrKinematicObject()) { otherObject->activate(); // Force activation of hitten rigid, soft body continue; } else if (!p_body->get_bt_collision_object()->checkCollideWith(otherObject) || !otherObject->checkCollideWith(p_body->get_bt_collision_object())) continue; if (otherObject->getCollisionShape()->isCompound()) { const btCompoundShape *cs = static_cast(otherObject->getCollisionShape()); int shape_idx = recover_broad_result.results[i].compound_child_index; ERR_FAIL_COND_V(shape_idx < 0 || shape_idx >= cs->getNumChildShapes(), false); RecoverResult recover_result; if (RFP_convex_world_test(kin_shape.shape, cs->getChildShape(shape_idx), p_body->get_bt_collision_object(), otherObject, kinIndex, shape_idx, shape_transform, otherObject->getWorldTransform() * cs->getChildTransform(shape_idx), p_recover_movement_scale, r_delta_recover_movement, &recover_result)) { ray_count = add_separation_result(&r_results[ray_count], recover_result, kinIndex, otherObject); } } else { RecoverResult recover_result; if (RFP_convex_world_test(kin_shape.shape, otherObject->getCollisionShape(), p_body->get_bt_collision_object(), otherObject, kinIndex, 0, shape_transform, otherObject->getWorldTransform(), p_recover_movement_scale, r_delta_recover_movement, &recover_result)) { ray_count = add_separation_result(&r_results[ray_count], recover_result, kinIndex, otherObject); } } } } return ray_count; }