/*************************************************************************/ /* shape_bullet.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "shape_bullet.h" #include "btRayShape.h" #include "bullet_physics_server.h" #include "bullet_types_converter.h" #include "bullet_utilities.h" #include "core/config/project_settings.h" #include "shape_owner_bullet.h" #include <BulletCollision/CollisionDispatch/btInternalEdgeUtility.h> #include <BulletCollision/CollisionShapes/btConvexPointCloudShape.h> #include <BulletCollision/CollisionShapes/btHeightfieldTerrainShape.h> #include <btBulletCollisionCommon.h> /** @author AndreaCatania */ ShapeBullet::ShapeBullet() {} ShapeBullet::~ShapeBullet() {} btCollisionShape *ShapeBullet::create_bt_shape(const Vector3 &p_implicit_scale, real_t p_extra_edge) { btVector3 s; G_TO_B(p_implicit_scale, s); return create_bt_shape(s, p_extra_edge); } btCollisionShape *ShapeBullet::prepare(btCollisionShape *p_btShape) const { p_btShape->setUserPointer(const_cast<ShapeBullet *>(this)); p_btShape->setMargin(margin); return p_btShape; } void ShapeBullet::notifyShapeChanged() { for (const KeyValue<ShapeOwnerBullet *, int> &E : owners) { ShapeOwnerBullet *owner = static_cast<ShapeOwnerBullet *>(E.key); owner->shape_changed(owner->find_shape(this)); } } void ShapeBullet::add_owner(ShapeOwnerBullet *p_owner) { Map<ShapeOwnerBullet *, int>::Element *E = owners.find(p_owner); if (E) { E->get()++; } else { owners[p_owner] = 1; // add new owner } } void ShapeBullet::remove_owner(ShapeOwnerBullet *p_owner, bool p_permanentlyFromThisBody) { Map<ShapeOwnerBullet *, int>::Element *E = owners.find(p_owner); if (!E) { return; } E->get()--; if (p_permanentlyFromThisBody || 0 >= E->get()) { owners.erase(E); } } bool ShapeBullet::is_owner(ShapeOwnerBullet *p_owner) const { return owners.has(p_owner); } const Map<ShapeOwnerBullet *, int> &ShapeBullet::get_owners() const { return owners; } void ShapeBullet::set_margin(real_t p_margin) { margin = p_margin; notifyShapeChanged(); } real_t ShapeBullet::get_margin() const { return margin; } btEmptyShape *ShapeBullet::create_shape_empty() { return bulletnew(btEmptyShape); } btStaticPlaneShape *ShapeBullet::create_shape_world_boundary(const btVector3 &planeNormal, btScalar planeConstant) { return bulletnew(btStaticPlaneShape(planeNormal, planeConstant)); } btSphereShape *ShapeBullet::create_shape_sphere(btScalar radius) { return bulletnew(btSphereShape(radius)); } btBoxShape *ShapeBullet::create_shape_box(const btVector3 &boxHalfExtents) { return bulletnew(btBoxShape(boxHalfExtents)); } btCapsuleShape *ShapeBullet::create_shape_capsule(btScalar radius, btScalar height) { return bulletnew(btCapsuleShape(radius, height)); } btCylinderShape *ShapeBullet::create_shape_cylinder(btScalar radius, btScalar height) { return bulletnew(btCylinderShape(btVector3(radius, height / 2.0, radius))); } btConvexPointCloudShape *ShapeBullet::create_shape_convex(btAlignedObjectArray<btVector3> &p_vertices, const btVector3 &p_local_scaling) { return bulletnew(btConvexPointCloudShape(&p_vertices[0], p_vertices.size(), p_local_scaling)); } btScaledBvhTriangleMeshShape *ShapeBullet::create_shape_concave(btBvhTriangleMeshShape *p_mesh_shape, const btVector3 &p_local_scaling) { if (p_mesh_shape) { return bulletnew(btScaledBvhTriangleMeshShape(p_mesh_shape, p_local_scaling)); } else { return nullptr; } } btHeightfieldTerrainShape *ShapeBullet::create_shape_height_field(Vector<float> &p_heights, int p_width, int p_depth, real_t p_min_height, real_t p_max_height) { const btScalar ignoredHeightScale(1); const int YAxis = 1; // 0=X, 1=Y, 2=Z const bool flipQuadEdges = false; const void *heightsPtr = p_heights.ptr(); btHeightfieldTerrainShape *heightfield = bulletnew(btHeightfieldTerrainShape(p_width, p_depth, heightsPtr, ignoredHeightScale, p_min_height, p_max_height, YAxis, PHY_FLOAT, flipQuadEdges)); // The shape can be created without params when you do PhysicsServer3D.shape_create(PhysicsServer3D.SHAPE_HEIGHTMAP) if (heightsPtr) { heightfield->buildAccelerator(16); } return heightfield; } btRayShape *ShapeBullet::create_shape_ray(real_t p_length, bool p_slips_on_slope) { btRayShape *r(bulletnew(btRayShape(p_length))); r->setSlipsOnSlope(p_slips_on_slope); return r; } /* World boundary */ WorldBoundaryShapeBullet::WorldBoundaryShapeBullet() : ShapeBullet() {} void WorldBoundaryShapeBullet::set_data(const Variant &p_data) { setup(p_data); } Variant WorldBoundaryShapeBullet::get_data() const { return plane; } PhysicsServer3D::ShapeType WorldBoundaryShapeBullet::get_type() const { return PhysicsServer3D::SHAPE_WORLD_BOUNDARY; } void WorldBoundaryShapeBullet::setup(const Plane &p_plane) { plane = p_plane; notifyShapeChanged(); } btCollisionShape *WorldBoundaryShapeBullet::create_bt_shape(const btVector3 &p_implicit_scale, real_t p_extra_edge) { btVector3 btPlaneNormal; G_TO_B(plane.normal, btPlaneNormal); return prepare(WorldBoundaryShapeBullet::create_shape_world_boundary(btPlaneNormal, plane.d)); } /* Sphere */ SphereShapeBullet::SphereShapeBullet() : ShapeBullet() {} void SphereShapeBullet::set_data(const Variant &p_data) { setup(p_data); } Variant SphereShapeBullet::get_data() const { return radius; } PhysicsServer3D::ShapeType SphereShapeBullet::get_type() const { return PhysicsServer3D::SHAPE_SPHERE; } void SphereShapeBullet::setup(real_t p_radius) { radius = p_radius; notifyShapeChanged(); } btCollisionShape *SphereShapeBullet::create_bt_shape(const btVector3 &p_implicit_scale, real_t p_extra_edge) { return prepare(ShapeBullet::create_shape_sphere(radius * p_implicit_scale[0] + p_extra_edge)); } /* Box */ BoxShapeBullet::BoxShapeBullet() : ShapeBullet() {} void BoxShapeBullet::set_data(const Variant &p_data) { setup(p_data); } Variant BoxShapeBullet::get_data() const { Vector3 g_half_extents; B_TO_G(half_extents, g_half_extents); return g_half_extents; } PhysicsServer3D::ShapeType BoxShapeBullet::get_type() const { return PhysicsServer3D::SHAPE_BOX; } void BoxShapeBullet::setup(const Vector3 &p_half_extents) { G_TO_B(p_half_extents, half_extents); notifyShapeChanged(); } btCollisionShape *BoxShapeBullet::create_bt_shape(const btVector3 &p_implicit_scale, real_t p_extra_edge) { return prepare(ShapeBullet::create_shape_box((half_extents * p_implicit_scale) + btVector3(p_extra_edge, p_extra_edge, p_extra_edge))); } /* Capsule */ CapsuleShapeBullet::CapsuleShapeBullet() : ShapeBullet() {} void CapsuleShapeBullet::set_data(const Variant &p_data) { Dictionary d = p_data; ERR_FAIL_COND(!d.has("radius")); ERR_FAIL_COND(!d.has("height")); setup(d["height"], d["radius"]); } Variant CapsuleShapeBullet::get_data() const { Dictionary d; d["radius"] = radius; d["height"] = height; return d; } PhysicsServer3D::ShapeType CapsuleShapeBullet::get_type() const { return PhysicsServer3D::SHAPE_CAPSULE; } void CapsuleShapeBullet::setup(real_t p_height, real_t p_radius) { radius = p_radius; height = p_height; notifyShapeChanged(); } btCollisionShape *CapsuleShapeBullet::create_bt_shape(const btVector3 &p_implicit_scale, real_t p_extra_edge) { return prepare(ShapeBullet::create_shape_capsule(radius * p_implicit_scale[0] + p_extra_edge, height * p_implicit_scale[1])); } /* Cylinder */ CylinderShapeBullet::CylinderShapeBullet() : ShapeBullet() {} void CylinderShapeBullet::set_data(const Variant &p_data) { Dictionary d = p_data; ERR_FAIL_COND(!d.has("radius")); ERR_FAIL_COND(!d.has("height")); setup(d["height"], d["radius"]); } Variant CylinderShapeBullet::get_data() const { Dictionary d; d["radius"] = radius; d["height"] = height; return d; } PhysicsServer3D::ShapeType CylinderShapeBullet::get_type() const { return PhysicsServer3D::SHAPE_CYLINDER; } void CylinderShapeBullet::setup(real_t p_height, real_t p_radius) { radius = p_radius; height = p_height; notifyShapeChanged(); } btCollisionShape *CylinderShapeBullet::create_bt_shape(const btVector3 &p_implicit_scale, real_t p_margin) { return prepare(ShapeBullet::create_shape_cylinder(radius * p_implicit_scale[0] + p_margin, height * p_implicit_scale[1] + p_margin)); } /* Convex polygon */ ConvexPolygonShapeBullet::ConvexPolygonShapeBullet() : ShapeBullet() {} void ConvexPolygonShapeBullet::set_data(const Variant &p_data) { setup(p_data); } void ConvexPolygonShapeBullet::get_vertices(Vector<Vector3> &out_vertices) { const int n_of_vertices = vertices.size(); out_vertices.resize(n_of_vertices); for (int i = n_of_vertices - 1; 0 <= i; --i) { B_TO_G(vertices[i], out_vertices.write[i]); } } Variant ConvexPolygonShapeBullet::get_data() const { ConvexPolygonShapeBullet *variable_self = const_cast<ConvexPolygonShapeBullet *>(this); Vector<Vector3> out_vertices; variable_self->get_vertices(out_vertices); return out_vertices; } PhysicsServer3D::ShapeType ConvexPolygonShapeBullet::get_type() const { return PhysicsServer3D::SHAPE_CONVEX_POLYGON; } void ConvexPolygonShapeBullet::setup(const Vector<Vector3> &p_vertices) { // Make a copy of vertices const int n_of_vertices = p_vertices.size(); vertices.resize(n_of_vertices); for (int i = n_of_vertices - 1; 0 <= i; --i) { G_TO_B(p_vertices[i], vertices[i]); } notifyShapeChanged(); } btCollisionShape *ConvexPolygonShapeBullet::create_bt_shape(const btVector3 &p_implicit_scale, real_t p_extra_edge) { if (!vertices.size()) { // This is necessary since 0 vertices return prepare(ShapeBullet::create_shape_empty()); } btCollisionShape *cs(ShapeBullet::create_shape_convex(vertices)); cs->setLocalScaling(p_implicit_scale); prepare(cs); return cs; } /* Concave polygon */ ConcavePolygonShapeBullet::ConcavePolygonShapeBullet() : ShapeBullet() {} ConcavePolygonShapeBullet::~ConcavePolygonShapeBullet() { if (meshShape) { delete meshShape->getMeshInterface(); delete meshShape->getTriangleInfoMap(); bulletdelete(meshShape); } faces = Vector<Vector3>(); } void ConcavePolygonShapeBullet::set_data(const Variant &p_data) { Dictionary d = p_data; ERR_FAIL_COND(!d.has("faces")); setup(d["faces"]); } Variant ConcavePolygonShapeBullet::get_data() const { Dictionary d; d["faces"] = faces; return d; } PhysicsServer3D::ShapeType ConcavePolygonShapeBullet::get_type() const { return PhysicsServer3D::SHAPE_CONCAVE_POLYGON; } void ConcavePolygonShapeBullet::setup(Vector<Vector3> p_faces) { faces = p_faces; if (meshShape) { /// Clear previous created shape delete meshShape->getMeshInterface(); delete meshShape->getTriangleInfoMap(); bulletdelete(meshShape); } int src_face_count = faces.size(); if (0 < src_face_count) { // It counts the faces and assert the array contains the correct number of vertices. ERR_FAIL_COND(src_face_count % 3); btTriangleMesh *shapeInterface = bulletnew(btTriangleMesh); src_face_count /= 3; const Vector3 *r = p_faces.ptr(); const Vector3 *facesr = r; btVector3 supVec_0; btVector3 supVec_1; btVector3 supVec_2; for (int i = 0; i < src_face_count; ++i) { G_TO_B(facesr[i * 3 + 0], supVec_0); G_TO_B(facesr[i * 3 + 1], supVec_1); G_TO_B(facesr[i * 3 + 2], supVec_2); // Inverted from standard godot otherwise btGenerateInternalEdgeInfo generates wrong edge info shapeInterface->addTriangle(supVec_2, supVec_1, supVec_0); } const bool useQuantizedAabbCompression = true; meshShape = bulletnew(btBvhTriangleMeshShape(shapeInterface, useQuantizedAabbCompression)); if (GLOBAL_DEF("physics/3d/smooth_trimesh_collision", false)) { btTriangleInfoMap *triangleInfoMap = new btTriangleInfoMap(); btGenerateInternalEdgeInfo(meshShape, triangleInfoMap); } } else { meshShape = nullptr; ERR_PRINT("The faces count are 0, the mesh shape cannot be created"); } notifyShapeChanged(); } btCollisionShape *ConcavePolygonShapeBullet::create_bt_shape(const btVector3 &p_implicit_scale, real_t p_extra_edge) { btCollisionShape *cs = ShapeBullet::create_shape_concave(meshShape); if (!cs) { // This is necessary since if 0 faces the creation of concave return null cs = ShapeBullet::create_shape_empty(); } cs->setLocalScaling(p_implicit_scale); prepare(cs); cs->setMargin(0); return cs; } /* Height map shape */ HeightMapShapeBullet::HeightMapShapeBullet() : ShapeBullet() {} void HeightMapShapeBullet::set_data(const Variant &p_data) { ERR_FAIL_COND(p_data.get_type() != Variant::DICTIONARY); Dictionary d = p_data; ERR_FAIL_COND(!d.has("width")); ERR_FAIL_COND(!d.has("depth")); ERR_FAIL_COND(!d.has("heights")); real_t l_min_height = 0.0; real_t l_max_height = 0.0; // If specified, min and max height will be used as precomputed values if (d.has("min_height")) { l_min_height = d["min_height"]; } if (d.has("max_height")) { l_max_height = d["max_height"]; } ERR_FAIL_COND(l_min_height > l_max_height); int l_width = d["width"]; int l_depth = d["depth"]; ERR_FAIL_COND_MSG(l_width < 2, "Map width must be at least 2."); ERR_FAIL_COND_MSG(l_depth < 2, "Map depth must be at least 2."); Vector<float> l_heights; Variant l_heights_v = d["heights"]; if (l_heights_v.get_type() == Variant::PACKED_FLOAT32_ARRAY) { // Ready-to-use heights can be passed l_heights = l_heights_v; } else if (l_heights_v.get_type() == Variant::OBJECT) { // If an image is passed, we have to convert it to a format Bullet supports. // this would be expensive to do with a script, so it's nice to have it here. Ref<Image> l_image = l_heights_v; ERR_FAIL_COND(l_image.is_null()); // Float is the only common format between Godot and Bullet that can be used for decent collision. // (Int16 would be nice too but we still don't have it) // We could convert here automatically but it's better to not be intrusive and let the caller do it if necessary. ERR_FAIL_COND(l_image->get_format() != Image::FORMAT_RF); PackedByteArray im_data = l_image->get_data(); l_heights.resize(l_image->get_width() * l_image->get_height()); float *w = l_heights.ptrw(); const uint8_t *r = im_data.ptr(); float *rp = (float *)r; // At this point, `rp` could be used directly for Bullet, but I don't know how safe it would be. for (int i = 0; i < l_heights.size(); ++i) { w[i] = rp[i]; } } else { ERR_FAIL_MSG("Expected PackedFloat32Array or float Image."); } ERR_FAIL_COND(l_width <= 0); ERR_FAIL_COND(l_depth <= 0); ERR_FAIL_COND(l_heights.size() != (l_width * l_depth)); // Compute min and max heights if not specified. if (!d.has("min_height") && !d.has("max_height")) { const float *r = l_heights.ptr(); int heights_size = l_heights.size(); for (int i = 0; i < heights_size; ++i) { float h = r[i]; if (h < l_min_height) { l_min_height = h; } else if (h > l_max_height) { l_max_height = h; } } } setup(l_heights, l_width, l_depth, l_min_height, l_max_height); } Variant HeightMapShapeBullet::get_data() const { ERR_FAIL_V(Variant()); } PhysicsServer3D::ShapeType HeightMapShapeBullet::get_type() const { return PhysicsServer3D::SHAPE_HEIGHTMAP; } void HeightMapShapeBullet::setup(Vector<float> &p_heights, int p_width, int p_depth, real_t p_min_height, real_t p_max_height) { // TODO cell size must be tweaked using localScaling, which is a shared property for all Bullet shapes // If this array is resized outside of here, it should be preserved due to CoW heights = p_heights; width = p_width; depth = p_depth; min_height = p_min_height; max_height = p_max_height; notifyShapeChanged(); } btCollisionShape *HeightMapShapeBullet::create_bt_shape(const btVector3 &p_implicit_scale, real_t p_extra_edge) { btCollisionShape *cs(ShapeBullet::create_shape_height_field(heights, width, depth, min_height, max_height)); cs->setLocalScaling(p_implicit_scale); prepare(cs); return cs; } /* Ray shape */ RayShapeBullet::RayShapeBullet() : ShapeBullet() {} void RayShapeBullet::set_data(const Variant &p_data) { Dictionary d = p_data; setup(d["length"], d["slips_on_slope"]); } Variant RayShapeBullet::get_data() const { Dictionary d; d["length"] = length; d["slips_on_slope"] = slips_on_slope; return d; } PhysicsServer3D::ShapeType RayShapeBullet::get_type() const { return PhysicsServer3D::SHAPE_RAY; } void RayShapeBullet::setup(real_t p_length, bool p_slips_on_slope) { length = p_length; slips_on_slope = p_slips_on_slope; notifyShapeChanged(); } btCollisionShape *RayShapeBullet::create_bt_shape(const btVector3 &p_implicit_scale, real_t p_extra_edge) { return prepare(ShapeBullet::create_shape_ray(length * p_implicit_scale[1] + p_extra_edge, slips_on_slope)); }